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Abstract
Chemical enhanced oil recovery (EOR) methods include the injection of aqueous poly-
mer solutions slugs driven by water. Polymer solutions increase water viscosity, decreasing 
the water phase mobility and improving oil recovery through better sweep efficiency. In 
this paper, we present the water alternated polymer EOR technique, which is based on the 
injection of successive polymer slugs alternated by water slugs. The mathematical problem 
is composed by two conservation equations: one of them is related to the water volume and 
the other one to the polymer mass. We assume that the polymer may be adsorbed by the 
rock, and the relation between the concentration in the aqueous solution and the solid is 
governed by a Langmuir type adsorption isotherm. The water viscosity is a function of the 
polymer concentration in water. The 2 × 2 system of hyperbolic equations was decoupled 
by introducing a potential function instead of time as an independent variable. The water 
alternated polymer injection is represented by a varying boundary condition. The analyti-
cal solution presents interactions between waves of different families. It is shown that the 
polymer slugs always catch up each other along the porous media generating a single slug. 
As a consequence, the water slugs will disappear. This solution is new and was compared 
to numerical results with close agreement. It also can be used for the selection of the most 
suitable enhanced oil recovery technique for a particular oil field.

Keywords Conservation laws · Enhanced oil recovery · Polymer flooding · Flow in porous 
media

1 Introduction

Polymer flooding is a method of enhanced oil recovery (EOR) appropriate to highly 
heterogeneous reservoirs, and for cases where oil is displaced by water at unfavorable 
mobility ratio. Adsorption and the relation between the polymer concentration in water 
phase and its viscosity are the main phenomena that govern the hydrodynamics of oil 
displacement by a polymeric solution (Littmann 1988; Sorbie 1991). At equilibrium 
conditions, the polymer concentration adsorbed on the pore surface can be modeled by 
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an adsorption isotherm, for example, the Langmuir isotherm. To overcome the problem 
of high cost of the continuous injection of polymer solutions, a finite volume of water 
containing this chemical product (slug) is injected (Thiele et al. 2010).

Two-phase flow of a polymer solution in porous media (Hatzignatiou et  al. 2013, 
2015; Zhao et al. 2019) is governed by a 2 × 2 hyperbolic system of conservation laws 
(Fayers and Perrine 1958) obtained from the mass balance of the water phase and pol-
ymer mass. From this hyperbolic system, Pope et  al. (1978) described this chemical 
flooding process considering the adsorption phenomena and cation exchange. Lake and 
Helfferich (1978) included the effect of dispersion in the mathematical problem. Pope 
(1980) applied the fractional flow theory to develop solutions to some of the most com-
mon EOR displacement problems; however, the case of slug injection was analyzed only 
for miscible displacement (gas flooding) and no adsorption. In general, mathematical 
modeling of oil displacement by polymer solutions injection considers immiscible sys-
tem. Johansen and Winther (1988) solved the global Riemann problem for a non-strictly 
hyperbolic system of conservation laws modeling polymer flooding. The problem of 
multicomponent, multiphase displacement in porous media was analyzed by Helfferich 
(1981). Johansen and Winther (1989) obtained the exact solution of the Riemann prob-
lem modeling multicomponent polymer flooding.

Hyperbolic systems subject to discontinuous initial or boundary conditions lead 
to interactions of waves of different families (Rhee et  al. 1989b; Bedrikovetsky 1993; 
Smoller 1994). The analytical solutions for this class of problems have been studied 
in various fields of science and engineering, like shallow water (Sekhar and Sharma 
2008), chromatography (Shen 2010), traffic flow (Sun 2009) and gas dynamics (Sekhar 
and Sharma 2010; Zhang et al. 2008). Mathematically, polymer slug injection is repre-
sented by a piecewise boundary condition in which the concentration changes with time 
(Borazjani et  al. 2016a; Torrealba and Hoteit 2019). Bedrikovetsky (1982) described 
the solution to the problem of the displacement of oil by a polymer slug for different 
adsorption isotherms. However, the case of water alternated polymer injection was only 
analyzed for the case of adsorption governed by Henry’s law. In this case, all polymer 
slugs travel with the same velocity in porous media and their speed does not depend 
on the concentration, leading to a simple solution. The solution for the problem of 
oil displacement by water alternated polymer slug injection is new and has not been 
investigated.

Application of a potential function related to the conservation of the aqueous phase as 
an independent variable instead of time allows the decoupling of the 2 × 2 hyperbolic sys-
tem that models polymer flooding in two independent equations (Pires et al. 2004, 2005). 
One equation depends only on thermodynamic equilibrium conditions (auxiliary equation) 
and the other depends on the solution of the auxiliary equation and transport properties 
(lifting equation). This technique was used by Pires and Bedrikovetsky (2005) to develop 
the analytical solution of the 1-D n-component miscible displacement problem and by 
Khorsandi et al. (2017) to model low-salinity polymer flooding. For the above-mentioned 
papers, the splitting of the system of equations simplifies the solution because the equa-
tions are solved separately. Using the same technique, Vicente et  al. (2014) solved the 
problem of variable concentration polymer slug considering that adsorption was governed 
by Langmuir’s isotherm. Borazjani et al. (2016b) applied this approach to model the injec-
tion of a polymer slug taking into account linear adsorption and change in water salinity. 
Borazjani et al. (2017) also used this methodology to investigate fines migration in two-
phase flow. In the present paper, we apply the decoupling technique to solve the problem 
of water alternated polymer slugs injection into oil reservoirs. We considered the polymer 
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adsorption phenomena modeled by a non-linear isotherm. It is important to note that the 
solution developed here can be used in other methods of enhanced oil recovery, like sur-
factant flooding.

