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Abstract
In this paper, we derive upscaled equations for modeling biofilm growth in porous media. 
The resulting macroscale mathematical models consider permeable multi-species bio-
film including water flow, transport, detachment and reactions. The biofilm is composed 
of extracellular polymeric substances (EPS), water, active bacteria and dead bacteria. The 
free flow is described by the Stokes and continuity equations, and the water flux inside 
the biofilm by the Brinkman and continuity equations. The nutrients are transported in the 
water phase by convection and diffusion. This pore-scale model includes variations in the 
biofilm composition and size due to reproduction of bacteria, production of EPS, death of 
bacteria and shear forces. The model includes a water–biofilm interface between the free 
flow and the biofilm. Homogenization techniques are applied to obtain upscaled models in 
a thin channel and a tube, by investigating the limit as the ratio of the aperture to the length 
� of both geometries approaches to zero. As � gets smaller, we obtain that the percentage 
of biofilm coverage area over time predicted by the pore-scale model approaches the one 
obtained using the effective equations, which shows a correspondence between both mod-
els. The two derived porosity–permeability relations are compared to two empirical rela-
tions from the literature. The resulting numerical computations are presented to compare 
the outcome of the effective (upscaled) models for the two mentioned geometries.
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List of Symbols
a	� Coverage area
B	� Relative porosity
Bc	� Critical point
c	� Nutrient concentration
d	� Biofilm height
D	� Nutrient diffusion coefficient
E	� Integration coefficient
f + , f −	� Positive and negative cuts
F, G	� Integration coefficients
h	� Dependent variable: biofilm height (channel)
H, H

�
	� Non- and regularized set-valued Heaviside graphs

i	� Imaginary number
�	� Identity matrix
J	� Nutrient flux
J
�
	� Bessel function of order � of first kind

k	� Biofilm permeability
kB , kK , kn	� Monod-half nutrient velocity coefficients
kres	� Bacterial decay rate coefficient
kstr	� Stress coefficient
K	� Permeability
l	� Half height of the channel
L	� Channel/tube length
�	� Matrix (derivatives of water velocity)
p	� Pressure
Pe	� Péclet number
q	� Water velocity
r	� Vector (cylindrical coordinates)
r	� Radial coordinate
R	� Reaction term
S	� Tangential shear stress
t, T	� Time and final time
u	� Velocity of the biomass
v	� Darcy velocity
V	� Integration coefficient
w	� Dependent variable: biofilm height (tube)
W	� Integration coefficient
x	� Vector (Cartesian coordinates)
x	� Cartesian coordinate
X	� Integration coefficient
y	� Cartesian coordinate
Y	� Yield coefficient
Y
�
	� Bessel function of order � of second kind

z	� Cartesian/cylindrical coordinate

Greek Symbols
� 	� Domain boundary
�	� Small regularization parameter
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� , �	� Dimensionless aspect ratio (channel and tube)
�	� Tolerance
�	� Experimental determined parameter
�	� Volume fraction
�	� Dependent variable: biofilm height and porosity (tube)
�	� Effective permeability
�	� Dependent variable: biofilm permeability and porosity
�	� Water viscosity
�B , �K , �n	� Maximum rates of nutrient utilization
�	� Unitary normal vector (interface)
�n	� Interface velocity
�	� Dependent variable: biofilm permeability and porosity (tube)
�	� Space region
�	� Density
�	� Tube radius
�	� Sum of reaction terms
�	� Unitary tangential vector
�	� Unitary normal vector (wall)
�	� Porosity of porous medium
�	� Angular coordinate
�	� Growth velocity potential
�	� General variable
�	� Width (channel)
�	� Spatial domain

Subscripts/Superscripts
a	� Active bacteria
B	� Biodegradation microbe
b	� Biofilm
crit	� Critical
C	� Channel
d	� Dead bacteria
i	� Input
ib	� Input biofilm domain
iw	� Input water domain
K	� Biobarrier-forming microbe
l	� Lower
m	� Middle
O	� Initial
ob	� Output biofilm domain
ow	� Output water domain
e	� EPS
ref	� Reference value
r	� r-component
s	� Wall
T	� Tube
u	� Up
w	� Water
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wb	� Water–biofilm (interface)
y	� y-component
z	� z-component
0	� Lowest order term (asymptotic expansion)
̃	� Dimensionless parameter/variable (channel)
̄	� Dimensionless parameter/variable (tube)

Abbreviations
EPS	� Extracellular polymeric substance
MEOR	� Microbial enhanced oil recovery

1  Introduction

Biofilms are sessile communities of bacteria housed in a self-produced adhesive matrix 
consisting of extracellular polymeric substances (EPS), including polysaccharides, proteins, 
lipids and DNA (Aggarwal et al. 2015). The proportion of EPS in biofilms is 50–90% of the 
total organic matter (Donlan 2002; Vu et al. 2009). Water is by far the largest component 
of the matrix, giving biofilms the nickname "stiff water" (Flemming and Wingender 2010). 
Biofilms provoke chronic bacterial infection, infection on medical devices, deterioration of 
water quality and the contamination of food (Kokare et al. 2009). On the other hand, bio-
films can be used for wastewater treatment and bioenergy production (Miranda et al. 2017). 
In microbial enhanced oil recovery (MEOR), one of the strategies is selective plugging, 
where bacteria are used to form biofilm in highly permeable zones to diverge the water flow 
and extract the oil located in low-permeability zones (Raiders et al. 1989). In wastewater 
treatment, one of the strategies consists of using biofilms to break down compounds which 
are not desirable to discharge into the natural environment (Capdeville and Rols 1992).

Two of the motivations to derive upscaled models are to accurately describe the average 
behavior of the system with relatively low computational effort compared to fully detailed 
calculations starting at the microscale (van Noorden et  al. 2010) and to determine effec-
tive parameters (Helmig et al. 2002). The values of these effective parameters can be deter-
mined using known values from pore-scale experiments. Recent works have been carried out 
to derive upscaled models; for example, Collis et al. (2017) obtained a mathematical model 
describing macroscopic tumor growth, transport of drug and nutrient through homogenization 
and Jin and Chen (2019) upscaled a pore-scale model for primary fluid recovery and showed 
that the macroscopic equation for the water flux is fundamentally different from Darcys’ law. 
We also refer to Peszynska et  al. (2016) where the authors upscale a pore-scale model for 
biofilm growth and compare to the experimental results and Schulz (2019a) where the author 
derives effective quantities for a permeable biofilm in a perforated domain. In contrast to 
Schulz (2019a), we consider different pore geometries and a multi-component biofilm.

The present work builds on Landa-Marbán et al. (2019), where a pore-scale model is 
discussed. The model includes permeable biofilm and evolution of different biofilm com-
ponents: active bacteria, dead bacteria and EPS. The importance of including biofilm per-
meability is underlined by the fact that the dominated mechanism of nutrient transport 
within some biofilms is convection (Lewandowski and Beyenal 2003). This mathemati-
cal model is based on laboratory experiments performed by Liu et al. (2019), where the 
biofilm was grown in micro-channels. Here, we upscale this pore-scale model to derive 
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effective equations, by investigating the limit as the ratio of the height to the length of the 
micro-channel approaches to zero.

