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Abstract
A screen composed of in-plane thin strips is embedded in a porous medium. The screen is 
either normal or parallel to the applied pressure gradient which forces a flow through the 
anisotropic porous medium. The principal axes of anisotropy are assumed to be aligned 
with that of the screen. The governing equation is fourth order and cannot be factored as in 
the isotropic case. The solutions are found by eigenfunction superposition (with complex 
eigenvalues) and point match. Anisotropy has first-order effects on the flow and the drag 
on the screen. Extrapolation yields fundamental results for the drag of a single slat in an 
anisotropic porous medium.
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1  Introduction

Most literature on fluid flow in porous media considered the medium as isotropic. How-
ever, porous media such as rock formations, cardboard, filters and insulation are usually 
anisotropic. See Nield and Bejan (2006) for a review, especially on the effects of anisot-
ropy in thermo-convective stability and internal natural convection. It was found that for 
fully developed internal flow the effect of anisotropy only alters certain constants since the 
flow is parallel (Dagan et al. 2002, Mobedi et al 2010; Karmakar and Sekhar 2018). For 
almost parallel boundary layer flows, anisotropy affects the magnitude but not the charac-
ter of the results (Rees and Storeletten 1995; Vasseur and Degan 1998; Degan et al 2005; 
2008; Bachok et al 2010). Of interest is the work of Rees et al (2002) which determines the 
first-order tilt of a (boundary layer) plume by matching to an outer flow.

This paper studies the effects of permeability anisotropy on forced flow over an obstruc-
tion embedded in a porous medium. Specifically, we consider a pressure driven Darcy-
Brinkman flow over (or through) an infinite two-dimensional screen composed of thin 
strips arranged periodically in the same plane. The corresponding Stokes flow problem was 
solved by Hasimoto (1958) and the isotropic Darcy–Brinkman flow by Wang (2009). Here, 
we shall concentrate on the effect of anisotropy of the medium.
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The Darcy−Brinkman equation for an anisotropic medium is (Bear 2018)

Here, � is the porosity, �e is the effective viscosity, u’ is the velocity vector, p’ is 
the pressure, � is the viscosity of the fluid, and K is the permeability tensor, which 
when orthotropic would align with each velocity component. Notice porosity and vis-
cosity are scalars, and thus anisotropy would not affect the first term (Brinkman term), 
and it affects only the last term (Darcy term). For homogeneous (but not isotropic) 
media, the porosity cancels and �e can be taken out of the gradient operator. Actually 
�e is very close to � (Breugem 2007).

We assume the principal axes of the permeability tensor are aligned with the Carte-
sian axes. Equation (1) reduces to

where ( u′, v′,w′ ) are velocity components in the ( x′, y′, z′ ) directions, respectively. Normal-
ize all lengths by a characteristic length L, the velocities by a characteristic velocity U, the 
pressure by �eU∕L and drop primes. Equations (2–4) become

Here,

are inverse Darcy numbers. The continuity equation is

These equations, together with boundary conditions specific to the problem, will be 
solved.
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2 � Formulation

Figure 1a shows the present problem where a screen composed of periodically placed 
thin strips is embedded in an anisotropic porous medium. The forced velocity far from 
the screen can be decomposed into (U, V, W) components. Due to the linearity of the 
Darcy-Brinkman equation, the problem can be separated into three independent prob-
lems. Consider first the case of a pressure gradient causing a uniform flow W in the 
z- direction in a porous medium. Assume the medium is anisotropic, such that the per-
meabilities in the directions of (x, y, z) are ( K1,K2,K3 ), respectively. In this case, W 
is a parallel flow and a function of (x, y) only. It only depends on the permeability K3 
and does not involve any anisotropy effects. One can use the isotropic results of Wang 
(2009) with permeability as K3, and we shall not discuss this case further.

The other two directions are not parallel flow and non-trivial. There are two cases: 
(A) the velocity U parallel to the plane of the screen and in the x direction, whose cross 
section is shown in Fig. 1b. (B) the velocity V normal the plane of the screen in the y 
direction, whose cross section is shown in Fig. 1c. In both cases, w is zero and all vari-
ables are independent of z. Since the flow is two-dimensional, Eq. (9) suggests a stream 
function � such that the velocities in the (x,y) directions are 

(
�y,−�x

)
 . Equations (5,6) 

become

Here, ∇2 is the two-dimensional Laplacian. If pressure is eliminated from Eqs. (10, 
11), the stream function satisfies

The boundary conditions are that the velocities are zero on the slats and approaches 
uniform flow far from the screen. Note that if k1, k2 tends to zero, Eq. (12) becomes the 
biharmonic equation for Stokes flow of Hasimoto (1958). If k1, k2 are very large, or in 
the Darcy approximation, Eq. (12) degenerates to a second-order equation, but in gen-
eral not Laplace’s potential flow equation.
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1
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2
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Fig.1   a The screen composed of periodic thin strips. b Cross section of flow due to velocity U.c Cross sec-
tion of flow due to velocity V 
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3 � Case A: The Screen Parallel to the Pressure Gradient

Figure  1b shows the cross section of the screen. Consider a computational domain of 
0 ≤ x ≤ b, 0 ≤ y < ∞ . There are symmetries about x = 0, x = b and anti-symmetry about 
y = 0 (x > 1). We require the velocities be zero on the solid strip and the velocity approaches 
1 at infinity. The boundary conditions are

and

Equations (13, 14, 17) suggest the form

where �n =
n�

b
. Equation (12) then gives H ∼ e�y where

or

Notice that �1,2 are in general complex conjugates. Considering Eqs. (15,16), the stream 
function is

The rest of the boundary conditions Eqs.(15,16) are to be satisfied by point match.

