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Abstract
This paper numerically investigates the heat transfer performance of thermally developing 
non-Darcy forced convection in a fluid-saturated porous medium tube under asymmetric 
entrance temperature boundary conditions. The Brinkman flow model and the local ther-
mal non-equilibrium (LTNE) model are employed to establish the mathematical model of 
the studied problem to predict the forced convective heat transfer. Then, the mathematical 
model is numerically solved using COMSOL Multiphysics. Consequently, the fluid veloc-
ity field, the solid temperature field, the fluid temperature field and the Nusselt number are 
obtained. Moreover, the dependences of the Nusselt number on some key parameters are 
analyzed in detail. The results show that the distribution characteristics of the Nusselt num-
ber are strongly dependent on the form of the entrance temperature function. Meanwhile, 
it is found that the Nusselt number increases first and then tends to approach an asymptotic 
value with the increase in the Darcy number and the Biot number. The Nusselt number 
monotonously increases with increasing the Péclet number. On the contrary, the Nusselt 
number decreases first and then tends to be an asymptotic value owing to the increase in 
the thermal conductivity ratio and the viscosity ratio. This study is of benefit to provide 
in-depth insights into the non-Darcy forced convective heat transfer in porous tubes with 
asymmetric inlet temperature under LTNE condition.
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1  Introduction

Analytical study on forced convection in a porous medium tube or plate under LTNE con-
dition is of significance in the field of heat transfer enhancement (e.g., Nield et al. 2003; 
Nield et  al. 2017; Qu et  al. 2012; Wang et  al. 2017; Zhong et  al. 2018; Li et  al. 2018). 
As for porous plates, heat transfer analysis under the Darcy flow has been investigated 
extensively. For example, Yang and Vafai (2011) derived analytically the fluid and solid 
temperature distributions for five typical boundary conditions at the porous–fluid inter-
face under LTNE condition and analyzed the influences of the parameters on the Nusselt 
number. Compared with the Darcy linear flow model, the Brinkman flow model (Brink-
man 1946; Vafai and Tien 1982; Nithiarasu et al. 1997) can satisfy the no-slip condition 
at the interface between the porous medium flow region and the pure fluid flow region 
and account for the transitional flow between the boundaries. Therefore, it has been widely 
applied in the fields of flow, heat and mass transfer in porous media. For instance, Nield 
and Kuznetsov (2002) studied the effect of forced convection on heat transfer performance 
in a parallel-plate channel filled with a saturated porous medium under the Brinkman flow 
with constant wall temperature. In their article, the expression of the local Nusselt number 
was obtained, and the influences of the relevant parameters on the Nusselt number were 
analyzed. Besides, a number of scholars have studied the heat transfer of porous plate 
under the Brinkman flow with different boundary conditions. For example, Kuznetsov and 
Nield (2006) studied the temperature distribution and the Nusselt number distribution in 
porous tubes and plates under disturbed flow conditions and concluded that the increase 
in dimensionless frequency would lead to the change in the Nusselt number distribution 
in amplitude and phase. Hooman and Haji-sheikh (2007) analyzed the thermally develop-
ing Brinkman forced convection in a rectangular porous duct with isoflux walls. Xu et al. 
(2011b) numerically simulated the heat transfer performance of a sandwich plate filled 
with porous metal foams under the Brinkman flow with uniform heat flux boundary under 
LTNE condition. Cekmer et al. (2011) performed an analytical investigation of steady and 
fully developed forced convective heat transfer in a parallel-plate channel with asymmetric 
uniform heat flux boundary conditions under the Brinkman flow. Li and Hu (2019) studied 
the forced convective heat transfer in a channel partially filled by porous media located at 
two inner walls with a constant flux prescribed at the channel walls under LTNE condi-
tion and obtained the analytic solutions of velocity, fluid and solid temperatures and the 
Nusselt number. Besides, a number of researchers consider the effect of rarefied fluids on 
heat transfer. For instance, Buonomo et al. (2016) examined the heat transfer characteris-
tics of fully developed forced convection in parallel-plate microchannels filled by porous 
media saturated with rarefied gases at high temperatures. An exact solution was derived for 
the Brinkman flow model with uniform heat flux at the microchannel walls. Seetharamu 
et al. (2017) conducted the analysis of forced convection heat transfer with internal heat 
generation in a microchannel filled by a porous medium saturated with a rarefied gas. The 
Brinkman flow model was applied to describe the fluid transport. Both the fluid and solid 
temperature distributions were obtained. Buonomo et al. (2018) numerically analyzed ther-
mally developing forced convection in microchannels or channels in rarefied gas filled by 
porous media in slip flow regime under the Brinkman flow with uniform heat flux under 
LTNE condition.

