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Abstract
Darcy’s law (which states that a fluid flow rate is directly proportional to the pressure gra-
dient) is shown to be accurate in a rather narrow range of flow velocities. Numerous studies 
show that at low pressure gradients gas slippage effect occurs, which gives overestimated 
flow rates compared to Darcy’s law. At higher flow rates, Darcy’s law is usually replaced 
by the Forchheimer equation which accounts for inertial forces including a quadratic term 
in the flow rate. Darcy’s and Forchheimer’s laws and the problem of detecting transitions 
between their ranges of applicability are discussed in this study. Analysis of experimen-
tal data shows that deviation from Darcy’s law is governed by the Forchheimer number, 
which is defined by the authors as a product of tortuosity and Reynolds number. The use of 
the Forchheimer number and semi-analytical approaches enables us to describe non-Darcy 
flow as a simple universal equation valid for any flow geometry. Comparison of the experi-
mental data with predictions based on a semi-analytical model shows excellent agreement 
for a wide range of reservoir properties.

Keywords Forchheimer’s law · Non‐Darcy coefficient · Reynolds number · Forchheimer 
number · Tortuosity · Permeability · Porosity

List of Symbols
Dp  Particles diameter, m
Dt  Throat diameter, m
E  Non-Darcy effect
F  Formation resistivity factor
Fo  Forchheimer number
FoD  Forchheimer number related to Darcy flow conditions
Foc  Critical Forchheimer number
Foc exp  Experimentally measured critical Forchheimer number
Foc sim  Critical Forchheimer number obtained during the simulation
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P  Pressure, Pa
P0  Standard pressure, Pa
P1  Inlet pressure, Pa
P2  Outlet pressure, Pa
PD  Pressure related to Darcy flow conditions, Pa
PF  Pressure related to Forchheimer flow conditions, Pa
Pe  External boundary pressure, Pa
Pw  Bottomhole pressure, Pa
Re  Reynolds number
ReD  Reynolds number related to Darcy flow conditions
ReF  Reynolds number related to Forchheimer flow conditions
Rec  Critical Reynolds number
d  Mean pore diameter, m
deqv  Equivalent pore diameter, m
k  Permeability, mD
q  Gas flow rate,  m3/d
qD  Volumetric flow rate related to Darcy flow conditions,  m3/d
qDm  Mass flow rate related to Darcy flow conditions, kg/d
qF  Volumetric flow rate related to Forchheimer flow conditions,  m3/d
qFm  Mass flow rate related to Forchheimer flow conditions, kg/d
re  External drainage radius, m
rw  Wellbore radius, m
u  Velocity, m/s
uD  Volumetric velocity related to Darcy flow conditions, m/s
uDm  Mass velocity related to Darcy flow conditions, kg/(s  m2)
uF  Volumetric velocity related to Forchheimer flow conditions, m/s
uFm  Mass velocity related to Forchheimer flow conditions, kg/(s  m2)
h  Formation thickness, m
gradP  Pressure gradient, Pa/m
r  Pore throat radius in Table 2, m
x  Linear coordinate, m
R2  Determination coefficient
B1  Constant in Eq. 20
a  Constants in Table 1
b  Constants in Table 1
c  Constant in Eq. 4
c
′  Constant in Eq. 5
a, b, c  Coefficients in Eq. 34
a1, b1, c1  Coefficients in Eq. 57

Greek Letters
�  Constant in Eq. 20
�  Non-Darcy coefficient,  m−1

�  Weak inertia factor
�  New turbulent flow correlation factor, ft
�  Viscosity, Pa s
�  Density, kg/m3

�0  Density at standard conditions, kg/m3
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�  Tortuosity
�  Porosity, fraction

Subscripts
D  Related to Darcy flow conditions
F  Related to Forchheimer flow conditions
c  Critical
e  External
eqv  Equivalent
exp  Experiment
m  Mass
p  Particles
sim  Simulation
t  Throat
w  Well

1 Introduction

For more than a century, Darcy’s law serves as a fundamental rule of fluid flow through 
porous media. It became generally accepted that Darcy’s law plays the same role as Ohm’s 
law for electricity, Fourier’s law for heat conduction, and Fick’s law for diffusivity. Gas 
flow in porous media has received great attention due to its importance in the areas of 
pneumatic test analysis (Ahlers et  al. 1995), soil depressurization systems (Fuente et  al. 
2019), transport and recovery of pollutants in water system (Ghane et al. 2014), and many 
other important areas of application. A basic law linking the pressure drop and velocity of 
fluid flow through porous media is Darcy’s law (1856). It can be used for flows of gases, 
liquids, and mixtures. For a one-directional steady-state flow of an incompressible Newto-
nian fluid through a horizontal porous medium, it can be written as:

However, several experimental results (Hubbert 1956; Wu et al. 1998; Zeng and Grigg 
2006; Firouzi et al. 2014) show that this law can be used only in a narrow range of flow 
rates. Indeed, when the flow rate increases, the seepage velocity is no longer proportional 
to the pressure drop. On the contrary, as the pressure gradient decreases, the slip effect 
occurs, especially in low permeability media (Klinkenberg 1941).

Traditionally, two types of criteria, namely the Reynolds number and the Forchheimer 
number, have been used in the past to identify the beginning of a non-Darcy flow (Skjetne 
and Auriault 1999; Zeng and Grigg 2006; Macini et al. 2011; Ghane et al. 2014). Some 
authors believe that an advanced method is needed to understand and predict the non‐Darcy 
flow and its characteristics, as it is critical for estimating the reduction in well productivity 
and reserve recovery (Huang and Ayoub 2008; Zolotukhin and Gayubov 2019). Concerns 
regarding deviations from Darcy’s law in gas reservoirs have been expressed as early as the 
1970s, but special attention was given to the wellbore zone (Holditch and Morse, 1976).