2  Mathematical Model

The following hypothesis was adopted:

• Newtonian fluids and one-dimensional two-phase flow;
• Homogeneous porous media;
• Incompressible and isothermal system;
• Diffusion, capillary and gravity effects are neglected;
• Liquid and solid phases are in local equilibrium;
• No mass transfer between oil and water phases;
• Polymer concentration does not change the water density.

The velocities of the phases follow Darcy’s law (Darcy 1856; Zarand and Pillai 2017):

where k is the absolute permeability, p is the pressure, krl and �l are the relative permeabil-
ity and viscosity, l = w, o , and subscripts w and o denote water and oil phases.

The conservation of the water phase is given by

and conservation of the polymer mass by

where ϕ is the rock porosity, s is the water saturation, c is the polymer concentration in the 
water phase, and a(c) is the polymer concentration on the rock surface (adsorbed).

The water fractional flow is defined as (Bedrikovetsky 1993)

where u is the total velocity.
Substituting Eqs. (1) in (4), we obtain an expression for the fractional flow of water, a 

function of the phases relative permeability and viscosity:

The viscosity of water is an increasing function of polymer concentration, and the con-
centration of polymer on the rock surface may be determined by Langmuir’s adsorption 
isotherm:

(1)uw = −
kkrw

�w

�p

�x�
, uo = −

kkro

�o

�p

�x�

(2)�
�s

�t�
+

�uw

�x�
= 0

(3)�
�(cs + a(c))

�t�
+

�cuw

�x�
= 0

(4)f (s, c) =
uw

uw + uo
=

uw

u

(5)f (s, c) =

(
1 +

kro(s)�w(c)

krw(s, c)�o

)−1
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where � and � are positive constants of the model determined experimentally.
Substituting Eq. (4) in Eqs. (2)–(3) we obtain the hyperbolic system of conservation laws 

that models two-phase flow of oil and polymeric solutions in porous media

Defining the following dimensionless variables:

where L is the characteristic length of the porous media, and replacing (8) in system (7) we 
obtain

The analytical solution presented in this paper describes the hydrodynamics of oil displace-
ment by water alternated polymer injection. The initial and boundary conditions representing 
the injection of N polymer slugs in a reservoir initially at uniform water saturation and no dis-
solved nor adsorbed polymer are given by:

where tJ
0
 is equal zero, sI is the initial water saturation, sJ is the water saturation at the inlet 

face and cJ
n
 stands for the injected polymer concentration in the n-th slug.

2.1  Riemann Problem

The solution of system (9) subject to initial and boundary conditions (10) when t < tJ
1
 is a 

Riemann problem, and its solution is composed by rarefaction and shock waves and constant 
states (Johansen and Winther 1988; Bedrikovetsky 1993).

The rarefaction waves take place in regions where the solution is continuous. There are two 
different kinds: s-waves and c-waves. Along an s-wave the concentration is constant; on the 
other hand, along a c-wave both saturation and concentration change according to the follow-
ing ordinary differential equation:

(6)a(c) =
�c

1 + �c

(7)

�s

�t�
+

u

�

�f (s, c)

�x�
= 0

�(cs + a(c))

�t�
+

u

�

�cf (s, c)

�x�
= 0

(8)x =
x�

L
and t =

1

�L ∫
t�

0

u(�)d�

(9)

�s

�t
+

�f (s, c)

�x
= 0

�(cs + a(c))

�t
+

�cf (s, c)

�x
= 0

(10)

t = 0 ∶

�
s = sI → f (s, c) = 0

c = 0
and x = 0 ∶

⎧⎪⎨⎪⎩

s = sJ → f (s, c) = 1

c(t) =

�
cJ
n
, tJ

2n−2
≤ t ≤ tJ

2n−1

0, tJ
2n−1

< t < tJ
2n

, n = 1, 2,… ,N

(11)
dc

ds
=

(
f (s, c)

s + a�(c)
− f �

s
(s, c)

)
f �
c
(s, c)−1
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where

System (9) admits two shock waves according to the Rankine–Hugoniot conditions. If 
the concentration is constant through the shock, it is called an s-shock, and its velocity is 
given by

where 
(
s+, c+

)
 and (s−, c−) are the right and left states, respectively. Across a c-shock, both 

saturation and concentration change. The velocity of a c-shock is given by

where

The complete solution of the Riemann problem is described by a wave sequence linking 
the boundary condition (left state) to initial condition (right state). An s-wave with zero 
polymer concentration will be denoted by R0

s

⟶
 and with constant concentration cJ

n
 by RJ

s

⟶
 . 

An s-shock and a c-shock are represented by Ds

⟶
 and Dc

⟶
 , respectively. Using the afore-

mentioned notation the self-similar solution (Fig.  1) is given by J
RJ
s

⟶ s−
1

Dc

⟶ s+
1

Ds

⟶ I if 

s+
1
< sF and by J

RJ
s

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sf
Ds

⟶ I if s+
1
> sF , where J and I are the injection and 

initial conditions, respectively.

2.2  Coordinate Transformation

Defining a new independent variable � as

f �
s
(s, c) =

�f (s, c)

�s
, f �

c
(s, c) =

�f (s, c)

�c
and a�(c) =

da(c)

dc
.