In this general context, the objective of the research reported in the present article is to 
obtain core-scale models (also known as Darcy-scale or macroscale models) for perme-
able biofilm in two different pore geometries: a thin channel and a tube. The motivation 
for choosing these two geometries is because experiments are performed in the laboratory 
in micro-channels (Liu et al. 2019) and tubes (Bott and Miller 1983), they may represent a 
fracture in a core sample (Bringedal et al. 2015) and some porous media can be modeled as 
a stack of micro-tubes or micro-channels (van Noorden et al. 2010).

To summarize, the novel aspect in this work is the derivation of core-scale models from 
a pore-scale model for a biofilm which is permeable to the flow and has a variable (in time 
and space) height. The fluid flow in the biofilm is modeled by the Brinkman equation, 
whereas in the remaining pore space the Stokes model is adopted. This is done for two dif-
ferent geometries. We derive analytical expressions for the upscaled quantities and provide 
numerical simulations for the upscaled models in both cases.

The structure of this paper is as follows. In Sect. 2, we describe the pore-scale biofilm 
model. In Sect. 3, we present the dimensionless pore-scale biofilm model. In Sect. 4, we 
perform formal homogenization on the model equations and obtain upscaled equations. In 
Sect. 5, we compare the upscaled models with the upscaled model of van Noorden et al. 
(2010) and with the well-known core-scale model of Chen-Charpentier et al. (2009). We 
compare the derived porosity–permeability relations to empirical porosity–permeability 
relations from the literature. Also, we perform numerical simulations in the upscaled mod-
els and we compare the results for the biofilm height and nutrient concentration for the two 
different effective models. Finally, in Sect. 6 we present the conclusions.

2 � Pore‑Scale Model

The pore-scale mathematical model considered here follows ideas from Alpkvist and Klap-
per (2007) ,van Noorden et  al. (2010) and Deng et  al. (2013). A detailed description of 
this model can be found in Landa-Marbán et al. (2019), where a comparison of laboratory 
measurements and numerical simulations is also presented.

The biofilm has four components: water, EPS, active and dead bacteria ( j = {w, e, a, d} ). 
Let �j and �j denote the volume fraction and the density of component j. The sum of vol-
ume fractions is constraint to 1 ( �w + �e + �a + �d = 1 ). Given that biofilms are mostly 
water (Flemming and Wingender 2010), we assume that the volume fraction of water �w is 
constant. The biomass phases and water are assumed to be incompressible ( �t�j = 0 ), and 
the biofilm layer is attached to the pore walls. Figure 1 shows schematically the phenomena 
considered for the biofilm formation.

Fig. 1   Conceptual pore-scale model showing the processes for the biofilm dynamics
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We consider two different pore geometries: a tube in cylindrical coordinates 
r = (r,�, z) and a thin channel in Cartesian coordinates x = (x, y, z) . The z direction is 
taken along the length L of the tube and thin channel (see Figs. 2, 6). In the first case, 
the pore has circular cross section and in the second a rectangular one. In both cases, 
the length is much larger than the cross-sectional aperture. In both cases, we assume 
a certain symmetry. For the cylindrical pore, we assume that the processes are radially 
symmetric, and hence, there is no angular dependence (see Fig. 2). For the thin channel, 
there are no changes in the x direction, i.e., the width of the channel, so it can be reduced 
to a two-dimensional strip (see Fig. 6). This assumption is based on experiments, show-
ing that when the width of the channel is much smaller than its height, the growth of 
the biofilm occurs only at the upper and lower walls along the channel (Liu et al. 2019). 
We present in detail the upscaling of the model equations on the tube geometry. The 
upscaling on the channel geometry is shown in “Appendix.” Figure 2 shows the different 
domains, boundaries and interface in the pore with tubular geometry.

We consider a thin tube of radius � and length L. We denote the biofilm height 
by d which only depends on z and time as a result of the symmetry assumption. The 
domain is occupied by the water �T ,w(t) = {r| r ∈ [0, � − d(z, t)),� ∈ [0, 2�), z ∈ (0, L)} 
and biofilm �T ,b(t) = {r| r ∈ (� − d(z, t), �),� ∈ [0, 2�), z ∈ (0, L)} phases with the 
biofilm located along the tube wall �T ,s = {r| r = �,� ∈ [0, 2�), z ∈ (0, L)} . Clearly, 
r = � − d(z, t) separates the water and biofilm regions. The water domain has three 
boundary parts: the inflow �T ,iw(t) = {r| r ∈ [0, � − d(z, t)),� ∈ [0, 2�), z = 0} , the out-
flow �T ,ow(t) = {r| r ∈ [0, � − d(z, t)),� ∈ [0, 2�), z = L} and the interface between the 
water and the biofilm �T ,wb(t) = {r| r = � − d(z, t),� ∈ [0, 2�), z ∈ (0, L)} . Similarly, 
for the biofilm we have the inflow �T ,ib(t) = {r| r ∈ (� − d(z, t), �),� ∈ [0, 2�), z = 0} 
and outflow �T ,ob(t) = {r| r ∈ (� − d(z, t), �),� ∈ [0, 2�) z = L} boundary parts, the 
water–biofilm interface �T ,wb(t) and the solid tube wall �T ,s . Although the tube is a three-
dimensional domain, recalling the rotational symmetry, we only write the r- and z-com-
ponents of the vectors in order to reduce the length of the mathematical expressions.

The unit normal � pointing into the biofilm and the normal velocity of the interface �n 
can be written in terms of the biofilm height d as (van Noorden et al. 2010)

The water flux outside the biofilm �T ,w(t) is described by the Stokes and continuity 
equations

(1a,b)� =
(
1, �zd

)T/√
1 +

(
�zd

)2
, �n = −�td

/√
1 +

(
�zd

)2
at �T ,wb(t).

Fig. 2   Pore of radius � and length L in cylindrical coordinates
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while the water flux inside the biofilm �T ,b(t) is described by the Brinkman and continuity 
equations

Here, pw and pb are the water pressures and qw and qb are the water velocities in the water 
domain and biofilm domain, respectively; � is the water viscosity (constant, not dependent 
on biofilm species) and k is the permeability of the biofilm (assumed isotropic). The Brink-
man model can be derived by upscaling, assuming that the volume of the porous medium 
skeleton is much smaller than the volume of the reference cell (Hornung 1997). As bio-
films are mostly water, the Brinkman model is a good choice to model water flux inside 
biofilms. At the interface �T ,wb(t), one has the continuity of the velocity and of the normal 
stress tensor

where � is the identity matrix. At the wall �T ,s, we consider the no-slip boundary condition 
qb = 0.

To model the nutrient transport and consumption, we let c
�
 (� ∈ {w, b}) stand for the 

nutrient concentration in water or biofilm (mass per total volume of biofilm), respectively, 
and D is the nutrient diffusion coefficient in water. Then, the nutrients in the water �T ,w(t) 
satisfy the convection–diffusion equation

and in the biofilm �T ,b(t) satisfy the convection–diffusion–reaction equation

where Jw and Jb are the nutrient flux outside and inside the biofilm, respectively. Further at 
�T ,wb(t), we impose the mass conservation and continuity of nutrient concentration

At the solid wall �T ,s, the normal flux is � ⋅ Jb = 0 , where � is the normal vector at the pore 
wall. The reaction term Rb for the consumption of nutrients is given by

where �n is the maximum rate of nutrient consumption and kn is the Monod-half nutrient 
velocity coefficient.