As the flow velocity increases, inertial forces become more significant (weak iner-
tia), and the relationship between the pressure gradient and seepage velocity becomes 

(1)−gradP =
�

k
u.
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nonlinear. In this case, Darcy’s law is generally corrected by a cubic term in seepage veloc-
ity (Firoozabadi and Katz, 1979).

Weak inertia is a rule in which the inertial force is of the same order as the viscous 
force. First, this deviation from Darcy’s law was presented numerically by Firoozabadi and 
Katz (1979) and then theoretically derived for homogeneous isotropic media by Mei and 
Auriault (1991). Wodie and Levy (1991) analytically derived this law for homogeneous 
isotropic and space-periodic porous media by double-scale homogenization. The existence 
of a weak inertia rule is also numerically confirmed by Rasoloarijaona and Auriault (1994) 
and Skjetne (1995) and then experimentally by Skjetne and Auriault (1999).

At a high Reynolds number (strong inertial rule), the empirical Forchheimer equation 
(Forchheimer 1901) is used to account for the deviation from Darcy’s law:

Different names have been used for the � term in the literature. In this paper, we use the 
term “non-Darcy coefficient” when referring to � as it appears in the Forchheimer equa-
tion. This is an empirical value, the determination method of which is poorly studied, but 
it represents the inertial resistance in a porous medium and depends on the pore geometry 
and fluid properties.

A common problem in technology and science is the derivation of simple equations 
describing complex phenomena. Complex control equations are often known, but they are 
too difficult to analyze. The purpose of this study is to develop a simple flow model based 
on classical approaches and modern techniques such as dimensional analysis and machine 
learning methods. This method can be additionally used for fluid flow at low pressure gra-
dients when the effect of gas slippage prevails over inertial forces. The focus of this article 
is on accounting for non-Darcy flow when inertial forces become more significant and the 
relationship between pressure gradient and seepage velocity becomes nonlinear.

The use of the above methods in a single combination allowed us to take a fresh look 
at complex processes in a porous medium. The study consists of two parts. In the first 
part, we briefly recall Darcy’s and Forchheimer’s laws and consider the issue of detecting 
the transition between the ranges of their applicability. The initial theoretical equations are 
estimated, and empirical dependencies are proposed based on the study of available data in 
the literature.

The second part is devoted to a more detailed consideration of the experimental data 
on determining the permeability of clastic consolidated porous samples. A correlation is 
presented for the non-Darcy flow coefficient concerning permeability, porosity, and tortu-
osity. Then, we briefly recap a derivation of a semi-analytical equation using the regression 
machine learning method. A comparison of the experimental results with the proposed 
model showed good agreement between them over the whole range of basic reservoir and 
fluid parameters. Studies have also shown that there is a transition zone from linear to a 
nonlinear flow rule, which is determined by the interval of Forchheimer numbers. The 
use of the Forchheimer number made it possible to identify a universal law of fluid flow 
through a porous medium in a simple analytical form valid for any flow geometry. The 
results of macro-modeling show that in the case of a gas reservoir, the gas flow in the entire 

(2)−gradP =
�

k
u +

�

�
�2u3.

(3)−gradP =
�

k
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reservoir area deviates from Darcy’s law. This effect can be significant when assessing the 
effectiveness of the gas reservoir performance.

2  Data and Analysis Methods for Nonlinear Fluid Flow Behavior

Experimental studies have shown that the � coefficient is related in various ways to rock 
properties, such as porosity, permeability, tortuosity, specific surface area, grain and pore 
size distribution, and surface roughness, rather than fluid properties.

In some cases, permeability alone does not correlate very well with the non-Darcy coef-
ficient. Noman et al. (1985) conducted an experimental study on two core plugs with the 
same permeabilities and found that they have a significant difference in � values. They con-
cluded that other rock properties should be included in the � correlation. In determining the 
non-Darcy coefficient from the correlation of permeability and type of porosity, the identi-
fied permeability still had an inverse relationship with � . Porosity exhibits a more complex 
relationship: In some experiments, it appears to be inversely proportional to � , while in 
others, it is directly proportional. The following section reviews the literature related to the 
Forchheimer model and the available correlations of the non-Darcy coefficient.

The first experimental data on non-Darcy flow appeared in the literature in the early 
1930s. Table 1 lists the most interesting empirical relationships. Note that the cases con-
sidering a non‐Darcy flow in a multiphase system (Wong 1970; Kutasov 1993; Frederick 
and Grave 1994; Coles and Hartman 1998) were not included in our study. Many of those 
equations were obtained for different rock types. From theoretical Eqs. 4 and 5, derived for 
different pore geometries by Irmay (1958) and Geertsma (1974), respectively, we see that 
they are very different from each other.

It should be noted that Eqs. 1–3 are applicable for certain rules of fluid flow in a porous 
medium. Figure 1 shows a graph of various flow rules from the effect of gas slippage (first 
part of area 1) to the display of the turbulence effect in a porous medium (Skjetne 1995).

It would be desirable to have criteria that separate and quantify the full range of fluid 
flows in a porous medium shown in Fig. 1. The rule criterion is required to determine the 
beginning of the non-Darcy flow. Two types of criteria, the Reynolds number ( Re ) and the 
Forchheimer number ( Fo ), have been introduced earlier for identifying the beginning of 
the non-Darcy flow (Ruth and Ma 1992; Skjetne and Auriault 1999; Zeng and Grigg 2006; 
Ghane et al. 2014).

The Reynolds number Re is defined as the ratio of inertial to viscous forces:

Table 2 summarizes the correlations used to estimate the Reynolds number obtained by 
different researchers.

(4)� =
c

k0.5�1.5

(5)� =
c��

k�
.