(12)dx

dt
=

[
f (s, c)

]
[s]

=
f
(
s+, c+

)
− f (s−, c−)

s+ − s−

(13)dx

dt
=

[
cf (s, c)

]
[cs + a(c)]

=
f
(
s+, c+

)
s+ + V−1

=
f (s−, c−)

s− + V−1

(14)1

V
=

[a(c)]

[c]
=

a
(
c+
)
− a(c−)

c+ − c−

Fig. 1  Self-similar part of the solution in f–s plane
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and applying it in system (9) instead of time leads to the following partial differential equa-
tion for the polymer conservation

The initial and boundary conditions for Eq. (16) in the new coordinate system are given 
by

Following the same procedure for the first equation of the system (9), we obtain

where

and the initial and boundary conditions for Eq. (18) are

3  Structure of the Solution

The solution of the problem (9)–(10) is built in three steps: solution of the auxiliary equa-
tion (Eq.  (16)), solution of the lifting equation (Eq.  (18)) and inverse mapping for time 
domain. Equations (16) and (18) are nonlinear hyperbolic equations, and their solution can 
be obtained using the method of characteristic (Whitham 1974; Logan 2008).

3.1  Auxiliary Equation Solution

Equation (16) models one-phase polymer transport in porous media (Rhee et al. 1989a). In 
quasilinear form it becomes

Therefore, along a characteristic curve (�(x)) the polymer concentration is constant:

The trajectory of the characteristics is a straight line defined by

(15)d� = fdt − sdx

(16)
�c

�x
+

�a(c)

��
= 0.

(17)

c(x,𝜑 = 0) = 0 and c(x = 0,𝜑) =

{
cJ
n
, 𝜑J

2n−2
≤ 𝜑 ≤ 𝜑J

2n−1

0, 𝜑J
2n−1

< 𝜑 < 𝜑J
2n

, n = 1, 2,… ,N

(18)
�U

�x
+

�F(U, c)

��
= 0

(19)U =
1

f (s, c)
and F(U, c) = −

s

f (s, c)

(20)U(x,� = 0) → ∞ and U(x = 0,�) = 1.

(21)
�c

�x
+ a�(c)

�c

��
= 0

(22)
dc(�(x), x)

dx
= 0
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The slope of a characteristic where the polymer concentration is zero (c = 0) will be rep-
resented by �0

(
�0 = �

)
 and if the concentration is cJ

n
 by �n

(
�n = �

(
cJ
n

))
 . The speed ( � ) of 

each characteristic wave is calculated by the inverse of Eq. (23):

3.1.1  Rarefaction Waves

According to the boundary condition (Eq. (17)), at �J
2n−1

 a water slug is injected (no dis-
solved polymer). As the speed of the front of the polymer slug 

(
�n
)
 is greater than its rear 

velocity 
(
�0
)
 , behind every polymer slug a rarefaction wave will appear. This is a centered 

wave at 
(
0,�J

2n−1

)
 , and its slope is given by

The polymer concentration at each rarefaction wave is determined by (Eq. (25)):

3.1.2  Shock Waves

The solution of the auxiliary equation also admits shock waves. The Rankine–Hugoniot 
condition for Eq. (16) is

where c+ and c− are the concentration values ahead and behind the discontinuity, respec-
tively. Substituting the expression of the Langmuir isotherm into Eq.  (27), we find the 
inverse of the shock speed in x–φ plane:

The speed of the shock is:

If c+ and c− are constant the inverse of the shock speed is also constant and will be 
denoted as 1

V
= �̃�(n,r) = �̃�

(
cJ
n
, cJ

r

)
.

Table 1 shows the shock paths obtained solving Eq. (27) to all possible c+ and c− combi-
nations. Three types of shock may appear. In shock type I both concentrations behind and 

(23)
d�

dx
= a�(c) = �(c) = �(1 + �c)−2

(24)�n =
(
1 + �cJ

n

)2
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d�
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=

� − �J
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x
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�
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�
�x
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− 1

⎞⎟⎟⎠
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n
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dx
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[a(c)]

[c]
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a
(
c+
)
− (c−)

c+ − c−
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1
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(28)
1

V
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�
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(
1 + �c+

)
(1 + �c−)
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ahead of the shock are constant, this shock travels with constant speed and always appears 
at the front of any polymer slug. The shock type II results from the interaction between a 
rarefaction wave (Eq. (25)) with a shock type I. If the concentration ahead of the shock is 
zero 

(
c+ = 0

)
 , its velocity decreases (shock type IIa). If the concentration behind the shock 

is constant 
(
c− = cJ

n

)
 , its velocity increases (shock type IIb). The shock type III appears 

when two rarefaction waves intersect.

3.2  Lifting Equation

In quasilinear form Eq. (18) is given by

where

Along the characteristic curves defined by

we have

3.2.1  Rarefaction Waves

In regions of constant concentration, the right side of Eq. (32) is zero, therefore U is con-
stant on the characteristics curves. Thus, the characteristics are straight lines. In regions 
where the concentration changes, Eqs.  (31) and (32) must be solved simultaneously to 
obtain the characteristic curves and the value of U.

(30)
�U

�x
+ F�

U
(U, c)

�U

��
= −F�

c
(U, c)

�c

��

F�
U
(U, c) =

�F(U, c)

�U
and F�

c
(U, c) =

�F(U, c)

�c

(31)
d�

dx
= F�

U
(U, c)

(32)
dU(�(x), x)

dx
= −F�

c
(U, c)

�c

��
.