The movement of the biomass components �i in �T ,b(t) due to reproduction, production 
of EPS and death of active bacteria can be modeled as a Darcy flow (Alpkvist and Klap-
per 2007). We denote by u the velocity of the biomass and � the growth velocity potential. 
Then, we consider the following equations (Alpkvist and Klapper 2007; Landa-Marbán 
et al. 2019)

(2a,b)�Δqw = ∇pw, ∇ ⋅ qw = 0 in �T ,w(t),

(3a,b)(�∕�w)Δqb − (�∕k)qb = ∇pb, ∇ ⋅ qb = 0 in �T ,b(t).

(4a,b)
qw = qb, � ⋅

[
�

(
∇qw + ∇qT

w

)
− �pw

]
= � ⋅

[(
�∕�w

)(
∇qb + ∇qT

b

)
− �pb

]
at �T ,wb(t)

(5a,b)�tcw + ∇ ⋅ Jw = 0, Jw = −D∇cw + qwcw in �T ,w(t)

(6a,b)�t

(
�wcb

)
+ ∇ ⋅ Jb = Rb, Jb = −�wD∇cb + qbcb in �T ,b(t)

(7a,b)(Jb − Jw) ⋅ � = �n(�wcb − cw), cb = cw at �T ,wb(t).

(8)Rb = −�n�a�acb∕(kn + cb) in �T ,b(t)

(9a,b)u = −∇�, ∇ ⋅ u = (1 − �w)
−1
�i

(
Ri∕�i

)
, i ∈ {e, a, d} in �T ,b(t).
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The growth velocity potential is set to zero � = 0 at the interface �T ,wb(t) and homogene-
ous Neumann boundary condition � ⋅ ∇� = 0 on the wall �T ,s.

For each of the biomass components �i in �T ,b(t) , we impose mass conservation 
(Alpkvist and Klapper 2007)

and Neumann condition � ⋅ ∇�i = 0 at the interface �T ,wb(t) and � ⋅ ∇�i = 0 on the wall 
�T ,s . The reaction terms for the biomass components are given by

where Ye and Ya are yield coefficients and kres is the bacterial decay rate.
The water–biofilm interface changes in time due to changes inside the biofilm and the 

water flux provoking detachment of components which is known as erosion. Thus, the 
normal velocity of the interface �T ,wb(t) is given by van Noorden et al. (2010)

where f +(x) = max(0, x) . Here, kstr is the stress coefficient and S is the tangential shear 
stress, given by van Noorden et al. (2010)

Advanced numerical schemes are necessary to solve this mathematical model as it involves 
a moving interface. When the pore is clogged, the active bacteria keep dying, consuming 
nutrients and producing EPS which leads to changes in the volume fractions of biomass 
components. In this model, we ensure that the biofilm–water interface does not overlap by 
taking the positive cut f + when d = � . This pore-scale model can be extended to consider 
more complex systems. For example, one can add different kinds of nutrients, different 
active bacteria species in the biofilm or bacterial attachment.

3 � Non‑dimensional Model

Before seeking an effective model, we bring the mathematical equations to a non-
dimensional form. To this aim, we introduce the reference time tref , length Lref , radius 
�ref , water velocity qref = Lref∕tref , biomass velocity uref , pressure pref and concentration 
cref . The thin tube is characterized by the ratio of its radius to the length � = �ref∕Lref , 
which is called the dimensionless aspect ratio. We define dimensionless coordinates and 
time as r̄ = r∕𝜚ref, z̄ = z∕Lref and t̄ = t∕tref . The non-dimensional biofilm height is given 
by d̄ = d∕𝜚ref . The non-dimensional unit normal (1) is given by 
𝝂(r̄, z̄) = (1, 𝜀𝜕z̄d̄)

T∕

√
1 + (𝜀𝜕z̄d̄)

2. We notice that a factor of � appears in the second 
component of the non-dimensional unit normal, as a result of the transformation of the 
coordinates

(10)�i�t�i + �i∇ ⋅ (�iu) = Ri, i ∈ {e, a, d} in �T ,b(t)

(11a,b,c)Rd = kres�a�a, Re = −YeRb, Ra = −YaRb − kres�a�a in �T ,b(t)

(12)𝜈n =

⎧⎪⎨⎪⎩

f +(� ⋅ u), d = 𝜚

� ⋅ u + kstrS, 0 < d < 𝜚

0, d = 0

at 𝛤T ,wb(t)

(13)S = ||(� − ��
T )�(∇qw + ∇qT

w
)�|| at �T ,wb(t).
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Note that we have omitted the dependence of the vector variables on � 
( ̄𝝂(r̄,𝜑, z̄) = 𝝂(r̄, z̄) ). This is justified by our assumption of the radial symme-
try. The non-dimensional nutrient concentrations and densities are given by 
c̄w = cw∕cref , c̄b = cb∕cref and 𝜌̄i = 𝜌i∕cref (i ∈ {e, a, d}) . The water veloci-
ties are given by q̄w(r̄, z̄) = (q̄w,r̄, q̄w,z̄)

T = (qw,r∕(𝜀qref), qw,z∕qref)
T and 

q̄b(r̄, z̄) = (q̄b,r̄, q̄b,z̄)
T = (qb,r∕(𝜀qref), qb,z∕qref)

T . The biomass velocity is given by 
ū(r̄, z̄) = (ūr̄, ūz̄)

T = (ur∕(𝜀uref), uz∕uref)
T . We assume that the velocities in the radial direc-

tion are of the order �ref∕tref (see van Noorden et al. 2010). Hence, they scale by 1∕� when 
compared to the longitudinal velocities. The biomass volume fractions are dimension-
less; therefore, in the non-dimensional model we simply define 𝜃̄i = 𝜃i, i ∈ {w, e, a, d} . 
Finally, the pressures and growth velocity potential become p̄w = pw∕pref , p̄b = pb∕pref , 
𝛷̄ = 𝛷∕(𝜀2urefLref) . We observe that the growth velocity potential � is scaled by 1∕�2 in 
order to have the biomass velocities in the radial direction of the order �ref∕tref (see van 
Noorden et al. 2010). We define the following dimensionless parameters Pe = qrefLref∕D , 
𝜇̄n = tref𝜇n , k̄n = kn∕cref , k̄ = k∕𝜚2

ref
 , 𝜇̄ = 𝜇Lrefqref∕(𝜚

2
ref
pref) , k̄str = prefkstr∕uref and 

k̄res = trefkres . The domains and boundaries are scaled accordingly.
In this way, the dimensionless system of equations for the water flux (2–4) is given by

𝜕zd =
1

Lref

𝜕

𝜕z̄

(
𝜚ref

d

𝜚ref

)
=

1

Lref

𝜕

𝜕z̄
(𝜚refd̄) = 𝜀𝜕z̄d̄.