(6)Re =
�ud

�
.
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Cornell and Katz (1953) related the non-Darcy effect to turbulence or nonlinearity between 
the pressure gradient and the flow velocity. However, many studies, such as Bear (1972), 
Scheidegger (1974), Barak (1987), Ruth and Ma (1992), and Whitaker (1996), have concluded 
that nonlinearity is associated not with turbulence but rather with inertial effects. Kadi (1980) 
often used the terms “non-Darcy” and “turbulent” in gas flow technology to describe visco-
inertial flow at high velocities near the wellbore region of gas wells. Bear (1972) systemati-
cally cited three reasons to exclude turbulence as the cause for the non-Darcy effect:

Table 1  Literature summary of equations estimating the non‐Darcy coefficient

No. Empirical model � Units of k and � Source

1
� = ab

−
1

2

(

10−8k
)−

1

2 �
−

3

2   where a = 1.75 ; b = 150
D,  cm−1 Ergun (1952)

2 � = 1.82 ⋅ 108k−
5

4 �
−

3

4
mD,  cm−1 Janicek and Katz (1955)

3 � = 5.5 ⋅ 109k−
5

4 �
−

3

4
mD,  ft−1 Tek et al. (1962)

4 � = 0.005k−0,5�−5,5 cm2,  cm−1 Geertsma (1974)
5

� = ab
−

1

2

(

10−8k
)−

1

2 �
−

3

2 a = [1.8 ∼ 4] ; b = 180
D,  cm−1 MacDonald et al. (1979)

6 � = 1.47 ⋅ 107k−0.55 (unconsolidated)
� = 2.33 ⋅ 1010k−1.201 (consolidated)

mD,  ft−1 Brown (1980)

7 � = 6.15 ⋅ 1010k−1.55

� = 3.13 ⋅ 1012k−1.78�−1.78

mD,  ft−1 Jones (1987)

8 � = 8.91 ⋅ 108k−1�−1� mD,  ft−1 Liu et al. (1995)
9 � = 1.55 ⋅ 104�3.35k−0.98�−0.29

� = 2.5 ⋅ 105k−1

� = 3.1 ⋅ 104�3k−1

D,  cm−1 Thauvin and Mohanty (1998)

10 � = 1.07 ⋅ 1012k−1.88�0.449 (same porosity method)
� = 2.49 ⋅ 1011k−1.79�0.537 (simultaneous equations)

mD,  ft−1 Coles and Hartman (1998)

11 � = 10−3.25k−1.023�1.943 cm2,  cm−1 Cooper et al. (1999)
12 � = 11,500k−1�−1 D,  cm−1 Li and Engler (2001)
13 � = �Fk−1 D,  ft−1 Kollbotn and Bratteli (2005)
14 � = 4.1 ⋅ 1011k−1.5 mD,  m−1 Friedel and Voigt (2006)
15 � = 10−3�1.1k−1�3.2d m2,  m−1 Choi and Song (2019)

Fig. 1  Flow rules in porous 
media. 1—Darcy’s law; 2—weak 
inertia; 3—Forchheimer (strong 
inertia); 4—transition from 
Forchheimer to turbulence; 5—
turbulence (Skjetne 1995)



721Semi-analytical Approach to Modeling Forchheimer Flow in Porous…

1 3

1. In turbulent flow-through pipes, the linear term in Eq. 2 does not exist;
2. In the flow-through pipes, the transition from laminar to turbulent flow is not gradual 

but rather abrupt;
3. The critical Reynolds number Rec , at which the transition begins, is several orders of 

magnitude higher than the value at which the non-Darcy effect begins.

For the third reason mentioned above, Ruth and Ma (1992) provided an example illustrat-
ing the idea that the non-Darcy flow does not necessarily imply a high microscopic Reynolds 
number. They argued that in a straight tube model, non-Darcy effects do not become apparent 
until true turbulence sets in at Re ≈ 2000 , while in the curved tube model, microscopic iner-
tial effects occur early at Re ≈ 1 . They concluded that the non-Darcy effect occurs because 
microscopic inertial effects change the velocity and pressure fields. Further on, it became evi-
dent that non-Darcy flow occurs not only in gas reservoirs, fractured reservoirs, and multiper-
meability systems but also in oil reservoirs that experience nonlinearity due to non-Darcy flow 
behavior (Belhaj et al. 2003).

In addition to the Reynolds number, it was proposed to use a Forchheimer number as a 
criterion for the transition from linear to nonlinear fluid flow in porous media (Ruth and Ma 
1992). The Forchheimer number Fo is defined as the ratio of the pressure gradient required to 
overcome inertial forces to that of viscous forces:

Zeng and Grigg (2006) suggested a relationship between the non-Darcy effect E and the 
Forchheimer number Fo:

They demonstrated that the Forchheimer number is a better criterion than the Reynolds 
number for non-Darcy flows in porous media. In their study, the critical condition for the 
onset of flow nonlinearity was defined as the point where the non-Darcy effect Ec reaches 
10%, which corresponds to a critical Forchheimer number Foc equal to 0.11. Macini et al. 

(16)Fo =
k��u

�
.

(17)E =
Fo

1 + Fo
.

Table 2  Literature summary of the Reynolds number equations

Formula Critical Reynolds number Authors

Re =
u⋅deqv ⋅�

(0.75�+0.23)�

(7) 7.5 ≤ Rec ≤ 9.0 Pavlovskiy (1922)

Re =
�Dpu

�

(8) 40 ≤ Rec ≤ 80 Chilton and Colburn (1931)

Re =
�Dpu

�

(9) 10 ≤ Rec ≤ 1000 (unconsolidated)
0.4 ≤ Rec ≤ 3 (loosely consolidated)

Fancher and Lewis (1933)

Re =
u�

√

k

�1.5�

(10) 0.02 ≤ Rec ≤ 0.29 Millionshikov (1935)

Re =
10u�

√

k

�2.3�

(11) 1 ≤ Rec ≤ 12 Shelkachev and Lapuk (2001)

Re =
k��u

�
(12) 0.1 ≤ Rec ≤ 0.2 Green and Duwez (1951)

Re =
�Dpu

�

1

1−�

(13) 3 ≤ Rec ≤ 10 Ergun (1952)

Re =
�Dtu

�
(14) 3 ≤ Rec ≤ 10 Ma and Ruth (1993)

Re =
�ru

�
(15) Rec = 0.11 Thauvin and Mohanty (1998)
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(2011) used Foc in the range from 0.22 to 0.56, which corresponds to the value of Ec from 
13 to 38%. Ghane et al. (2014) also estimated the Foc in the range of 0.14 to 0.55 ( Ec from 
12 to 36%). Our analysis shows that the range of critical values of Fo , which defines a tran-
sition zone from linear to non-Darcy flow, is more appropriate in this case. According to 
our estimates (see details in Sect. 3), the critical Forchheimer number ranges from 0.08 to 
0.27, and the non-Darcy effect E ranges from 7 to 21% for all core samples.