Table 1  Shock types appearing in the solution of the auxiliary equation

Type Jump conditions Inverse of shock speed Shock path

I
(
c+ = 0, c− = cJ

n

)
(
c+ = cJ

n
, c− = cJ

n+1

)
d𝜑

dx
= �̃�(n,r) 𝜑

(n,r)

I
(x) = �̃�(n,r)

(
x − x0

)
+ 𝜑0

IIa
(
c+ = 0, c− = cn

)
d�

dx
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√
�0

(
�−�J

2n−1

x

)
�
(n)

IIa
(x) =

�√
�0

�√
x −

√
x0

�
+
�

�0 − �J
2n−1

�2
+ �J

2n−1

IIb
(
c+ = cn, c

− = cJ
n

)
d�

dx
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√
�n

(
�−�J

2n−1

x
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�
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(x) =
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�n

�√
x −

√
x0

�
+
�

�0 − �J
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dx
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√
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�
x
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=
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+

√
�
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√
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3.2.2  Shock Waves

The concentration shock path in the solution of Eq. (18) is obtained in the solution of the 
auxiliary equation (Eq. (16)), and also obeys the Rankine–Hugoniot conditions:

3.3  Inverse Mapping

After the auxiliary and lifting equations are solved, the next step is the inverse mapping 
of the solution from (x,�)-plane to (x, t)-plane. This procedure is performed for rarefac-
tion and shock waves, substituting relations (19) into Eq. (15) and integrating the resulting 
equation from 

(
x0,�0

)
 to (x,�):

Applying Eq. (31) (rarefaction waves) into Eq. (34) we obtain

and applying Eq. (33) (shock waves) into Eq. (34) we obtain

where F± = F(U±, c±).
Equations (35) and (36) allow us to calculate t(x) along any characteristic curve �(x) and 

shock path.
The saturation at each characteristic and constant region is obtained from the following 

expression

4  Example of a Particular Solution

The methodology developed to build the solution of system (9) will be applied to solve a 
particular case of water alternating polymer (WAP) injection subject to the following initial 
and boundary conditions:

(33)d�

dx
=

[F(U, c)]

[U]
=

F
(
U+, c+

)
− F(U−, c−)

U+ − U−
.

(34)t(x) = t0 +

�

∫
�0

U
(
x,��

)
d�� −

x

∫
x0

F
(
U
(
x�,�

)
, c
(
x�,�

))
dx�

(35)t(x) = t0 +

x

∫
x0

[
UF�

U
(U, c) − F(U, c)

]
dx

(36)t(x) = t0 +

x

∫
x0

(
U+[F][U]−1 − F+

)
dx = t0 +

x

∫
x0

(
U−[F][U]−1 − F−

)
dx

(37)s = −
F(U, c)

U
.
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4.1  Solution of the Auxiliary Equation

As the polymer concentration of both slugs is the same 
(
cJ
1
= cJ

2
= cJ

)
 , at the front of the 

first slug there is a type I shock concentration (Table 1) (cJ
Dc

⟶ 0) , the trajectory of this 
shock is defined by the straight line 𝜑(1,0)

I
= �̃�1,0x . Note that the concentration of both poly-

mer slugs is the same 
(
cJ
1
= cJ

2
= cJ

)
 . Behind this slug there is a family of constant concen-

tration rarefaction waves where the concentration changes from cJ with speed �1 to 0 with 
speed �0 . The polymer concentration at each rarefaction wave behind the first slug can be 
calculated through (Fig. 2) 

The first slug is displaced by water until �J
2
 , at this point the injection of second polymer 

slug begins. At point (1), defined by the intersection of the characteristic � = �1x + �J
1
 and 

the shock �(1,0)

I
 (Fig. 2)

(38)

t = 0∶

�
s = sI → f (s, c) = 0

c = 0
and x = 0∶

⎧
⎪⎨⎪⎩

s = sJ → f (s, c) = 1

c(t) =

�
cJ , tJ

2n−2
≤ t ≤ tJ

2n−1

0, tJ
2n−1

< t < tJ
2n

, n = 1, 2

(39)c1(x,�) =
1

�

⎛⎜⎜⎝

�
�x

� − �J
1

− 1

⎞⎟⎟⎠

(40)
(
x1,𝜑1

)
=

(
𝜑J
1

�̃�1,0 − 𝜆1
,

�̃�1,0𝜑
J
1

�̃�1,0 − 𝜆1

)
=

((
1 + 𝛽cJ

1

)2
𝛼𝛽cJ

1

𝜑J
1
,
1 + 𝛽cJ

1

𝛽cJ
1

𝜑J
1

)

Fig. 2  Auxiliary system solution (characteristic diagram)
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a decreasing speed shock (Type IIa) develops, the trajectory of this shock is given by

Ahead of the second slug, there is also a discontinuity (cJ
Dc

⟶ 0) , its trajectory is 
given by the straight line 𝜑(2,0)

I
= �̃�2,0x + 𝜑J

2
 . At point

the shock ahead of the second slug intersects the characteristic � = �0x + �J
1
 (last charac-

teristic of the rarefaction wave behind the first polymer slug), and a shock-rarefaction wave 
interaction begins. At this point the front of the second slug travels with increasing speed 
(shock type IIb). The path of this shock 

(
c− = cJ , c+ = c1(x,�)

)
 in (x,�)-plane is given by

The shock �(1)

IIa
 intercepts shock �IIb (Fig. 2) at point (3):

where

Along the left side of the shock path �(1)

IIa
 the polymer concentration 

(
c
(1)−

IIa

)
 decreases 

from cJ at 
(
x1,�1

)
 to c−

3
 at 

(
x3,�3

)
 and along the right side of curve �IIb the polymer con-

centration 
(
c+
IIb

)
 increases from zero at 

(
x2,�2

)
 to c−

3
 at 

(
x3,�3

)
 . Concentration c−

3
 is 

determined from Eq. (26):

At point (3) another type I concentration shock appears. Its trajectory is given by 
𝜑
(2,0)

I
(x) = �̃�2,0

(
x − x3

)
+ 𝜑3 , and it travels at constant speed. At point

the rarefaction wave behind the second slug overtakes the shock �(2,0)

I
 . The trajectory of 

this wave (shock-rarefaction interaction) is given by (shock type IIa)

(41)�
(1)

IIa
(x) =

�√
�0

�√
x −

√
x1

�
+

�
�1 − �J

1

�2
+ �J

1
.