(14)
1

r̄
𝜕r̄

(
r̄q̄w,r̄

)
+ 𝜕z̄q̄w,z̄ = 0 in 𝛺̄T ,w(t̄),

(15)𝜇̄

[
1

r̄
𝜕r̄

(
r̄𝜕r̄ q̄w,r̄

)
+ 𝜀

2
𝜕
2
z̄
q̄w,r̄ −

q̄w,r̄

r̄2

]
= 𝜀

−2
𝜕r̄ p̄w in 𝛺̄T ,w(t̄),

(16)𝜇̄

[
1

r̄
𝜕r̄

(
r̄𝜕r̄ q̄w,z̄

)
+ 𝜀

2
𝜕
2
z̄
q̄w,z̄

]
= 𝜕z̄p̄w in 𝛺̄T ,w(t̄),

(17)
1

r̄
𝜕r̄

(
r̄q̄b,r̄

)
+ 𝜕z̄q̄b,z̄ = 0 in 𝛺̄T ,b(t̄),

(18)
𝜇̄

𝜃̄w

[
1

r̄
𝜕r̄(r̄𝜕r̄ q̄b,r̄) + 𝜀

2
𝜕
2
z̄
q̄b,r̄ −

q̄b,r̄

r̄2

]
=

𝜇̄

k̄
q̄b,r̄ + 𝜀

−2
𝜕r̄ p̄b in 𝛺̄T ,b(t̄),

(19)
𝜇̄

𝜃̄w

[
1

r̄
𝜕r̄

(
r̄𝜕r̄ q̄b,z̄

)
+ 𝜀

2
𝜕
2
z̄
q̄b,z̄

]
=

𝜇̄

k̄
q̄b,z̄ + 𝜕z̄p̄b in 𝛺̄T ,b(t̄),

(20)
2𝜇̄𝜕r̄ q̄w,r̄ − 𝜀

−2p̄w − 2
𝜇̄

𝜃̄w

𝜕r̄ q̄b,r̄ + 𝜀
−2p̄b = 𝜕z̄d̄

[
𝜇̄

𝜃̄w

(
𝜕r̄ q̄b,z̄ + 𝜀

2
𝜕z̄q̄b,r̄

)

− 𝜇̄

(
𝜕r̄ q̄w,z̄ + 𝜀

2
𝜕z̄q̄w,r̄

)]
at 𝛤T ,wb(t̄),
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where (14–16) are the dimensionless Stokes and continuity equations, (17–19) are the 
dimensionless Brinkman and continuity equations, (20–22) are the dimensionless interface 
conditions and (23) is the dimensionless condition on the wall.

The dimensionless equations for the transport of nutrients (5–7) in the water and biofilm 
are given by

where (24) is the dimensionless transport equation of nutrients in the water domain, (25) 
is the dimensionless transport equation of nutrients in the biofilm domain, (26–27) are the 
dimensionless coupling conditions at the interface and (28) is the dimensionless condition 
on the wall. The dimensionless reaction rate (8) for the consumption of nutrients is given 
by R̄b = −𝜇̄n𝜃̄a𝜌̄ac̄b∕(k̄n + c̄b).

The equations for the growth velocity potential (9) become

(21)
𝜇̄

(
𝜕r̄ q̄w,z̄ + 𝜀

2
𝜕z̄q̄w,r̄

)
=𝜕z̄d̄

(
2𝜀2

𝜇̄

𝜃̄w

𝜕z̄q̄b,z̄ − p̄b − 2𝜀2𝜇̄𝜕z̄q̄w,z̄ + p̄w

)

+
𝜇̄

𝜃̄w

(
𝜕r̄ q̄b,z̄ + 𝜀

2
𝜕z̄q̄b,r̄

)
at 𝛤T ,wb(t̄),

(22)(q̄w,r̄, q̄w,z̄) = (q̄b,r̄, q̄b,z̄) at 𝛤T ,wb(t̄),

(23)(q̄b,r̄, q̄b,z̄) = (0, 0) on 𝛤T ,s

(24)𝜕t̄ c̄w −
1

Pe

[
𝜀
−2

r̄
𝜕r̄(r̄𝜕r̄ c̄w) + 𝜕

2
z̄
c̄w

]
+

1

r̄
𝜕r̄(r̄q̄w,r̄ c̄w) + 𝜕z̄(q̄w,z̄c̄w) = 0 in 𝛺̄T ,w(t̄),

(25)

𝜕t̄(𝜃̄wc̄b) −
𝜃̄w

Pe

[
𝜀
−2

r̄
𝜕r̄(r̄𝜕r̄ c̄b) + 𝜕

2
z̄
c̄b

]
+

1

r̄
𝜕r̄(r̄q̄b,r̄ c̄b) + 𝜕z̄(q̄b,z̄c̄b) = R̄b in 𝛺̄T ,b(t̄),

(26)
−

𝜀
−2

Pe
(𝜕r̄ c̄w − 𝜃̄w𝜕r̄ c̄b) − (c̄bq̄b,r̄ − c̄wq̄w,r̄) + 𝜕t̄ d̄(𝜃̄wc̄b − c̄w)

+
𝜕z̄d̄

Pe
(𝜕z̄c̄w − 𝜃̄w𝜕z̄c̄b) + 𝜕z̄d̄(c̄bq̄b,z̄ − c̄wq̄w,z̄) = 0 at 𝛤T ,wb(t̄),

(27)c̄b = c̄w at 𝛤T ,wb(t̄),

(28)𝜕r̄ c̄b = 0 on 𝛤T ,s

(29)
uref

qref

[
1

r̄
𝜕r̄(r̄ūr̄) + 𝜕z̄ūz̄

]
= 𝛴̄ in 𝛺̄T ,b(t̄),

(30)(ūr̄, ūz̄) = −(𝜕r̄𝛷̄, 𝜀2𝜕z̄𝛷̄) in 𝛺̄T ,b(t̄),

(31)𝛷̄ = 0 at 𝛤T ,wb(t̄),
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where (29–30) are the dimensionless equations for the biomass growth velocity potential, 
(31) is the dimensionless reference potential at the interface and (32) is the dimensionless 
condition on the wall. We define the dimensionless sum of the biomass reaction terms as 
𝛴̄ = (1 − 𝜃̄w)

−1[(Ye𝜌̄a∕𝜌̄e + Ya)𝜇̄n𝜃̄ac̄b∕(k̄n + c̄b) + (𝜌̄a∕𝜌̄d − 1)k̄res𝜃̄a].

The equations for the biomass components (10) become

where (33–35) are the dimensionless conservation of mass equations for the biomass com-
ponents, (36) is the dimensionless condition at the interface and (37) is the dimensionless 
condition on the wall.