3  Experimental Data and Methods

In our previous study (Zolotukhin and Gayubov 2019), various machine learning methods 
were used to obtain a modified Forchheimer equation for a wide range of porous medium 
parameters and pressure gradients. The authors analyzed the data of clastic reservoir 
samples with permeabilities ranging from 12 to 1132 mD available in the literature (Tes-
sem 1980; Torsæter et al. 1981). It should be noted that the experiments of Tessem and 
Torsæter et al. were conducted for a single-phase flow.

Two methods of machine learning were considered, namely artificial neural networks 
(ANNs) and multiple regression models (MLRs). When processing the experimental data, 
it was necessary to preset the approximate value of the permeability to determine the non-
Darcy coefficient. For this purpose, ANNs were used; porous media properties such as 
porosity, sample length, pressure drop, and fluid flow rate were represented as input lay-
ers in the ANN model, while permeability was the output layer in the training model. As 
a result, it was possible to train a neural network with four hidden layers containing 11 
neurons each. The determination coefficient (R2) between the estimated permeability and 
the actual core permeability was 0.92. Based on these results, the ANN model was selected 
to predict permeability. Many previous studies have focused on permeability and porosity 
prediction using artificial intelligence (AI), which were discussed in detail by Ansah et al. 
(2020). These results showed the effectiveness of this method in solving such problems.

The second method, MLR, in combination with dimensional analysis, found its applica-
tion in obtaining the universal equation of fluid flow in a porous medium. This, in turn, 
enables high accuracy and reliability of predicted flow rules over the entire range of pres-
sure gradients under both experimental and reservoir conditions. Besides, this method is 
the simplest in machine learning and effective in finding dependencies between input and 
predicted parameters. By applying the MLR method, we secured a high value of the deter-
mination coefficient R2 = 0.98.

Using the methods above, discussed in detail in Zolotukhin and Gayubov (2019) and 
new data, it is possible to obtain the following modified Forchheimer equation (semi-ana-
lytical equation):

where � is the tortuosity, which is determined as follows:

Here, B1 and � are constants equal to 9.67 ⋅ 10−5 and 0.47 , respectively. To obtain a semi-
analytical expression for a flow rate, comparing Eqs.  3 and 18, we obtain the following 

(18)−gradP =
�

k
u + � ⋅

1
√

k�1.5
�u2

(19)� = B1 ⋅

(

�l2

k

)�

.
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expression for the non-Darcy coefficient, which is advantageous in that both hydraulic 
properties of the rock and the fluid properties are considered simultaneously:

Many authors include the tortuosity parameter in the Forchheimer equation (Bear 1972; 
Thauvin and Mohanty 1998; Cooper et al. 1999; Muljadi et al. 2016; Choi and Song 2019, 
Gjengedal et al. 2020). Note that Darcy’s law does not include the concept of pore tortuos-
ity. This can be explained by the fact that the range of pressure drops and velocities in Dar-
cy’s experiments was such that the inertial forces associated with tortuosity did not occur. 
Similar reasons were also given by Hubbert (1956). With the assistance of MLR, it has 
been proven that the inclusion of tortuosity helps to improve the correlation of experimen-
tal data to Eq. 18. The estimates made using Eq. 20 show that tortuosity for a wide range 
of reservoir parameters is bounded by the following values: 1.15 ≤ � ≤ 8.83 . This result is 
close to the estimates made in Cooper et al. (1999) and Muljadi et al. (2016). It should be 
recalled that tortuosity is a parameter that characterizes a porous medium at a mesoscale 
and is determined based on laboratory studies conducted on cores.

The use of dimensional analysis (Zolotukhin and Ursin 2000a, b) and machine learning 
methods (Zolotukhin and Gayubov 2019) leads to the following equation for the Reynolds 
number:

The analysis shows that the critical Reynolds number identifying transition to non-
Darcy flow is in the range of 0.01–0.2. Note that Eq. 21 is similar to Eq. 10 obtained earlier 
by Millionshikov (1935).

Although the Reynolds number plays an important role in the formation of various 
modes of fluid flow, it should be noted that the Forchheimer number is more general, since 
it includes both the Reynolds number and tortuosity. Several researchers have expressed 
their preference for using this type of criterion (Geertsma 1974; Martins et al. 1990; Gidley 
1991). Therefore, we consider the Forchheimer number as a flow rule criterion in our stud-
ies. Using Eqs. 16, 19, and 21, we obtain a new definition of the Forchheimer number in 
terms of tortuosity and Reynolds number:

Table 3 contains information on basic physical characteristics of porous media, and their 
derivatives (non-Darcy coefficient, critical Reynolds number, critical Forchheimer number, 
and critical non-Darcy effect) based on the total of 203 experimental data points collected 
and described in a previous study (Zolotukhin and Gayubov 2019). Figure  2 shows the 
plots of the non‐Darcy coefficient as a function of porosity, permeability, tortuosity, and 
Forchheimer number. The graphs indicate that � is inversely proportional to the porosity 
(weak correlation) and permeability (strong correlation). Furthermore, the non-Darcy coef-
ficient increases with increasing tortuosity and decreases with the Forchheimer number 
(strong correlations).