Likewise, concerning porous media tubes or rings, there have been many studies on heat 
transfer characteristics under the Brinkman flow. For example, Xu et al. (2011a) obtained 
an analytical solution for fully developed forced convection in a tube partially filled by 
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open-cell metal foam with uniform heat-flux boundary under the Brinkman flow. Wang 
et al. (2015) carried out a theoretical study on heat transfer characteristics of forced convec-
tive gaseous flow through a micro-annulus filled with a porous material under the Brink-
man flow. Xu and Gong (2018) numerically studied the fully developed forced convection 
in a tube partially filled with composite metal foams. The LTNE model and the Brinkman 
flow model were employed to predict fluid and thermal transport.

In the previous work (Li et al. 2019), we investigated the forced convective heat transfer 
performance of porous media circular tube under LTNE condition with asymmetric inlet 
temperature. The exact solution of the Nusselt number was derived, and the influences of 
different inlet boundary conditions and related parameters on heat transfer performance 
were analyzed. Note that the above work is based on the Darcy flow model. In view of this 
point, the purpose of this study is to investigate the forced convection in a porous circular 
tube under LTNE condition in the framework of Brinkman flow model instead of Darcy 
flow model. The numerical solutions of fluid velocity profile, fluid and solid temperatures, 
and the Nusselt number are obtained by using FEA software, and the relevant parametric 
studies are carried out.

2 � Mathematical Model

2.1 � Governing Equations

The schematic of thermally developing forced convection heat transfer problem in a porous 
circular tube is shown in Fig.  1. Herein, Tw is a constant temperature prescribed on the 
impermeable wall of the porous tube, while Tin is the fluid temperature at the entrance of 
the pipe. For simplicity, we make the following assumptions: (1) Porous medium is fluid-
saturated, homogenous and isotropic, and the low-conductivity fluid flows from the inlet 
to the outlet. (2) Natural convection, diffusion and radiative heat transfer are ignored. (3) 
Longitudinal heat conduction is neglected. (4) Forced convection is steady and thermally 
developing but hydrodynamically developed.

Note that the Brinkman flow model is used to establish the momentum equation, and 
the two-temperature field equations reflecting the LTNE phenomenon are employed to 
describe the heat transfer problem.

Based on the above assumptions, the Brinkman momentum equation (Pangrle et  al. 
1991) and the two energy equations (Li et al. 2019) in three-dimensional cylindrical coor-
dinates can be expressed as

Fig. 1   Schematic diagram of a circular pipe filled with porous media
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where r , � and z represent the radial, circumferential and longitudinal coordinates, respec-
tively. dp

dz
 denotes a constant pressure gradient. Tf  and Ts mean the intrinsic phase average 

fluid and solid temperatures, respectively. �eff , � , u , � and cp represent the effective dynamic 
viscosity, actual dynamic viscosity, volume-averaged velocity, density and specific heat of 
the fluid, respectively. K is the permeability of porous media, h refers to the specific 
solid–liquid interface heat transfer coefficient, and ks,eff and kf ,eff represent the effective 
thermal conductivities of solid and fluid phases, respectively, which are usually from the 
following expressions:

where � means the porosity of porous media and ks and kf  represent the thermal conduc-
tivities of solids and fluids, respectively.