The dimensionless biofilm height (12) is given by

where f − is the negative cut ( f −(x) ∶= min(0, x) ). The dimensionless tangential shear 
stress (13) is given by

where the matrix 𝕄̄ is given by

4 � Upscaling

The pore-scale mathematical model describes the biofilm formation in a three-dimensional 
domain. Under some model assumptions, when the length of the tube is much larger than its 
radius, it is possible to reduce the dimensionality of the problem from three to one dimension, 

(32)𝜕r̄𝛷̄ = 0 on 𝛤T ,s

(33)𝜕t̄𝜃̄e +
uref

qref
(ūr̄𝜕r̄𝜃̄e + ūz̄𝜕z̄𝜃̄e) = Ye𝜇̄n𝜃̄a

𝜌̄a

𝜌̄e

c̄b

k̄n + c̄b
− 𝜃̄e𝛴̄ in 𝛺̄T ,b(t̄),

(34)𝜕t̄𝜃̄a +
uref

qref
(ūr̄𝜕r̄𝜃̄a + ūz̄𝜕z̄𝜃̄a) = Ya𝜇̄n𝜃̄a

c̄b

k̄n + c̄b
− k̄res𝜃̄a − 𝜃̄a𝛴̄ in 𝛺̄T ,b(t̄),

(35)𝜕t̄𝜃̄d +
uref

qref
(ūr̄𝜕r̄𝜃̄d + ūz̄𝜕z̄𝜃̄d) = k̄res

𝜌̄a

𝜌̄d

𝜃̄a − 𝜃̄d𝛴̄ in 𝛺̄T ,b(t̄),

(36)− 𝜕r̄𝜃̄i + 𝜀𝜕z̄d̄𝜕z̄𝜃̄i = 0 i ∈ {e, a, d} at 𝛤T ,wb(t̄),

(37)𝜕r̄𝜃̄i = 0 i ∈ {e, a, d} on 𝛤T ,s

(38)

𝜕t̄ d̄ =

⎧⎪⎨⎪⎩

f −((−ūr̄ − 𝜕z̄d̄ūz̄)uref∕qref), d̄ = 1

(−ūr̄ − 𝜕z̄d̄ūz̄)uref∕qref −

�
1 + (𝜀𝜕z̄d̄)

2
𝜀k̄strS̄, 0 < d̄ < 1

0, d̄ = 0

at 𝛤T ,wb(t̄)

(39)S̄ = ||(𝕀 − 𝝂𝝂
T )𝜇̄(𝕄̄ + 𝕄̄

T )𝝂|| at 𝛤T ,wb(t̄)

(40)𝕄̄ =

(
𝜕r̄ q̄w,r̄ 𝜀𝜕z̄q̄w,r̄

𝜀
−1
𝜕r̄ q̄w,z̄ 𝜕z̄q̄w,z̄

)
at 𝛤T ,wb(t̄).
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letting the aspect ratio � approach to zero. We perform a formal asymptotic expansion of the 
variables depending on � , namely p̄w , p̄b , c̄w , c̄b , q̄w , q̄b , ū , 𝛷̄ , 𝜃̄w , 𝜃̄e , 𝜃̄a , 𝜃̄d and d̄ . For all except 
d̄, we assume 𝜒̄(r̄, t̄) = 𝜒̄0(r̄, t̄) + 𝜀𝜒̄1(r̄, t̄) + O(𝜀2) . The corresponding asymptotic expan-
sion of d is d̄(z̄, t̄) = d̄0(z̄, t̄) + 𝜀d̄1(z̄, t̄) + O(𝜀2) . In van Noorden et al. (2010), Kumar et al. 
(2014) and Bringedal et al. (2015), the authors present upscaled models of pore-scale mathe-
matical models for reactive flows. Following the same ideas, we can obtain the corresponding 
upscaled model in the tube pore geometry.

We define the average water velocity ⟨q̄⟩ as the following integral

Notice that we divide by the cross-sectional area of the tube. We consider the following 
spatial regions in the tube:

These regions are a disk of radius 1 − d̄ and a ring of thickness d̄ , respectively; both of 
length �z . Integrating (14) and (17) over the previous regions and using the Gauss’s theo-
rem, we obtain

Recalling the no-slip condition for the water flux on the wall (23) and the continuity of 
fluxes at the interface (22), the previous equation becomes

Dividing the previous equation by �z and in the limit where �z approach to zero, we obtain 
for the lowest order terms in �

where we use the definition of the average water velocity ⟨q̄⟩ (41).
The lowest order terms in the Stokes model (14–16) lead to

From (42b), we conclude that p̄w,0 does not depend on the r̄ coordinate. Analogously, for 
the Brinkman model (17–19), the lower-order terms in � give

(41)

⟨q̄⟩(z̄, t̄) = ⟨q̄w⟩(z̄, t̄) + ⟨q̄b⟩(z̄, t̄) = 1

𝜋 ∫
2𝜋

0

�
∫

1−d̄0

0

qw,z̄,0r̄dr̄ + ∫
1

1−d̄0

qb,z̄,0r̄dr̄

�
d𝜑.

𝛯̄w ={r̄| 0 ≤ r̄ ≤ 1 − d̄ ∧ 0 ≤ 𝜑 < 2𝜋 ∧ z1 ≤ z̄ ≤ z1 + 𝛿z},

𝛯̄b ={r̄| 1 − d̄ ≤ r̄ ≤ 1 ∧ 0 ≤ 𝜑 < 2𝜋 ∧ z1 ≤ z̄ ≤ z1 + 𝛿z}.

0 =∫
𝛯̄w

∇̄ ⋅ q̄wdV̄ + ∫
𝛯̄b

∇̄ ⋅ q̄bdV̄ = 2𝜋 ∫
z1+𝛿z

z1

(1 − d̄)q̄w ⋅ 𝝂||r̄=1−d̄dz̄

+ 2𝜋 ∫
1−d̄

0

(
q̄w,z̄

||z̄=z1+𝛿z − q̄w,z̄
||z̄=z1

)
r̄dr̄ − 2𝜋 ∫

z1+𝛿z

z1

[
(1 − d̄)q̄b ⋅ 𝝂

||r̄=1−d̄ + q̄b ⋅ 𝝂
||r̄=1

]
dz̄

+ 2𝜋 ∫
1

1−d̄

(
q̄b,z̄

||z̄=z1+𝛿z − q̄b,z̄
||z̄=z1

)
r̄dr̄.

∫
1−d̄

0

(
q̄w,z̄

||z̄=z1+𝛿z − q̄w,z̄
||z̄=z1

)
r̄dr̄ + ∫

1

1−d̄

(
q̄b,z̄

||z̄=z1+𝛿z − q̄b,z̄
||z̄=z1

)
r̄dr̄ = 0.

𝜕z̄⟨q̄⟩ = 𝜕z̄⟨q̄w⟩(z̄, t̄) + 𝜕z̄⟨q̄b⟩(z̄, t̄) = 0

(42a,b,c)𝜕r̄(r̄q̄w,r̄,0)∕r̄ + 𝜕z̄q̄w,z̄,0 = 0, 𝜕r̄ p̄w,0 = 0, 𝜇̄𝜕r̄(r̄𝜕r̄ q̄w,z̄,0)∕r̄ = 𝜕z̄p̄w,0.