Here, we have truncated the series to N terms, and xj =
b(j−0.5)

N
, j = 1 to N . Equa-

tions (22, 23) are solved for the N unknown coefficients Bn.
The normalized shear stress on the strip is
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Integrating over the two sides of a slat, the drag per period is

Since Eq. (21) is a Fourier series, convergence as N → ∞ is assured. Now, let us show 
the accuracy of the point match method as N is increased. Table 1 shows some typical con-
vergence rates. It is seen that in general three-figure accuracy is attained when N reaches 
about 100. Up to 1000 terms are used for very small k or when b close to one, or b is very 
large.

Another comparison is with an exact solution. When b = 1, the strips are connected and 
the screen becomes a flat plate. Equation (12) reduces to

The no-slip boundary conditions give

The velocity is

The drag per period is

It is interesting this parallel flow solution reduces to uniform flow u = 1 in the Darcy 
limit 

(
k1 = ∞

)
 , but it does not exist in the clear viscous flow limit ( k1 = 0 ) due to Stokes 

paradox. Table 2 shows a comparison of our point match method to this exact solution as b 
approaches one. Due to the small gap width, up to 1000 terms are used for accuracy.

Figure 2 shows some typical streamlines. It is seen that the streamlines are closer to the 
screen if k1 > k2 , than those of k1 < k2 . It is also reflected in the drag per period in Table 2. 
The reason is due to the fact that the flow (and drag) is dominated by k1 . Of interest is 
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Table 1   The velocity at the center of the gap �y(b, 0) . Asterisked values indicate the drag per period

N b = 2, k1 = 2, k2 = 1 b = 2, k1 = 1, k2 = 2 b = 2, k1 = 0.1, k2 = 0.2

20 0.687, 11.3* 0.409, 6.57* 0.0558, 0.770*
40 0.686, 11.4* 0.407, 6.62* 0.0553, 0.774*
60 0.685, 11.5* 0.406, 6.64* 0.0551, 0.776*
80 0.685, 11.5* 0.406, 6.65* 0.0551, 0.777*
100 0.684, 11.5* 0.406, 6.66* 0.0550, 0.778*
120 0.684, 11.5* 0.406, 6.66* 0.0550, 0.778*
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Table 2   Mid-gap velocity. 
Asterisk show the drag per 
period. Last row entries are from 
the exact solution Eqs.(28, 29)

b k1 = 1, k2 = 2 k1 = 2, k2 = 1

1.1 0.0496, 4.36* 0.0993, 8.74*
1.01 0.00511, 4.04* 0.0102, 8.08*
1.001 0.000682, 4.00* 0.00136, 8.01*
1.000 exact 0., 4.00* 0., 8.00*

Fig.2   Typical streamlines 
for flow parallel to screen, 
b = 2. a k1 = 2, k2 = 0.5 b 
k1 = 0.5, k2 = 2

(a) (b)

Table 3   Drag on a single slat ( b → ∞ ) for a flow parallel to the slat

Asterisked values are from the isotropic case Wang (2009)

k2∖k1 1 2 3 4 5 6 7 8 9 10

1 8.58
8.59*

12.4 16.3 20.2 24.1 28.1 32.0 36.0 40.0 43.9

2 9.58 13.2
13.2*

16.9 20.7 24.6 28.5 32.4 36.3 40.2 44.2

3 10.5 13.9 17.5 21.2 25.0 28.9 32.8 36.6 40.6 44.5
4 11.3 14.6 18.2 21.8 25.5 29.3 33.1 37.0 40.9 44.8
5 12.1 15.3 18.8 22.3 26.0

26.0*
29.8 33.5 37.4 41.2 45.2

6 12.8 16.0 19.3 22.9 26.5 30.2 33.9 37.7 41.6 45.4
7 13.4 16.6 19.9 23.4 27.0 30.6 34.3 38.1 41.9 45.7
8 14.1 17.2 20.4 23.9 27.4 31.0 34.7 38.5 42.3 46.1
9 14.7 17.7 21.0 23.3 27.9 31.5 35.1 38.8 42.6 46.4
10 15.2 18.3 21.5 24.8 28.3 32.9 35.5 39.2 42.9 46.7
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the drag due to a single strip, determined by the asymptote for large b. Table 3 shows the 
results. Our values for the isotropic case ( k1 = k2 ) agree with those of Wang (2009).