(20)� = B1 ⋅

�

�l2

k

��

⋅

1
√

k�1.5
= �k−0.5�−1.5.

(21)Re =
u�

√

k

��1.5
.

(22)Fo = � ⋅

k�u

�
=

�
√

k�1.5
⋅

k�u

�
= � ⋅

u�
√

k

��1.5
= � ⋅ Re.
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The following sections of the article will focus on the different scales of observation of 
fluid flow and the effects associated with non-Darcy flows.

Table 3  Basic physical characteristics of the samples of the porous medium and their derivatives

No. k , mD � l  , m � � ,  m−1 Rec Foc Ec

1 1132.00 0.204 0.051 1.152 1.18E+07 0.135 0.156 0.135
2 254.00 0.188 0.051 2.238 5.45E+07 0.076 0.170 0.145
3 177.68 0.192 0.051 2.674 7.54E+07 0.068 0.182 0.154
4 174.91 0.202 0.051 2.759 7.27E+07 0.076 0.210 0.173
5 173.89 0.192 0.052 2.721 7.76E+07 0.079 0.215 0.177
6 165.28 0.173 0.051 2.620 8.96E+07 0.087 0.228 0.186
7 135.88 0.147 0.051 2.675 1.29E+08 0.099 0.265 0.209
8 101.40 0.184 0.051 3.405 1.35E+08 0.064 0.218 0.179
9 85.83 0.201 0.049 3.719 1.41E+08 0.057 0.212 0.175
10 22.65 0.202 0.051 7.197 5.27E+08 0.015 0.108 0.097
11 16.03 0.149 0.051 7.352 1.01E+09 0.011 0.081 0.075
12 13.97 0.169 0.051 8.322 1.01E+09 0.013 0.108 0.098
13 12.14 0.162 0.052 8.826 1.23E+09 0.009 0.079 0.074

Fig. 2  Correlation of the non‐Darcy coefficient with hydraulic properties such as porosity (a), permeability 
(b), tortuosity (c), and Forchheimer number (d)
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3.1  Fluid Flow at Different Scales

The flow of fluids that occurs in the partial volume of porous rock, even if very small, 
can only be described qualitatively because of the great complexity of the phenomenon. 
However, there are some regularities in the behavior of a rock–fluid system that can be 
described in terms of continuum mechanics. Let us consider the flow of fluids in a natural 
reservoir, with the scale of the flow ranging from very small to large (Fig. 3). Under natural 
conditions, many physical phenomena (for example, effects of wettability, fluid viscosity, 
fluid adhesion, clay swelling, tortuosity, impurity adsorption, polymer retention, etc.) occur 
at a scale of  10–4–10–2 m comparable to the rock’s grain or pore size (microscale) (Fig. 3a). 
At a larger scale, with elementary volumes considered on the order of  10–1–100  m, the 
effects of microscale phenomena listed above can be statistically “averaged” and readily 
quantified as constants or empirical relationships in equations of continuum mechanics 
(mesoscale) (Fig. 3b) (Zolotukhin and Ursin 2000a, b). The difference between the meso- 
and macro-modeling levels is not a change in the type of flow equations but rather a change 
in the scale of the models and averaging of geological and physical properties at new 
scales. A similar type of classification of models at various scales, namely at the micro-, 
meso-, and macro-levels, has been discussed in the literature from various points of view, 
such as structural geology (Morad et al. 2010) and field development (Homuth et al. 2015).

Well performance and productivity evaluation are fundamental to petroleum reservoir 
engineering at different phases of production. This task requires that physical and math-
ematical models adequately characterize the fluid flow in various geological settings. In 
this section, we use a semi-analytical model (modified Forchheimer equation) and conven-
tional Darcy’s law to estimate the effect of nonlinearity on fluid velocities and flow rates 
in porous media at meso- and macroscales. First, we conduct this study at the mesoscale—
a scale at which most of the experiments take place and where principles of continuum 
mechanics are widely used in hydrodynamic modeling. Then, the well production rates are 
estimated at the macroscale level  (102–104 m).

Fig. 3  Models of fluid flow in a porous medium at different scales of observation. a Microscale: grain and 
pore size; b mesoscale: rock sample size; c macroscale: interwell distance; d macroscale: reservoir or field 
size (Zolotukhin and Ursin 2000a, b)
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Fig. 4  Comparison of flow velocities calculated according to Darcy (red line) and modified Forchheimer 
equations (green line) with the experimental data (blue dots) of 13 tests (Tessem 1980; Torsæter et al. 1981) 
with permeabilities: a 1132 mD; b 254 mD; c 177.68 mD; d 174.91 mD; e 173.89 mD; f 165.28 mD; g 
135.88 mD; h 101.4 mD; i 85.83 mD; j 22.65 mD; k 16.03 mD; l 13.97 mD; m 12.14 mD
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3.2  Mesoscopic Model

Figure  4 shows the results of the calculation of flow velocities based on Darcy’s and 
modified Forchheimer’s flow rules (Eqs. 23–24) and their comparison with the experi-
mental results of 13 tests (Tessem 1980; Torsæter et al. 1981). In tests on core samples 
with permeabilities of 12–1132 mD, excellent agreement between experimental results 
and numerical predictions is very obvious, specifically in the non-Darcy domain. Fig-
ure  4 shows that Darcy’s law is accurate in a rather narrow range of flow velocities. 
At a higher pressure gradient, the difference between the actual and calculated velocity 
values becomes significant, and Darcy’s law cannot be used. Note that the higher the 
reservoir permeability, the earlier the deviation from the linear law occurs.