(43a,b,c)
𝜕r̄(r̄q̄b,r̄,0)∕r̄ + 𝜕z̄q̄b,z̄,0 = 0, 𝜕r̄ p̄b,0 = 0, 𝜇̄𝜕r̄(r̄𝜕r̄ q̄b,z̄,0)∕(r̄𝜃̄w) − 𝜇̄q̄b,z̄,0∕k̄ = 𝜕z̄p̄b,0.
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From (43b), we conclude that p̄b,0 also does not depend on the r̄ coordinate. Since neither 
p̄w,0 nor p̄b,0 depend on the ̄r coordinate and from the lowest order terms in (20), we have that 
p̄w,0 = p̄b,0 at the biofilm–water interface, and we obtain that p̄w,0(z̄, t̄) = p̄b,0(z̄, t̄) = p̄0(z̄, t̄) . 
We turn our attention to Eqs. (42c) and (43c). It is possible to find solutions for qw,z̄,0 and 
qb,z̄,0 integrating twice with respect to r̄ both equations and in addition using the symmetry, 
interface and boundary conditions (21–23). After integration, we get

where 𝜉 = i

√
𝜃̄w∕k̄ , i is the imaginary number and J

𝜈
(z̄) and Y

𝜈
(z̄) are the Bessel functions 

of order � of first and second kind, respectively (see Olver 2012). The Bessel functions 
appear naturally when solving elliptic equations in cylindrical coordinates and are widely 
used in various areas such as nuclear physics, acoustics and hydrodynamics (Korenev 
2002). The coefficients appearing in (44) are

where w = 1 − d̄0 . We remark that most of the mathematical commercial software includes 
Bessel functions; therefore, it is easy to use the above expression. Although the Bessel 
functions are evaluated with complex numbers, both fluxes qw,z̄,0 and qb,z̄,0 are real numbers.

To obtain the water velocity defined in (41), we integrate (44) as follows

This gives the Darcy’s law ⟨q̄⟩ = −𝜅T (d̄0)𝜕z̄p0∕𝜇̄ , where 𝜅T (d̄0) is the effective permeability 
given by

which changes according to the biofilm height ( w = 1 − d̄0).
The growth velocity potential equations (29) and (30) for the lower-order terms in � 

are

where the boundary conditions for the interface (31) become 𝛷̄0 = 0 and wall (32) becomes 
𝜕r̄𝛷̄0 = 0.

(44a,b)q̄w,z̄,0 = (r̄2∕4 + E)𝜕z̄p̄0∕𝜇̄, q̄b,z̄,0 = (FJ0(𝜉r̄) + GY0(−𝜉r̄) − k̄)𝜕z̄p̄0∕𝜇̄

E =
2w𝜃̄w[J0(𝜉)Y0(−𝜉w) − J0(𝜉w)Y0(−𝜉)] + 𝜉k̄[J0(𝜉w)Y1(−𝜉w) + Y0(−𝜉w)J1(𝜉w)]

4[𝜉J0(𝜉)Y1(−𝜉w) + 𝜉Y0(−𝜉)J1(𝜉w)]

−
𝜉(4k̄ + w2)[J0(𝜉)Y1(−𝜉w) + Y0(−𝜉)J1(𝜉w)]

4[𝜉J0(𝜉)Y1(−𝜉w) + 𝜉Y0(−𝜉)J1(𝜉w)]
,

F =
2k̄𝜉Y1(−𝜉w) + w𝜃̄wY0(−𝜉)

2[𝜉J0(𝜉)Y1(−𝜉w) + 𝜉Y0(−𝜉)J1(𝜉w)]
, G =

2k̄𝜉J1(𝜉w) + w𝜃̄wJ0(𝜉)

2[𝜉J0(𝜉)Y1(−𝜉w) + 𝜉Y0(−𝜉)J1(𝜉w)]

⟨q̄⟩ = 𝜕z̄p̄0

𝜋𝜇̄ ∫
2𝜋

0

�
∫

1−d̄0

0

[r̄2∕4 + E]r̄dr̄ + ∫
1

1−d̄0

�
FJ0(r̄𝜉) + GY0(−r̄𝜉) − k̄

�
r̄dr̄

�
d𝜑

= 2{w4∕16 + Ew2∕2 − 𝜉
−1[FY1(−𝜉) − GJ1(𝜉) − FwY1(−w𝜉) + GwJ1(w𝜉)]

− k̄(1 − w2)∕2}𝜕z̄p̄0∕𝜇̄

= − 𝜅T (d̄0)𝜕z̄p0∕𝜇̄.

𝜅T (d̄0) = −
w4

8
− w2E +

2[FY1(−𝜉) − GJ1(𝜉) − FwY1(−w𝜉) + GwJ1(w𝜉)]

𝜉

+ k̄(1 − w2)

(45a,b,c)uref[𝜕r̄(r̄ūr̄,0)∕r̄ + 𝜕z̄ūz̄,0]∕qref = 𝛴̄0, ūr̄,0 = −𝜕r̄𝛷̄0, ūz̄,0 = 0
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In dimensionless form, the volume fraction equations (33–35) are

We focus on biofilms where the biomass components change slightly along the r̄ direction, 
resulting in the approximation 𝜃̄i,0(r̄, z̄, t̄) = 𝜃̄i,0(z̄, t̄) . Using (45c), the lower-order terms in 
(46) are 𝜕t̄𝜃̄i,0 = R̄i,0 − 𝜃̄i,0𝛴̄0.

Integrating (45a) over r̄ ( ̄uz̄,0 = 0 from (45c)), we get an expression for ūr̄,0 which 
cannot fulfill both conditions at the same time: ūr̄,0 = 0 on the wall and ūr̄,0 < ∞ when 
r̄ = 0 . For the channel, the solution is a function such that it fulfills the homogeneous 
Dirichlet condition on the wall and is equal to (qref∕uref)𝛴̄0 when the channel is clogged. 
Then, we consider the following expression for the radial biomass velocity

where the squared dependence on the radius honors the radial geometry, as it is shown for 
the nutrients below.

For the nutrients, integrating (24) and (25) over r̄ and � yields

Interchanging the integration and the differentiation operators, these equations become

The lower-order terms in the equations for the conservation of nutrients (24) and (25) are 
𝜕r̄(r̄𝜕r̄ c̄w,0) = 0 and 𝜕r̄(r̄𝜕r̄ c̄b,0) = 0 , respectively. The interface coupling condition (27) 
becomes c̄w,0 = c̄b,0, while the boundary condition on the wall (28) becomes 𝜕r̄ c̄b,0 = 0 . 
From these equations, we conclude that c̄w,0 and c̄b,0 do not depend on r, yielding 
c̄w,0(z̄, t̄) = c̄b,0(z̄, t̄) = c̄0(z̄, t̄) . Then, using the aforementioned results, the equations for the 
nutrients can be written as

(46)𝜕t̄𝜃̄i + uref(ūr̄𝜕r̄𝜃̄i + ūz̄𝜕z̄𝜃̄i)∕qref = R̄i − 𝜃̄i𝛴̄, i = {e, a, d}.

(47)ūr̄,0 =
qref

uref
𝛴̄0(r̄

2 − 1)

2𝜋 ∫
1−d̄

0

{
𝜕t̄ c̄w −

1

Pe

[
𝜀
−2 1

r̄
𝜕r̄(r̄𝜕r̄ c̄w) + 𝜕

2
z̄
c̄w

]
+

1

r̄
𝜕r̄(r̄q̄w,r̄ c̄w) + 𝜕z̄(q̄w,z̄c̄w)

}
r̄dr̄ = 0,

2𝜋 ∫
1

1−d̄

{
𝜕t̄(𝜃̄wc̄b) −

𝜃̄w

Pe

[
𝜀
−2 1

r̄
𝜕r̄(r̄𝜕r̄ c̄b) + 𝜕

2
z̄
c̄b

]
+

1

r̄
𝜕r̄(r̄q̄b,r̄ c̄b) + 𝜕z̄(q̄b,z̄c̄b)

+𝜇̄n𝜃̄a𝜌̄a

c̄b

k̄n + c̄b

}
r̄dr̄ = 0.