2.2 � Boundary Conditions

The no-slip velocity boundary condition and the first-type thermal boundary condition 
on the circular duct wall are illustrated in Fig. 1. That is,

where r0 is the radius of the circular duct.
As stated by Li et  al. (2018), in most cases, the fluid temperature at the entrance 

of the porous tube is uniform. However, there are also some instances where the inlet 
temperature or heat flux is non-uniform. Therefore, in this study, we discuss the gen-
eral case of non-uniform inlet fluid temperature. That is, the entrance temperature is 
assumed to be an arbitrary function with respect to the radial coordinate and the cir-
cumferential coordinate. So we have

where f (r,�) is a well-defined arbitrary function and applies to both uniform and non-
uniform temperature distributions.
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2.3 � Dimensionless Mathematical Model

In order to normalize the mathematical model, the following non-dimensional variables 
are introduced:

where U denotes the dimensionless volume-averaged velocity of the fluid, �s and �f  repre-
sent the dimensionless intrinsic phase average solid and fluid temperatures, respectively, 
and T0 denotes the reference temperature. Bi is the Biot number, Pe is the Péclet number, � 
refers to the ratio of the effective thermal conductivity of fluid to that of solid, and M is the 
ratio of fluid effective dynamic viscosity to actual dynamic viscosity.

With the definitions of dimensionless variables in Eq. (8), the non-dimensional gov-
erning equations and boundary conditions can be rewritten as follows:

The governing equations (Eqs.  9–11) and boundary conditions (Eqs.  12–14) com-
pose the non-dimensional mathematical model of the problem under consideration. In 
Sect. 3, we manage to solve this model numerically.
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3 � Numerical Method

3.1 � Numerical Solutions by COMSOL Multiphysics

Considering the difficulty in deriving the analytical solution of the above mathematical 
model (viz. Eqs. 9–14), we employ the FEA software COMSOL Multiphysics to solve 
the mathematical model and obtain its FE solutions. It is worth mentioning that partial 
differential equations (PDEs) module in COMSOL Multiphysics is highly suitable for 
solving numerically the boundary value problems of user-defined PDEs.

Note that the governing equations (Eqs. 9–11) are in the framework of cylindrical coor-
dinates. To date, they cannot be directly input into the PDEs module due to the limitation 
of the coordinate system in the software. Alternatively, we convert Eqs.  (9)–(11) to the 
forms of Cartesian coordinate system as follows:

Now, Eqs.  (15)–(17) can be imported into the PDEs module. Also note that the coef-
ficients matrix corresponding to Eqs. (15)–(17) has to conform to the required input form 
of the PDEs module. That is, all the second-order partial derivatives are placed into the 
corresponding differential operator, while the rest terms can be placed into the non-homo-
geneous source term (viz. f  term in the RHS).

While Eqs. (15)–(17) are input into the PDEs module, we establish the geometry model 
of the studied problem on the basis of Fig. 1 and impose the corresponding boundary con-
ditions represented by Eqs. (12)–(14). After that, we mesh the geometry model and con-
duct the FE solving and obtain the numerical solutions of the unknown variables U , �s and 
�f  . Then, based on the above numerical solutions, we try to attain the Nusselt number in 
the next subsection.

3.2 � Nusselt Number Calculation

3.2.1 � Analytical Formula for the Nusselt Number

For the forced convective heat transfer problem within a circular duct under LTNE condi-
tion, Zhao et al. (2006) proposed the analytical expression for the average Nusselt number 
at the wall. That is,
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where qw is the heat flux at the wall, qw = kf ,eff(�Tf∕�r) + ks,eff(�Ts∕�r) , and Tf ,b is the bulk 
mean fluid temperature and is defined by

Inserting Eq. (19) into Eq. (18) and implementing non-dimensionalization yield

Clearly, Eq. (20) is applicable to the studied problem in this work. Thereby, we employ 
Eq. (20) and the numerical �s and �f  obtained in Sect. 3.2.2 to calculate the Nusselt number 
with the aid of COMSOL Multiphysics.

3.2.2 � Numerical Solution of Nu

In COMSOL Multiphysics, we import and set the Nusselt number as a user-defined vari-
able expressed by Eq. (20). Here, we elaborate on the calculation procedure of the Nusselt 
number Eq. (20). First, the denominator of Eq. (20) is the integral of fluid temperature �f  
on the cross section of the model, which can be realized by using the integral operator 
(intop) in the software. Second, the numerator part is the partial derivatives of solid tem-
perature and liquid temperature with regard to the radial coordinate at the wall. As men-
tioned before, the partial derivatives in the cylindrical coordinate need to be converted into 
those in the rectangular coordinate. According to the chain rule, we have

Thus, the Nusselt number can be entered into the software in the following form:

It can be seen from Eq. (20) that the data set shall be defined at R = 1 . After the mesh 
refinement, COMSOL built-in steady-state solver is used to calculate the Nusselt number.