By using Eqs. 1 and 3 written for the compressible linear steady-state flow at room 
temperature and assuming the perfect gas law �(P) = �0 ⋅ P∕P0 , the following forms of 
the Darcy and modified Forchheimer equations can be written:

Using the obvious definition �uF = uFm = const , Eqs.  23 and 24 take the following 
forms:

Integration of Eqs. 25 and 26 yields:

and

Equations 28 and 29 enable the calculation of pressure in a linear reservoir:

(23)−
k�0

�P0

⋅ P
dP

dx
= �uD

(24)−
k�0

�P0

⋅ P
dP

dx
= �uF + � ⋅

√

k

��1.5
�2uF

2.

(25)−
k�0

�P0

⋅ P
dP

dx
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(26)−
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k
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2.
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∫
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Here, subscripts F and D denote that the corresponding pressure distributions are calcu-
lated according to Darcy’s and modified Forchheimer’s laws. Note that the terms uDm and 
uFm should be evaluated with the Neumann boundary condition at x = x2.

Usually, the following types of boundary conditions are used in solving differential 
equations:

• Conditions of the first kind, where the inlet and outlet pressure values are specified at 
the boundaries of the flow region (Dirichlet boundary conditions).

• Conditions of the second kind, where the pressure gradient or flow rate is set at the 
boundaries of the flow region (Neumann boundary conditions).

• Mixed conditions, when the condition of the first type is set on one of the boundaries 
(inlet) and the condition of the second type is set on the other (outlet).

In our simulation analysis, Dirichlet and mixed boundary conditions are used as the most 
appropriate for the considered tasks.

3.2.1  Boundary Condition of the First Kind (Dirichlet)

The following boundary condition is determined at the outflow boundary x2 : P
(

x2
)

= P2 . 
Then, Eqs. 28 and 29 can be solved for mass velocities that are still unspecified:

where

The dimension of coefficients in Eq. 34 is as follows: [a] = m2 s kg−1; [c] = kg m−2 s−1. 
Note that the last term in Eq. 34 is Darcy’s mass velocity with a minus sign.

3.2.2  Mixed Boundary Condition

Let us change the boundary condition at the outlet section, i.e., qFm
(

x2
)

= qDm . Since 
the mass flow rates are equal, we define the pressure distribution in the sample that 

(30)PD(x) =

√

P2
1
−

2�P0

k�0
⋅ uDm ⋅

(

x − x1
)

(31)PF(x) =

�
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1
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⋅
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⋅
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.

(32)uDm =
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⋅
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2l

(33)uFm =
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2a

(34)a = � ⋅
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; b = 1; c = −

k�0
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⋅
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satisfies that condition. Then, Eqs. 35 and 36 can be solved for the pressure distribution 
for both flows:

For x = x2 , we obtain:

Figure 5 shows the results of a numerical simulation performed for the Dirichlet and 
Neumann outlet boundary conditions. In the first case (Fig. 5a), the outlet pressure P2 is 
set equal to 0.1 MPa, and in the second case (Fig. 5b), the gas mass flow rate is set equal 
to 0.14 kg/(s m2) at the outlet. The results show that in the first case, the pressure dis-
tribution calculated using the Darcy and modified Forchheimer equations coincides, but 
the mass and volumetric flow rates are different 

(

uFm∕uDm = 0.9
)

 . In contrast, in the sec-
ond case, the mass flow rates are identical, while the pressure distribution is different. 
This observation illustrates a well-known phenomenon called skin factor, which shows 
that in the case of nonlinear flow, an additional pressure drop is required to produce 
equally with Darcy flow.

Let us divide both parts of Eq. 33 by uDm:
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Fig. 5  Pressure distribution in the core sample with a permeability of 1132 mD. Dash blue line—
Darcy equation, solid red line—modified Forchheimer equation. a Dirichlet outlet boundary condition 
( P
(

x2

)

= P2 ); b Neumann outlet boundary condition ( qFm
(

x2

)

= qDm)
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As seen from Eq.  34, −a ⋅ c = � ⋅

√

k

�⋅�1.5
⋅

k�0

�P0

⋅

(P2
1
−P2

2)

2l
= � ⋅

√

k

�⋅�1.5
⋅ uDm = � ⋅ ReD . Fur-

ther, using Eq. 22 in a form FoD = � ⋅ ReD makes it possible to rewrite Eq. 39 in the fol-
lowing form:

Since in laboratory experiments the ratio of mass and volumetric flows is the same at 
the core outlet ( uFm = uDm ), Eq. 40 can be rewritten in volumetric units:

As follows from Eq.  41, the ratio 
(

uF∕uD ≤ 1
)

 indicates that Forchheimer velocity is 
always less than Darcy velocity and approaches it only when FoD → 0.

Equation 41 can be simplified by replacing FoD with Fo . First, the terms FoD and Fo are 
defined as follows:

Let us prove that the following equations are equivalent:

Since the left-hand terms in Eqs.  44 and 45 are identical, the following statement is 
valid:

Let us prove it. Equation 46 can be rewritten as:

By squaring both sides of the equation, we obtain:
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Then, FoD

(1+Fo)2
+

1

1+Fo
= 1 and

Substituting the last result into the right-hand side of Eq. 44, we gradually obtain:
√

(1+4FoD)−1

2FoD
=

√

1+4Fo⋅(1+Fo)−1

2Fo⋅(1+Fo)
=

√

1+4Fo+4Fo2−1

2Fo⋅(1+Fo)
=

√

(1+2Fo)2−1

2Fo⋅(1+Fo)
=

1

1+Fo
 , quod erat demon-

strandum. Figure  6 shows the dependency of 
(

uFm∕uDm
)

 on the pressure gradient and 
Forchheimer number Fo (Eq. 45).

After calculating the fluid flow rates, the following conclusions can be made:

• When solving the task for the Dirichlet boundary conditions, the pressure distribution 
in the sample remains the same. At the same time, mass and volumetric velocities can 
vary significantly depending on the given pressure drop.

• When solving the task with the outlet Neumann boundary condition, a fundamentally 
different result is obtained: For a given equal mass flow rate of gas, the calculated pres-
sure distributions in the core following Darcy’s and modified Forchheimer’s laws dif-
fer significantly, and the Forchheimer outlet pressure is lower than that estimated by 
Darcy’s law.