(42)
(
x2,𝜑2

)
=

(
𝜑J
2
− 𝜑J

1

𝜆0 − �̃�2,0
,
𝜑J
2
𝜆0 − 𝜑J

1
�̃�2,0

𝜆0 − �̃�2,0

)
=

(
1 + 𝛽cJ

1

𝛼𝛽cJ
2

𝜑J
1
,

(
1 + 𝛽cJ

1

)
𝜑J
2
− 𝜑J

1

𝛽cJ
2

)

(43)�IIb(x) =

�√
�2

�√
x −

√
x2

�
+

�
�2 − �J

1

�2
+ �J

1

(44)

�
x3,�3

�
=

�
B
√
B2 − 4AC − 2AC + B

2A
,

�√
�2
�√

x3 −
√
x2
�
+

�
�2 − �J

1

�2
+ �J

1

�

A = �2 − �0

B = 2

��
�2
�
�2 − �J

1

�
−

�
�0
�
�1 − �J

1

�
+ �0

√
x1 − �2

√
x2

�

C = �2x2 − �0x1 − 2

��
�2x2

�
�2 − �J

1

�
−

�
�0x1

�
�1 − �J

1

��
+ �2 − �1

(45)c−
3
=

1

�

(√
�x3

�3 − �J
1

− 1

)

(46)
(
x4,𝜑4

)
=

(
𝜑3 − 𝜑J

3
− �̃�2,0x3

𝜆1 − �̃�2,0
,
𝜆1𝜑3 − �̃�2,0

(
𝜆1x3 + 𝜑J

3

)

𝜆1 − �̃�2,0

)
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Behind the curve �(2)

IIa
 the polymer concentration 

(
c
(2)−

IIa

)
 decreases from cJ at 

(
x4,�4

)
 to 

0 when 
(
x3,�3

)
→ ∞ . The polymer concentration changes along this wave (second rare-

faction wave) according to

At 
(
0,�J

3

)
 the second slug is displaced by water.

4.2  Solution of the Lifting Equation

Although the original system is decoupled, the lifting equation can be solved only after the 
auxiliary problem solution. Figure 3 shows the solution in (F,U)-plane for 𝜑 < 𝜑J

1
 (self-

similar solution), composed by a rarefaction wave from U = 1 to U−
1
 ; followed by a shock 

wave linking U−
1
 to U+

1
 ; then there is a rarefaction wave from U+

1
 to Uf  ; and finally a shock 

wave connecting the initial condition.
Interactions of waves of different families begin when 𝜑 > 𝜑J

1
 . Figure 4 shows the solu-

tion of the lifting equation in the x − � diagram. A U-rarefaction centered at point (0, 0) 
appears in region I; its characteristic slopes are given by

In region III both U and c change along characteristics. On the characteristic curves 
beginning at � = �1x + �J

1
 ; U changes from U(1)

#
 to U(1)

∗  on the curve � = �0x + �J
1
 if 

𝜑 < 𝜑2 ; or to U(1)+

IIb
 on the curve �IIb(x) if 𝜑2 < 𝜑 < 𝜑3 (Fig. 4).

(47)�
(2)

IIa
(x) =

�√
�0

�√
x −

√
x4

�
+

�
�4 − �J

3

�2
+ �J

3

(48)c2(x,�) =
1

�

⎛⎜⎜⎝

�
�x

� − �J
3

− 1

⎞⎟⎟⎠

(49)
𝜑

x
= F�

U

(
U

(1)

#
, cJ

)
, 1 < U

(1)

#
< U+

1
.

Fig. 3  Self-similar solution of the lifting equation in (F, U)-plane
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In region II, c = 0 and U is constant 
(
U

(1)
∗

)
 , the slope of each characteristic is 

F�
U

(
U

(1)
∗ = U

(2,0)+

Ia
, 0

)
 . This characteristic interacts with the shock �

(2,0)

Ia
 ; where 

U− = U
(2,0)−

Ia
= U

(2)

#
 , and U+ = U

(2,0)+

Ia
= U

(1)
∗  (Fig. 5a). In region IV, c = cJ and U is con-

stant. Across the curve �IIb(x) , there is a concentration shock where U− = U−
IIb

 lies on the 
curve F

(
U, cJ

)
 . and U+ = U+

IIb
 lies on the fractional flow curve F

(
U, c+

IIb

)
 (Fig. 5b). The 

slope of the U-characteristics in region IV is F′
U

(
U, cJ

)
 . In the region where U changes 

between U−
4
 and U−

3b
 (Figs.  4 and 5), these characteristics will catch up the shock curve 

�
(2,0)

Ib
(x) (Fig. 2).