𝜕t̄

(
∫

1−d̄

0

c̄wr̄dr̄

)
+ 𝜕t̄ d̄(r̄c̄w)

||r̄=1−d̄ − 𝜕z̄

[
∫

1−d̄

0

(
1

Pe
𝜕z̄c̄w − q̄w,z̄c̄w

)
r̄dr̄

]

− 𝜕z̄d̄
(
1

Pe
r̄𝜕z̄c̄w − r̄q̄w,z̄c̄w

)||||r̄=1−d̄ −
(

1

𝜀
2Pe

r̄𝜕r̄ c̄w − r̄q̄w,r̄ c̄w

)||||r̄=1−d̄ = 0,

𝜕t̄

(
∫

1

1−d̄

𝜃̄wc̄br̄dr̄

)
− 𝜃̄w𝜕t̄ d̄(c̄br̄)

||r̄=1−d̄ − 𝜕z̄

[
∫

1

1−d̄

(
𝜃̄w

Pe
𝜕z̄c̄b − q̄b,z̄c̄b

)
r̄dr̄

]

+ 𝜕z̄d̄

(
𝜃̄w

Pe
r̄𝜕z̄c̄b − r̄q̄b,z̄c̄b

)||||r̄=1−d̄ −
(

𝜃̄w

𝜀
2Pe

r̄𝜕r̄ c̄b − r̄q̄b,r̄ c̄b

)||||r̄=1
+

(
𝜃̄w

𝜀
2Pe

r̄𝜕r̄ c̄b − r̄q̄b,r̄ c̄b

)||||r̄=1−d̄ + 𝜇̄n𝜌̄a𝜃̄a ∫
1

1−d̄

c̄b

k̄n + c̄b
r̄dr̄ = 0.
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where we use the interface condition (26). Then, adding both previous equations we finally 
obtain

where we define 𝛩T (d̄0, 𝜃̄w) as

We focus on the water–biofilm interface (38):

Following van Noorden et al. (2010), we regularize the formulation of (48). First, we let H0 
and H1 be the set-valued Heaviside graphs

where we set H0(d̄ = 0) = 0 and H1(d̄ = 1) = 0 . Observe that this choice guarantees that 
𝜕t̄ d̄ never becomes negative whenever d̄ = 0 and positive when d̄ = 1 . Then, (48) is written 
as

For practical calculations, the multi-valued functions are replaced by regularized Heaviside 
functions, defined by

where � is a small regularization parameter. Then, we can write (50) as

1

2
𝜕t̄[c̄0(1 − d̄0)

2] − 𝜕z̄

[
(1 − d̄0)

2

2Pe
𝜕z̄c̄0

]
+ 𝜕z̄

(
c̄0 ∫

1−d̄0

0

q̄w,r̄,0r̄dr̄

)
= 0,

1

2
𝜕t̄{𝜃̄wc̄0[1 − (1 − d̄0)

2]} − 𝜕z̄

[
1 − (1 − d̄0)

2

2Pe
𝜃̄w𝜕z̄c̄0

]
+ 𝜕z̄

(
c̄0 ∫

1

1−d̄0

q̄b,z̄,0r̄dr̄

)

+
1 − (1 − d̄0)

2

2
𝜇̄n𝜌̄a𝜃̄a,0

c̄0

k̄n + c̄0
= 0

𝜕t̄[c̄0𝛩T (d̄0, 𝜃̄w)] + 𝜕z̄

�
c̄0⟨q̄⟩ −

𝛩T (d̄0, 𝜃̄w)

Pe
𝜕z̄c̄0

�
= −[1 − (1 − d̄0)

2]𝜇̄n𝜃̄a,0𝜌̄a

c̄0

k̄n + c̄0

𝛩T (d̄0, 𝜃̄w) = (1 − d̄0)
2 + 𝜃̄w[1 − (1 − d̄0)

2].

(48)𝜕t̄ d̄ =

⎧⎪⎨⎪⎩

f −(uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref), d̄ = 1,

uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref −

�
1 + (𝜀𝜕z̄d̄)

2
𝜀k̄strS̄, 0 < d̄ < 1,

0, d̄ = 0.

(49)H0(d̄) =

⎧⎪⎨⎪⎩

{0}, d̄ < 0,

[0, 1], d̄ = 0,

{1}, d̄ > 0,

H1(d̄) =

⎧⎪⎨⎪⎩

{1}, d̄ < 1,

[0, 1], d̄ = 1,

{0}, d̄ > 1,

(50)

𝜕t̄ d̄ ∈ H0(d̄)H1(d̄)

{
uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref −

√
1 + (𝜀𝜕z̄d̄)

2
𝜀k̄str𝜇̄||(𝕀 − 𝝂𝝂

T )(𝕄̄ + 𝕄̄
T )𝝂||

}

+ [1 − H1(d̄)]f
−(uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref).

(51)H
𝛿,0(d̄) =

⎧⎪⎨⎪⎩

0, d̄ < 0,

d̄∕𝛿, d̄ ∈ [0, 𝛿],

1, d̄ > 𝛿,

H
𝛿,1(d̄) =

⎧⎪⎨⎪⎩

1, d̄ < 1,

(1 + 𝛿 − d̄)∕𝛿, d̄ ∈ [1, 1 + 𝛿],

0, d̄ > 1 + 𝛿,
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Using (39–40, 45c, 47) for the lower-order terms, we have

Using (44a), we obtain

The original model is obtained when passing � to zero (van Duijn and Pop 2004), obtaining 
finally

5 � Discussion and Comparison with Other Biofilm Models

The extension from a channel (tube) to a porous medium is done by considering a stack 
of channels (tubes) of void space and solid material (van Noorden et al. 2010), where we 
denote by � the porosity of the porous medium. As Steefel and Lichtner (1994) and van 
Noorden et  al. (2010), we assume that all tubes have the same diameter and are equally 
separated. Therefore, multiplying the upscaled model equations by � , the corresponding 
core-scale mathematical models are obtained. Table 1 shows the core-scale equations of 
the van Noorden model (van Noorden et al. 2010), the porous medium formed by chan-
nels and the porous medium formed by tubes, where v = �q is the Darcy velocity. The 
van Noorden model accounts for water flux, transport of nutrients and bacteria, bacterial 
attachment, detachment of biomass due to erosion, growth of biomass due to nutrient con-
sumption and death of bacteria. In our model, we do not include transport of bacteria and 
bacterial attachment. The reason is because the pore-scale model was built based on labo-
ratory experiments, where only nutrients were continuously injected after inoculation of 
bacteria and biofilm re-attachment was not observed (Landa-Marbán et al. 2019). For the 
details of the upscaling on the thin channel domain, see “Appendix.”