• The fluid flow ratio 
(

uFm∕uDm
)

 varies in the range from 99.9% (for permeability 12.14 
mD) to 25% (for permeability 1132 mD).

• As the pressure gradient increases, the velocity ratio shown in Fig. 6a decreases signifi-
cantly.

• It is important to note that for a wide range of permeability values, the experimental 
data perfectly fit the theoretical trend depicted in Fig. 6b and described by Eq. 45.

3.3  Macroscopic Model

In addition to the mesoscale model discussed above, a macroscopic model for radial flow has 
also been developed. Herein, we estimate the influence of the main reservoir (reservoir poros-
ity, permeability, and tortuosity), fluid (oil and gas viscosity, and density), and technologi-
cal parameters (pressure drawdown and well spacing) on the efficiency of field development. 

(48)
(

2FoD

1 + Fo

)2

+
4FoD

1 + Fo
+ 1 = 1 + 4FoD.

(49)FoD = Fo ⋅ (1 + Fo).

Fig. 6  Dependencies of the ratio 
(

uFm∕uDm
)

 on the pressure gradient (a) and Forchheimer number Fo (b) 
based on the experimental results (Tessem 1980; Torsæter et al. 1981)
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The well spacing is defined as the area of the field per production well and expressed in 
acres. Some of the reservoir properties (permeability, porosity, and tortuosity) are taken from 
Table 3. The rest of the reservoir and fluid characteristics, along with technological param-
eters, are summarized in Table 4.

The discussion in this part follows the logic of the previous section, where the linear flow 
of compressible gas is considered, i.e.,

Let us write the equation of fluid flow (Eq. 18) for the radial geometry:

Using the obvious relation for the radial flow u =
q

S
=

q

2�hr
 and substituting it into Eq. 51, 

we obtain the following equation:

Noting that �q = qm = const. , Eq. 52 is as follows:

Separation of the variables and integration yields

and further:
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Table 4  Reservoir, fluid, and technological parameters

No. Parameter Value

1 Standard pressure p0 , Pa 101,325
2 Fluid density at standard conditions �0 , kg/m3 1.2
3 Gas viscosity � , Pa·s 3.1·10–5

4 Reservoir pressure Pe , Pa 2.0·107

5 Flowing bottomhole pressure Pw , Pa 1.8·107

6 Formation thickness h , m 10
7 Wellbore radius rw , m 0.1
8 External drainage radius re , m 169 239 339 479 677
9 Well spacing, acres 22.24 44.48 88.96 177.92 355.83
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3.3.1  Boundary Condition of the First Kind (Dirichlet)

Solving the Dirichlet problem and setting the bottomhole pressure P = Pw at r = rw enables 
us to find qm:

Using the following notation:

Equation 55 can be rewritten in a compact form:

The solution to Eq. 57 can be written as:

Substituting the last result into Eq. 54 enables us to find the pressure distribution within the 
reservoir:

Let us now define the mass flow rate of gas according to Darcy’s law:

The corresponding pressure distribution is calculated as follows:

Figure 7 shows the results of calculations of pressures and flow rates for the linear and 
nonlinear laws of flow. The illustrations are presented in the form of pressures and flow rela-
tionships for different permeabilities and different well spacing values. Because the basic fea-
tures of fluid flow are manifested in the near-wellbore zone, logarithmic grid coordinates are 
selected that allow the identification of those features and are calculated as follows:

where n is the number of intervals into which the reservoir is divided.
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As follows from the calculations, the higher the reservoir permeability, the higher the devi-
ation of the distribution of pressure and flows from Darcy’s law. For example, the ratio of flow 
rates with a permeability of 12.14 mD varies from 0.956 to 0.970, while at a permeability of 
1132 mD, this ratio decreases to 0.38–0.45 depending on the well spacing. The denser the 
well spacing, the greater the differences observed in the distribution of pressure and flow rates. 
Note that the highest changes in calculated parameters are observed in the interval from 25 cm 
to 15 m. This interval is much larger than the usual wellbore zone (10–50 cm).

3.3.2  Mixed Boundary Conditions

In this section, the gas flow rate is set as the Neumann wellbore boundary condition. Set-
ting qFm = qDm enables us to define the pressure distributions for modified Forchheimer’s and 
Darcy’s laws for different permeability values and well spacing parameters:
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Fig. 7  Dirichlet boundary condition: the pressure PF∕PD (a, c) and flow rates qF∕qD (b, d) distribution 
ratio, calculated on the modified Forchheimer and Darcy rules for different well spacing values (169  m, 
239 m, 339 m, 479 m, 677 m). Figures a and b correspond to reservoir permeability 1132 mD; c and d to 
12.14 mD
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As follows from Fig. 8 (Neumann boundary condition), the highest changes in calculated 
parameters are observed in the interval from 25 cm to 15 m, which is larger than the usual 
wellbore zone (10–50 cm). It can be shown that relationships similar to Eqs. 42–46 can be 
obtained for the radial flow. Starting from the definitions of FoD and Fo , namely:

and following the logic of deriving Eq. 46, one obtains:

Then, the ratio of the mass flow can be written as the following simple equation:
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Fig. 8  Neumann wellbore boundary condition: the pressure PF∕PD (a, c) and flow rates qF∕qD (b, d) distri-
bution ratio, calculated on modified Forchheimer and Darcy rules for different well spacing values (169 m, 
239 m, 339 m, 479 m, 677 m). Figures a and b correspond to reservoir permeability 1132 mD; c and d to 
12.14 mD
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Figure 9 shows the results of calculating the dependence of the flow rate ratios 
(

qFm∕qDm
)

 
on the well spacing and the Forchheimer number (Fo).