Fig. 4  Solution of the lifting equation (characteristic diagram)

Fig. 5  Solution trajectory in F–U plane (lifting equation)
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At point 3, U−
3a

 jumps to U+
3a

 (slope �̃�
(
c−
3
, 0
)
 ) and to U−

3b
 (slope �̃�

(
c−
3
, cJ

)
 ) (Figs. 4 and 6a); 

and at point 
(
U−

3b
, F

(
U−

3b
, cJ

))
 there is another jump to 

(
U+

3b
, F

(
U+

3b
, 0
))

 with slope �̃�
(
cJ , 0

)
 

(Figs. 4 and 6a). Since the speed of the characteristic carrying U+
3b

 is greater than the speed of 
the characteristic carrying U+

3a
 , the simple wave 

(
U+

Ib
, c = 0

)
 ; where U+

4
< U+

Ib
< U+

3b
 ; arising 

from the curve �
(2,0)

Ib
(x) will intercept the simple wave 

(
U

(1)+

IIa
, c = 0

)
 ; where 

U+
3a
< U

(1)+

IIa
< U+

1
 ; arising from the curve �(1)

IIa
(x) (Fig. 4). This interaction starts at point 3 and 

takes place along the shock curve �� (x) ; where U+
�
= U

(1)+

IIa
 and U−

�
= U+

Ib
 (Figs. 4,6a and 6b); 

its trajectory is given by (see details in “Appendix”):

If all characteristics arising from curve �(1)

IIa
(x) intercept the characteristics arising from 

curve �(2,0)

Ib
(x) , the characteristics of region VIII will interact with constant state U+

1
 (Fig. 6c), 

where U+
�
= U+

1
.

On the other hand, if only part of the characteristics arising from the curve �(1)

IIa
(x) inter-

cepts the characteristics arising from the curve �(2,0)

Ib
(x) , the remaining characteristics will 

interact with the characteristics arising from the curve �(2)

IIa
(x) (Fig. 6d).

The solution in regions V, VII and VIII is analogous to solution in region II and the solu-
tion in region V is analogous to solution in region III.

Along the curves �(n)

IIa
(x)

(
c+ = 0, c− = cn(x,�)

)
 , the shock speed is equal to the character-

istic speed (Fig. 7):

(50)d��

dx
=

F
(
U−

�
, 0

)
− F

(
U+

�
, 0

)

U−
�
− U+

�

.

(51)F�
U

(
U

(n)−

IIa
, c

(n)−

IIa

)
=

F
(
U

(n)−

IIa
, c

(n)−

IIa

)
− F

(
U

(n)+

IIa
, 0

)

U
(n)−

IIa
− U

(n)+

IIa

Fig. 6  Jump conditions for U
(
U±

�

)
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4.3  Inverse Mapping

The final part of the solution is the inverse mapping from (x,�)-plane to (x, t)-plane. So, 
the characteristic diagram presented in Fig. 4 is mapped in x–t domain using the relations 
given by Eqs.  (35) and (36) (Fig. 8). In constant concentration 

(
c = 0 or c = cJ

)
 regions, 

Eq. (35) reduces to 

The solution for t < tJ
1
 is presented in Sect. 2.1. For t > tJ

1
 the discontinuity in the bound-

ary condition leads to interactions between rarefactions and shocks waves.
Interactions between an s-wave and a c-wave appear in regions III and VI (Fig. 8). In 

other regions with constant concentration, we have

(52)t(x) = t0 +
[
UF�

U
(U, c) − F(U, c)

](
x − x0

)

(53)

x − x�

t − t�
=
[
UF�

U
(U, c) − F(U, c)

]−1
= f �

s
(s, c) or

x

t
=
[
UF�

U
(U, c) − F(U, c)

]−1
= f �

s
(s, c)

Fig. 7  Jump conditions for U(n)±

IIa

Fig. 8  Characteristic diagram in x–t domain
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where 
(
x′, t′

)
 is the characteristic initial point.

After the coordinate transformation, the straight lines � = �nx + �J
2n+1

 and 
� = �0x + �J

2n+1
 are mapped onto the curves t(n)

J
(x) and t(n)

0
(x) , respectively (Fig.  8a). 

For 0 < x < x2 the water saturation increases from s(1)
#

 on the curve t(1)
J
(x) to s(1)∗  on the 

curve t(1)
0
(x) (Figs. 8b and 9a); for x2 < x < x3 the saturation increases up to s+

IIb
 on curve 

tIIb(x) , where s+
IIb

> s−
IIb

= s
(2)

#
 (Figs. 8b and 9b). The shock trajectory ahead of the second 

slug is mapped onto plane x–t through the curve t(2,0)
Ia

(x) (with increasing speed), where 
s+
Ia
= s

(1)
∗ > s−

Ia
= s

(2)

#
 (Figs. 8b and 9a).

Along the shock path t(n)
IIa
(x) ; s(n)+

IIa
> s

(n)−

IIa
 (Fig. 10), the velocity of this shock is equal to 

the characteristic speed behind the discontinuity and decreases with time. When t → ∞ , 
s
(2)±

IIa
→ s∞ , where s∞ lies on the curve f (s, 0).

All constant saturation characteristics in region IV, where saturation is smaller than s−
4
 , 

intercept the front of the polymer slug t(2,0)
Ib

(x) (Fig. 8b). In this shock s+
Ib
> s−

Ib
.