4 � Results and Discussion
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peratures decrease first and then increase with the increase in � , but the fluid dimensionless 
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Fig. 2   Dimensionless velocity and two-temperature changes with the variations of coordinates. a U versus 
R . b �S and �f  versus � . c �S and �f  versus Z
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temperature is always greater than the solid dimensionless temperature. Figure 2c displays 
the changes in �s and �f  with Z . It can be seen that the two-temperature decreases rapidly 
and tends to 0 with the increase in Z.

4.1.2 � Comparison with the Case of the Darcy Flow

To our knowledge, there have been no available experimental data and analytical solutions 
for the studied problem. For simplicity, we degenerate the Brinkman flow into the Darcy 
flow. In the case of the Darcy flow, the change in the Nusselt number with the Biot num-
ber is taken as an example to verify the consistency between the numerical results in this 
paper and the analytical solution of the Nusselt number in Li et al. (2019). It is clear from 
Fig. 3 that the two curves have a good consistency. Meanwhile, the numerical solutions of 
the two temperatures for the Darcy flow are compared with the analytical solutions by Li 
et al. (2018), which also has a good consistency. Therefore, the correctness of the numeri-
cal results in this work can be verified indirectly.

Besides, we also investigate the accuracy of the numerical solution. Table 1 represents 
the relationship between the relative error of the Nusselt number at the location ( R = 1 , 

Fig. 3   Nu versus Bi

Table 1   Relative error of the Nusselt number versus the grid number

Grid 
number

2000 3200 6300 11,466 13,104 16,254 17,892 20,000 28,600

Nusselt 
num-
ber

161.2358 158.9821 156.8513 155.8127 155.4778 155.6684 155.4411 155.509 155.427

Relative 
error

– − 1.398% − 1.340% − 0.662% − 0.215% 0.123% − 0.146% 0.044% − 0.053%
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� =
�

2
 , Z = 5 ) and the grid number. It can be seen from Table 1 that the absolute value of 

the relative error decreases with increasing the grid number. In our simulation, the grid 
number is taken as 17,892 and the relative error is around 0.15%.

4.1.3 � Nusselt Number Distribution Characteristics

As mentioned earlier, the Nusselt number is typically used for heat transfer analysis.
Here, the boundary conditions are defined as f (R,�) = 0.5(1 + R cos�) , where M , Pe, 

Bi, � and Da are taken as 0.1, 50, 100, 0.033988 and 1, respectively.

Fig. 4   Change in the Nusselt number with the variations of the coordinates. a Nu versus Z . b Nu versus �
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Figure  4a illustrates the change in the Nusselt number with the variations of coordi-
nates. We find that the Nusselt number decreases rapidly when Z is less than 5 and then 
tends to the asymptotic value. This implies that the intensity of convection heat transfer is 
strongest at the entrance and then decreases rapidly. This is because the intensity of con-
vective heat transfer depends on the transfer of dimensionless temperature. In addition, it is 
clear from Fig. 4b that the Nusselt number first decreases and then increases with the varia-
tion of � , which is determined by the inlet condition f (R,�) = 0.5(1 + R cos�) . Therefore, 
the intensity of convective heat transfer on the wall is closely related to the inlet.

The above results describe the variation characteristics of Nusselt number with the coor-
dinates Z and � when the related parameters are given and fixed. Next, we concentrate on 
the influences of the pertinent parameters on the Nusselt number.

4.2 � Parametric Studies

4.2.1 � Effect of f (R,')

As shown in Fig.  5a, when the symmetric entrance boundary condition is f (R,�) = 1 
or f (R,�) = R , the Nusselt number of the wall surface is constant and does not change 
with � . Then, we adopt the asymmetric inlet boundary conditions. That is, three differ-
ent functions are chosen, which are f (R,�) = 0.5(1 + R sin�) , f (R,�) = 0.5(1 + R cos�) 
and f (R,�) = 0.5(1 + R(cos� + sin�)) . In the situation of asymmetric entrance boundary 
conditions, we can see from Fig. 5a that the Nusselt number is a periodic function and its 
distribution is similar to that of the inlet boundary condition. This indicates that the inten-
sity of convective heat transfer strongly relies on the inlet boundary condition. Meanwhile, 
as depicted in Fig. 5b, whether the inlet boundary condition is uniform or non-uniform, 
the Nusselt number is large at the inlet and then decreases rapidly with Z . And when Z 
continues to increase, the Nusselt number tends to be an asymptotic value. The similar 
dependences of the Nusselt number on f (R,�) and Z are also reported by Li et al. (2019) 
(see Fig. 3 therein).