The dependence of the mass flow rate ratio on the well spacing in Fig. 9a is similar to 
the linear flow geometry depicted in Fig. 6a. The fluid flow ratio 

(

qFm∕qDm
)

 varies in the 
range from 99.9% (for permeability 12.14 mD) to 58% (for permeability 1132 mD). The 
dependency of 

(

qFm∕qDm
)

 on the well spacing is much less pronounced compared to the 
permeability change. The effect of well spacing becomes more pronounced at high perme-
ability values and practically disappears at low permeability. The results of calculations 
show that for a wide range of permeability values, the numerically generated data perfectly 
fit the theoretical trend depicted in Fig. 9b and described by Eq. 68. It should be noted that 
this equation includes the ratio of flow rates calculated using the modified Forchheimer and 
Darcy equations at the same pressure drops for any flow geometry.

4  Discussion

In this study, the following objectives were achieved: (1) developing a semi-analytical 
model describing non-Darcy behavior and (2) validating the model using the available 
data. The analysis conducted in the present work leads to the following conclusions:

• Numerous studies indicate that the numerical values of the � coefficient, determined 
experimentally, can vary up to ten thousand times, thereby indicating that the non-
Darcy coefficient is not a coefficient but a parameter depending on the properties of 
a porous medium. The correlation between the hydraulic properties of the clastic core 
samples and the non‐Darcy coefficient was analyzed using plots of key parameters used 
for predicting the � value (Fig. 2). The study indicates that � is inversely proportional 
to porosity (weak correlation), permeability, and Reynolds number (strong correlation), 
whereas it increases with increasing tortuosity. Finally, a correlation (Eq. 20) for the 
non‐Darcy coefficient was derived.

• Note that tortuosity defined by Eq. 19 in a compact form is one of the important but not 
very well-defined parameters that affect the deviation from Darcy’s law. Further experi-
ments are needed to assess the tortuosity of a porous medium, not only on linear cores 
but also on samples with different flow geometries and at different pressure.

Fig. 9  Dependencies of the mass flow rate ratio 
(

qFm∕qDm
)

 on well spacing (a) and Forchheimer number 
Fo (b) based on the experimental results of 13 tests (Tessem 1980; Torsæter et al. 1981) with permeability 
ranging from 1132 to 12.14 mD
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• The critical Forchheimer numbers for each of the samples determined from the experi-
mental data ( Foc exp ) and calculated using Eq. (22) ( Foc sim) ) are presented in Table 5. 
These results confirm that there is no crisp number characterizing the transition from 
laminar to inertial flow, but there is a certain transition zone, the width of which 
depends on the reservoir and fluid properties.

• The results of macro-modeling show that in the case of a gas reservoir, the gas flow 
in the entire reservoir area differs from the Darcy’s law. As follows from the calcula-
tions, the higher the reservoir permeability, the higher the deviation of the distribution 
of pressure and flows rates from Darcy’s law. From the examples considered, it follows 
that a 10% deviation of the fluid flow ratio 

(

qF∕qD
)

 is observed in reservoirs with per-
meability exceeding 100 mD, even at low pressure drops (20 atm) (Table 4). As follows 
from Fig. 9a, the deviation from the linear flow is observed for all values of the forma-
tion permeability (1132–12.14 mD), even at such a low pressure drawdown. Hence, 
non-Darcy flow effects in gas reservoirs should not be disregarded to avoid an overesti-
mation of the forecasted gas production rates.

Table 5  Reservoir characteristics 
and corresponding critical 
Forchheimer and non-Darcy 
coefficient numbers

No. k , mD � Foc exp Ec exp Foc sim Ec sim

1 1132 1.152 0.156 0.135 0.100 0.091
2 254 2.238 0.170 0.145 0.092 0.084
3 177.68 2.674 0.182 0.154 0.083 0.077
4 174.91 2.759 0.210 0.173 0.107 0.097
5 173.89 2.721 0.215 0.177 0.112 0.101
6 165.28 2.620 0.228 0.186 0.100 0.091
7 135.88 2.675 0.265 0.209 0.100 0.091
8 101.4 3.405 0.218 0.179 0.108 0.097
9 85.83 3.719 0.212 0.175 0.120 0.107
10 22.65 7.197 0.108 0.097 0.105 0.095
11 16.03 7.352 0.081 0.075 0.101 0.092
12 13.97 8.322 0.108 0.098 0.107 0.097
13 12.14 8.826 0.079 0.074 0.098 0.089

Fig. 10  Dependencies of the flow rate ratio 
(

qF∕qD
)

 on Forchheimer number Fo . a Universal curve, b syn-
thetic data (meso- and macro-modeling and universal curve)
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• Simulation results of compressible fluid flow on a macroscale show an interesting 
effect: The difference between the pressure distributions, calculated using modified 
Forchheimer’s and Darcy’s laws, reaches a maximum in the interval from 25  cm to 
15 m, which is larger than the usual wellbore zone (10–50 cm).

• It was possible to obtain a universal equation (Eq.  68) for the ratio of flow rates at 
meso- and macroscales as a single function of the Forchheimer number. Figure  10 
shows the results of all the calculations performed in this study, i.e., data on laboratory 
studies on core samples and numerical study for radial flow at different pressure draw-
downs and well spacing. As follows from Fig. 10, the data obtained from the simulation 
exercise perfectly match the universal curve.

5  Conclusion

1. In this study, the application field and modified Forchheimer equation were presented, 
and the range of values and the physical significance of its parameters were analyzed.

2. Published relations for the � coefficient were considered (Table 1). The use of the 
approach based on dimensional analysis allowed expression of the � coefficient with a 
simple combination of tortuosity, permeability, and porosity (Eq. 20).

3. It was proven that non-Darcy effects should be considered to avoid an overestimation 
of the forecasted gas production rates.

4. Analysis of experimental data shows that the Forchheimer number plays a key role in 
describing flow in porous media. The use of the Forchheimer number made it possible to 
identify the universal law of fluid flow through a porous medium in a simple analytical 
form valid for any flow geometry (Eq. 68).
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