The velocity of the characteristics in region VII is given by (Figs. 8a, 8b and 11a)

and in region VIII by (Figs. 8a, 8b and 11a)

(54)
dx

dt
= f �

s
(s, 0), s+

1
< s = s

(1)+

IIa
< s+

3a

Fig. 9  Solution trajectory in the f–s plane

Fig. 10  Jump conditions for s(n)+
IIa
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The velocity of characteristics in region VIII is greater than the velocity of character-
istics in region VII, since the value of saturations in region VII is greater than in region 
VIII. Therefore, these waves intercept along the shock path t� (x) (Fig. 8a), obtained through 
Eq.  (36). Along this shock path s−

𝛾
< s+

𝛾
 (Fig.  11b). As described previously, two differ-

ent waves interaction structure between the rarefaction waves of regions VII and VIII may 
appear. One possibility is that the characteristics arising from curve t(1)

IIa
(x) interact with 

characteristics arising from curves t(2,0)
Ib

(x) and t(2)
IIa
(x) (Fig. 11c); in the other scenario all 

characteristics arising from curve t(1)
IIa
(x) interact with waves arising from curve t(2,0)

Ib
(x) 

(Fig. 11d). In the last case, a new shock appears, resulting from the interaction between the 
characteristics carrying s+

1
 and the discontinuity t� (x) , and its speed is given by

It is important to note that, although the polymer concentration is constant ahead and 
behind ( c− = cJ and c+ = 0 ) the trajectories of the polymer slug front ( t(1,0)

I
(x) , t(2,0)

Ia
(x) and 

t
(2,0)

Ib
(x) ); only shock t(1,0)

I
(x) travels with constant speed; the velocity of t(2,0)

Ia
(x) and t(2,0)

Ib
(x) 

is increasing and decreasing, respectively.
Table 2 shows the velocity of all shocks present in the solution of problem (9)–(10) in 

the x–t domain and the saturation value ahead and behind of each discontinuity.
Figure  12 presents the solution for this particular problem in f–s plane and Fig.  13 

shows the respective saturation and concentration profiles during each slug injection (water 
and polymer) and between the end of the slug injection and the point of shocks intersection 

(55)
dx

dt
= f �

s
(s, 0),

s+
3b

< s = s+
Ib
< s+

4
,
(
t − t4

)
< f �

s

(
s+
4
, 0
)(
x − x4

)

s+
4
< s = s

(2)+

IIa
< s∞,

(
t − t4

)
> f �

s

(
s+
4
, 0
)(
x − x4

)

(56)dx

dt
=

f
(
s−
�
, 0

)
− f

(
s+
1
, 0
)

s−
�
− s+

1

Fig. 11  Shock conditions for s±
�
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(points 1, 2, 3 and 4 shown in Fig. 8a). Table 3 shows the waves sequences for all solution 
profiles. Besides the notation introduced in Sect. 2.1 to denote shock and rarefaction waves, 
the symbol Rc

⟶
 stands for the trajectory of an s-wave and a c-wave interaction wave.

5  Validation

In this section we compare our solution to numerical results using the finite volume 
method.

Water fractional flow was calculated using the following analytical expression:

and the adsorption isotherm is given by

Discretizing system of Eqs. (9) using an upwind finite volume method (LeVeque 2002) 
leads to

where M = cs + a(c) and F = cf .
After calculating Mn+1

i
 , it is possible to find cn+1

i
 solving the following transcendental 

equation

Equation (61) was solved using Newton´s method.

(57)f (s, c) =
2s2

2s2 + (1 + c)(1 − s)2

(58)a(c) =
c

1 + 5c

(59)sn+1
i

= sn
i
−

Δt

Δx

(
f n
i
− f n

i−1

)

(60)Mn+1
i

= Mn
i
−

Δt

Δx

(
Fn
i
− Fn

i−1

)

(61)(cs)n+1
i

+ a
(
cn+1
i

)
−Mn+1

i
= 0

Table 2  Shock waves in x–t plane solution

Shock speed (dx∕dt) Shock 
path

Saturation ahead 
of shock

Saturation behind of shock

f (s+IIb ,c
+
IIb)

s+
IIb
+�̃�(c+IIb ,cJ)

=
f (s−IIb ,c

J)
s−
IIb
+�̃�(c+IIb ,cJ)

tIIb(x) s+
2
< s+

IIb
< s−

3a
s−
2
< s−

IIb
< s−

3b

f
(
s
(2,0)+

I𝜋
,0

)

s
(2,0)+

I𝜋
+�̃�(0,cJ)

=
f
(
s
(2,0)−

I𝜋
,cJ

)

s
(2,0)−

I𝜋
+�̃�(0,cJ) , � = a, b

t
(2,0)

Ia
(x)

t
(2,0)

Ib
(x)

sJ < s+
Ia
< s+

2

s+
3b

< s+
Ib
< s+

4

sJ < s−
Ia
< s−

2

s−
3b

< s−
Ib
< s−

4

f
(
s
(n)+

IIa
,0

)

s
(n)+

IIa
+�̃�

(
c
(n)+

IIa
,0

) =
f
(
s
(n)−

IIa
,c
(n)−

IIa

)

s
(n)−

IIa
+�̃�

(
c
(n)−

IIa
,0

) = f �
s

(
s
(n)−

IIa
, c

(n)−

IIa

)
 , 

n = 1, 2

t
(1)

IIa
(x)

t
(2)

IIa
(x)

s+
1
< s

(1)+

IIa
< s+

3a

s+
4
< s

(2)+

IIa
< s∞

s−
3a

< s
(1)−

IIa
< s−

1

s−
4
< s

(2)−

IIa
< s∞

f
(
s+
�
,0

)
−f

(
s−
�
,0

)

s+
�
+s−

�

t� (x) s+
3b

< s+
𝛾
< s+

4
s−
3b

< s−
𝛾
< s−

4
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Fig. 12  Solution trajectory in f–s plane
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Fig. 13  Solution profile (saturation and concentration)
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Time step was defined based on CFL criteria:

where �s = f �
s
 and �c =

f

s+a�(c)
 are the eigenvalues associated to system (9). For all simula-

tions we adopted CFL = 0.99 and Δx = 0.002 . Figures 14, 15, 16, 17 and 18 present satura-
tion and concentration profiles for different simulation times. Note that there is an excellent 
agreement between the solutions.