4.2.2 � Effect of Bi

It is observed from Fig. 6 that Nu increases and eventually reaches the asymptotic value as 
Bi increases. This is because the heat exchange rate between the fluid and the solid gradu-
ally becomes faster with the increase in Bi. Additionally, the LTNE model reduces to the 
LTE model as Bi approaches infinity. Besides, when the Brinkman flow degenerates to the 
Darcy flow, the numerical solution of Nu in this work is the same as the analytical solution 
(see Eq. (16) therein) reported by Li et al. (2019). Also note that Nu of Brinkman flow is 
smaller than that of Darcy flow as illustrated in Fig. 6. This is ascribed to the fact that the 
Brinkman flow takes shear energy dissipation into account, leading to lower flow velocity 
and weakening convective heat transfer.

4.2.3 � Effect of Pe

It is obvious from Fig. 7 that Nu gradually increases with increasing Pe. The larger the Pe, 
the stronger the convection. This strengthens the degree of heat exchange. Therefore, it is 
applicable to enhance the heat transfer performance by increasing Pe.



650	 F. Yue et al.

1 3

4.2.4 � Effect of �

It can be found from Fig. 8 that Nu gradually decreases with � . Herein, we give the 
following explanation. As � increases, the effective thermal conductivity of solid 
compared with that of liquid becomes smaller, the heat conduction inside the solid 
becomes weak, and the temperatures of solid and liquid significantly decrease. There-
fore, the heat transfer can be increased by reducing �.

Fig. 5   Change in the Nusselt number under different forms of f (R,�) . a Nu versus � . b Nu versus Z
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4.2.5 � Effect of M

We can see from Fig.  9 that Nu decreases with the increase in M . Note that M char-
acterizes the magnitude of the viscosity. The larger the M , the greater the viscosity of 

Fig. 6   Nu versus Bi

Fig. 7   Nu versus Pe
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the fluid, which leads to the lower velocity of the fluid. When M tends to be 1, the fluid 
velocity becomes extremely slow. Thus, the forced convection is very weak and the heat 
transfer is almost achieved by the heat conduction. Thereby, Nu exhibits the above trend 

Fig. 8   Nu versus �

Fig. 9   Nu versus M
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with M . In other words, in order to obtain a better heat exchange efficiency, M shall be 
reduced.

4.2.6 � Effect of Da

Figure 10 shows the dependence of Nu on Da. We can see that, as Da increases, Nu first 
increases and finally remains invariant. Remember that Da represents the permeability of 
porous media. That is, the larger the Da, the stronger the penetration ability of the fluid. 
In other words, as Da increases, the liquid permeates much faster in porous media. This 
results in much stronger convection. Therefore, the heat exchange becomes faster and Nu 
increases.

5 � Conclusions

In this paper, numerical investigation of forced convective heat transfer in a porous medium 
pipe with asymmetric inlet temperature under the Brinkman flow and LTNE conditions is 
carried out by using COMSOL Multiphysics. The major conclusions can be summarized as 
follows:

(1)	 Nu decreases rapidly first and then tends to approach an asymptotic value with increas-
ing Z . The variation of Nu with � is strongly determined by the form of the inlet tem-
perature function.

(2)	 As Bi and Da increase, Nu increases first and then tends to be an asymptotic value.
(3)	 Nu increases monotonically with the increase in Pe.
(4)	 As � and M increase, Nu gradually decreases and then tends to be an asymptotic value.

Fig. 10   Nu versus Da



654	 F. Yue et al.

1 3

(5)	 The influences of � , Pe and Bi on Nu are great, while the effects of Da and M on Nu 
are relatively minor.

In this study, the heat transfer performance of a porous duct under non-uniform entrance 
temperature boundary condition is investigated. In engineering practices, however, besides 
the above case, there are other non-uniform or asymmetrical cases, for example, the case of 
heat flux at the inlet being non-uniform and the situation that the wall temperature or heat 
flux is asymmetric. Thereby, the latter asymmetrical situations will be considered in the 
near future.
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