4 � Case B: The Screen Normal to the Pressure Gradient

Figure 1c shows the cross section, where a velocity V at y = −∞ is forced through the gaps 
of the screen. Our computational domain is also 0 ≤ x ≤ b, 0 ≤ y < ∞ . There are anti-sym-
metries about x = 0 and x = b, and symmetry about y = 0 (x > 1). The boundary conditions 
are

and as y → ∞,

Equations (30,31) suggest the form

where �n and �1,2 are same as those in Case A. Using Eqs.(32, 33), the stream function is

The coefficients An are determined by point match as in Case A. Using the rest of the 
boundary conditions, Eqs. (32, 33) become, for i = 1 to N,

The unknowns An are inverted from the linear algebraic Eqs.(37, 38) by standard means. 
The convergence rate is similar to Case A.
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and we have set the mean pressure at y = 0, 1 < x ≤ b to zero. Since Fn(∞) = 0 , the extra 
pressure drop due to the presence of the screen is c. Thus, the normalized drag per period 
due to the screen is

Our numerical results can be checked by the exact (clear-fluid) solution found by Hasi-
moto (1958). In our variables, his drag per period for Stokes flow through a screen is

Since our point match method does not admit k1, k2 identically zero, Table 4 shows the 
approach to zero. 600 terms are used for four-figure accuracy. It is seen that our results tend 
to Hasimoto’s solution.

Of interest is the drag for a single strip which is obtained by extrapolating the half 
period b to large values. Table 5 shows the drag of a single strip ( b → ∞ ). It is clear that 
the drag is larger if k1 > k2 as compared to k2 > k1 . The values for the isotropic case k1 = k2 
agree well with those found by Wang (2009).

5 � Discussion

The anisotropic permeabilities K1,K2,K3 along the principal axes can be experimentally 
measured, or determined theoretically by pore-level micro fluid dynamics. (e.g., Wang 
1996). In this paper, we assumed the principal axes are aligned with the axes of the embed-
ded screen, which occur more often than those inclined at an angle to the solid surfaces. In 
the latter case, the permeability tensor should be used.
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Table 4   Drag per period for 
small k1, k2

b k1 = 0.2

k2 = 0.1

k1 = 0.02

k2 = 0.01

k1 = 0.002

k2 = 0.001

Equation (43) 
Hasimoto (1958)

1.5 87.61 87.34 87.34 87.36
2 36.57 36.29 36.28 36.26
4 13.54 13.11 13.10 13.08

k1 = 0.1

k2 = 0.2

k1 = 0.01

k2 = 0.02

k1 = 0.001

k2 = 0.002

1.5 87.45 87.34 87.34 87.36
2 36.41 36.28 36.28 36.26
4 13.29 13.10 13.10 13.08
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Our point match method is highly efficient, only N linear equations need to be solved 
in a finite interval. In contrast, finite differences (and boundary integrals) need to tackle an 
infinite domain, with at least 30 N2 equations. Fourier transforms cannot be applied due to 
the mixed boundary conditions.

There are many differences between the anisotropic cases of the present paper and the 
isotropic cases of Wang (2009). For example, the fourth-order partial differential equation, 
Eq. (12), cannot be factored into two second-order equations as in the isotropic case. Con-
sequently, the eigenvalues Eq. (20) are complex, but the solutions are real. Anisotropy also 
has non-negligible effects on the streamlines (velocities) and the drag force experienced on 
the screen as shown in Figs. 2,3.

In the limit of b → ∞ , we extrapolated for the drag force on a single strip. Such fun-
damental results are tabulated for the first time in Tables 3 and 4. The asymmetry of the 
Tables also shows the effects of anisotropy.

Let us compare the flow parallel to the screen (Case A) with the flow normal to the 
screen (Case B) illustrated in Fig. 1b and c where k1 < k2 as shown. Both Fig. 2 and Fig. 3 

Table 5   Drag on a single slat ( b → ∞ ) for a flow normal to a single strip

Asterisked values are from Wang (2009)

k1∖k2 1 2 3 4 5 6 7 8 9 10

1 19.5
19.5*

25.2 31.4 37.8 44.3 50.8 57.4 64.1 70.7 77.4

2 34.2 41.3
41.3*

49.6 58.3 67.4 76.6 85.9 95.2 105 114

3 51.1 59.6 69.8 80.8 92.2 104 116 128 140 153
4 70.1 79.8 91.7 105 119 133 148 162 177 192
5 90.9 102 115 130 146

146*
163 180 198 215 233

6 113 125 140 157 176 195 214 234 255 275
7 137 150 167 185 206 227 249 277 295 318
8 163 176 194 215 237 261 285 310 336 362
9 189 204 223 246 270 295 322 349 377 406
10 218 233 253 277 303 331 360 390 420 451

Fig.3   Typical streamlines 
for flow normal to screen, 
b = 2. a k1 = 2, k2 = 0.5 b 
k1 = 0.5, k2 = 2

(a) (b)
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show when k1 < k2 the velocity is lower. However, Tables 3 and 4 show the drag is lower 
for flow parallel to the screen, but the drag is higher for the flow normal to the screen. This 
is because the drag is more sensitive to the permeability in the direction of the flow.

We hope this pilot paper would elicit more research in this interesting area.
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