(62)
Δt

Δx
max
p

|||�p
||| ≤ CFL, p = s, c

Table 3  Waves sequences of the solution profiles

Time range Solution path

t < tJ
1 J

RJ
s

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

tJ
1
< t < tJ

2 J
R0
s

⟶ s
(1)
∗

Dc

⟶ s
(1)

#

RJ
s

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

tJ
2
< t < t2 J

RJ
s

⟶ s−
I1

Dc

⟶ s+
I1

R0
s

⟶ s
(1)
∗

Dc

⟶ s
(1)

#

RJ
s

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

t2 < t < tJ
3 J

RJ
s

⟶ s−
IIb

Dc

⟶ s+
IIb

Dc

⟶ s
(1)

#

RJ
s

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

tJ
3
< t < t1 J

R0
s

⟶ s
(2)
∗

Dc

⟶ s
(2)

#

RJ
s

⟶ s+
IIb

Dc

⟶ s−
IIb

RJ
s

⟶ s
(1)

#

Dc

⟶ s−
1

Dc

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

t1 < t < t3 J
R0
s

⟶ s
(2)
∗

Dc

⟶ s
(2)

#

RJ
s

⟶ s−
IIb

Dc

⟶ s+
IIb

Dc

⟶ s
(1)−

IIa

Dc

⟶ s
(1)+

IIa

D0
s

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

t3 < t < t4 J
R0
s

⟶ s
(2)
∗

Dc

⟶ s
(2)

#

RJ
s

⟶ s−
I2

Dc

⟶ s+
I2

R0
s

⟶ s−
�

Ds

⟶ s+
�

R0
s

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

t > t4 J
R0
s

⟶ s
(2)
∗

Dc

⟶ s
(2)−

IIa

Dc

⟶ s
(2)+

IIa

R0
s

⟶ s−
�

Ds

⟶ s+
�

R0
s

⟶ s+
1

R0
s

⟶ sF
Ds

⟶ I

Fig. 14  Analytical and numerical saturation and concentration profiles for tD = 0.20
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6  Conclusions

In this paper, we present the analytical solution for the water alternated polymer injection 
EOR technique. This solution may be applied for any number of polymer slugs with different 
concentrations, and the polymer may be adsorbed by the rock. The introduction of an auxiliary 

Fig. 15  Analytical and numerical saturation and concentration profiles for tD = 0.32

Fig. 16  Analytical and numerical saturation and concentration profiles for tD = 0.40



453Mathematical Model of Water Alternated Polymer Injection  

1 3

independent variable splits the conservation system into two independent equations, one based 
on the thermodynamics features of the problem (adsorption isotherms) and the other depend-
ent on transport properties and the solution of the concentration equation. From the auxiliary 
equation solution, it is possible to map all the concentration shocks of the original problem. 
The front slug speed is always greater than the rear speed regardless of the polymer injection 

Fig. 17  Analytical and numerical saturation and concentration profiles for tD = 0.60

Fig. 18  Analytical and numerical saturation and concentration profiles for tD = 1.0
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concentration. Therefore, the polymer slugs will catch up with the previously polymer slug 
injected. The interaction between rarefaction waves of different families is calculated by solv-
ing the lifting equation in the regions where concentration changes. This solution is new and 
has not been investigated. It can also be used as a basis for the evaluation of similar problems 
(alternated slugs injection). We expect that these results will be relevant to: (i) implementation 
of the solution in streamline reservoir simulation; (ii) validation of numerical methods; and 
(iii) the interpretation of polymer flooding experiments.

Appendix

The shock path resulting from the interaction between two simple waves is described in Rhee 
et  al. (1989a) when the rarefaction waves arise from the coordinate axis. Here, the same 
approach is used to build the trajectory of shocks when the rarefaction waves arise from any 
curve. Considering that along the path shock x and � are functions of U− and U+ , we obtain 
the following expression to the shock path:

Equation (63) can be rewritten as

At an arbitrary point (x,�) on the shock path we have two characteristics intersecting, one 
from the curve �A(x) and another from the curve �B(x) (Fig. 19). These characteristic curves 
are straight lines:

(63)

d𝜑

dx
=

F
(
U+, 0

)
− F(U−, 0)

U+ − U−
=

(𝜕𝜑∕𝜕U−)
(
dU−∕dU+

)
+
(
𝜕𝜑∕𝜕U+

)

(𝜕x∕𝜕U−)
(
dU−∕dU+

)
+
(
𝜕x∕𝜕U+

) = �̃�
(
U−,U+

)

(64)dU−

dU+
= −

�̃�
(
𝜕x∕𝜕U+

)
−
(
𝜕𝜑∕𝜕U+

)
�̃�(𝜕x∕𝜕U−) − (𝜕𝜑∕𝜕U−)

(65)� = �+
(
x − �+

)
+ �+ and � = �−(x − �−) + �−

Fig. 19  Shock path arising from the interaction of two rarefaction waves of the same family
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where �± = F�
U
(U±, 0) , 

(
�+ = �+

(
U+

)
, �+ = �+

(
U+

))
 and (�− = �−(U−), �− = �−(U−)) 

are points on the curves �A(x) and �B(x) , respectively.
From Eq. (65) we write � and x as functions of U− and U+:

Deriving x and � with respect to U+ and U− and substituting into Eq. (64), we obtain an 
ordinary differential equation relating U− and U+:

where ��± = F��
U
(U±, 0) , ��± = d�±∕dU± and ��± = d�±∕dU±.

The solution of Eq. (67) allows the determination of U− for an specified U+ . Replacing 
U− and U+ in Eq. (66), we obtain the shock path.
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