From Table 1, we observe that for the Darcy flow, the permeability is different for the 
three models. A discussion of these relations is given below in this section. We observe that 
the channel and tube models include the effects of the biofilm porosity and thickness on the 
transport of nutrients. For the van Noorden model, the nutrient consumption depends on 
the biofilm height while for the channel and tube model, the nutrient consumption also 
depends on the volume fraction of active bacteria. Comparing the tube and channel model, 
we observe a different function of the biofilm height, due to the cylindrical geometry. For 
the biofilm height, the difference between the van Noorden and channel model is on the � 
term, where for the van Noorden model the total sum of reactions accounts for bacterial 
reproduction and decay, while in the channel structure it also accounts for EPS. Finally, for 

(52)

𝜕t̄ d̄ =H
𝛿,0(d̄)H𝛿,1(d̄)uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref + [1 − H

𝛿,1(d̄)]f
−(uref(−ūr̄ − 𝜕z̄d̄ūz̄)∕qref)

− H
𝛿,0(d̄)H𝛿,1(d̄)

√
1 + (𝜀𝜕z̄d̄)

2
𝜀k̄str𝜇̄||(𝕀 − 𝝂𝝂

T )(𝕄̄ + 𝕄̄
T )𝝂||.

(53)
𝜕t̄ d̄0 = H

𝛿,0(d̄0)H𝛿,1(d̄0){[1 − (1 − d̄0)
2]𝛴̄0 − k̄str𝜇̄|𝜕r̄ q̄w,z̄,0|} + [1 − H

𝛿,1(d̄0)]f
−(𝛴̄0).

𝜕t̄ d̄0 = H
𝛿,0(d̄0)H𝛿,1(d̄0){[1 − (1 − d̄0)

2]𝛴̄0 − k̄str(1 − d̄0)|𝜕z̄p̄0|∕2} + [1 − H
𝛿,1(d̄0)]f

−(𝛴̄0).

𝜕t̄ d̄0 =

⎧⎪⎨⎪⎩

f −(𝛴̄0), d̄0 = 1,

−k̄str(1 − d̄0)�𝜕z̄p̄0�∕2 + [1 − (1 − d̄0)
2]𝛴̄0, 0 < d̄0 < 1,

0, d̄0 = 0.
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the bacterial, EPS and dead bacterial volume fractions, the model equations are the same 
for the channel and tube models, while for the van Noorden model the active bacterial vol-
ume fraction is constant with value 1.

In van Noorden et al. (2010), the authors compared their upscaled model with a well-
known macroscale model by Taylor and Jaffe (1990), where a mathematical model for an 
impermeable single-species biofilm including flow, transport and reactions is built. We 
compare the two derived upscaled models with a macroscale model by Chen-Charpentier 
et al. (2009), where a mathematical model for impermeable multi-species biofilm including 
water flow, transport of nutrients and reactions is built (Table 2). In this model, the authors 
considered a biofilm formed by two bacterial species which consume nutrients, reproduce 
and die. The porosity of the core decreases as the biofilm grows which decreases the per-
meability of the core.

In Table 2, K is the permeability, �B , �B , kB , �K , �K and kK are the volume fractions, 
maximum rates of nutrient utilization and Monod-half nutrient velocity coefficients of the 
contaminant-degrading microbe and the strong biofilm-forming microbe, respectively, �O 
and KO the clean surface porosity and initial permeability, respectively, and � an experi-
mentally determined parameter. In Chen-Charpentier et al. (2009), the porosity decreases 
as the component concentrations increase. In our models, the porosity in the porous 
medium decreases as the biofilm height increases. However, in Chen-Charpentier et  al. 
(2009) the authors do not include the detachment effects. The permeability in both tube 

Table 1   Core-scale equations for the achannel, btube and cvan Noorden models

Name Upscaled equation

Darcya v = −��C(d)�zp∕� , �zv = 0

Darcyb v = −��T (d)�zp∕� , �zv = 0

Darcyc v = −�(1 − d)3�zp∕3� , �zv = 0

Nutrientsa �t[�c�C] + �z[cv − ��C�zc∕Pe] = −d��a�a�nc∕(kn + c)

Nutrientsb �t[�c�T ] + �z[cv − ��T�zc∕Pe] = −[1 − (1 − d)2]��a�a�nc∕(kn + c)

Nutrientsc �t(�c) + �z(cv − ��zc∕Pe) = −d��a�nc∕(kn + c)

Heighta

𝜕td =

⎧⎪⎨⎪⎩

f −(𝛴), d = 1

−kstr(1 − d)�𝜕zp� + d𝛴, 0 < d < 1

0, d = 0

Heightb

𝜕td =

⎧⎪⎨⎪⎩

f −(𝛴), d = 1

−kstr(1 − d)�𝜕zp�∕2 + [1 − (1 − d)2]𝛴, 0 < d < 1

0, d = 0

Heightc

𝜕td =

⎧⎪⎨⎪⎩

f −(𝛴), d = 1

−kstr(1 − d)�𝜕zp� + d𝛴, 0 < d < 1

0, d = 0

Bacteriaa,b �t�a = Ya�n�ac∕(kn + c) − kres�a − �a�

EPSa,b
�t�e = (�a∕�e)Ye�n�ac∕(kn + c) − �e�

Deada,b �t�d = �akres�a∕�d − �d�

Reactionsa,b � = (1 − �w)
−1[(Ye�a∕�e + Ya)�a�nc∕(kn + c) + (�a∕�d − 1)kres�a]

Reactionsc � = Ya�nc∕(kn + c) − kres
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and channel models has different functions as a result of the different geometries and also 
because of the water flow inside the biofilm. Notice that there is a quartic function of the 
biofilm height in one of the permeability terms in the porous medium formed by tubes, as 
proposed in Suchomel et al. (1998) and Mostafa and van Geel (2007). Unlike the equation 
for the transport of nutrients in the Chen-Charpentier et al. (2009) model, the channel and 
tube models include the effects of the biofilm porosity and thickness.

Porosity–permeability relations for evolving pore space is an active research field (see 
Hommel et al. (2018) for a review of these relations and Schulz (2019b) for a recent study 
providing porosity–permeability relations depending only on the underlying pore geom-
etry). Thullner et al. (2002) present the following relation which includes the biofilm per-
meability k

where �crit is the critical porosity at which the permeability becomes zero. Vandevivere 
(1995) proposed the following relation of permeability and porosity for a plugging model

where B is a relative porosity given by B = 1 − �∕�O and Bc is the critical point where 
biofilm begins to detach and form plugs. Figure 3 shows our derived porosity–permeabil-
ity relations, the one derived by van Noorden and the two proposed relations by Thullner 
and Vandevivere for different values of biofilm permeability. The values of parameters are 
�crit = 0 , � = 1.76 , Bc = 0.1 (Hommel et al. 2018) and �w = 0.1 . For a biofilm with high 
permeability k = 10−1 , we observe a faster reduction in permeability for Vandevivere. As 
the biofilm permeability k decreases, we observe that the van Noorden et al. (2010) model 
represents the limit case in the channel model for impermeable biofilms. In general, we 
observe different behaviors of the relations as the porosity decreases.

We perform numerical simulations considering both effective models (channel and tube) 
to compare the biofilm height over time. We consider two different porous media of length 
L = 0.1 m: The first one has pores formed by thin channels of height 2l = 0.2 mm and the 
second ones with tubes of diameter 2� = 0.2 mm. For the inlet boundary, we set pi = 2 Pa. 
The injected nutrient concentration is ci = 1 kg m−3 . The porosity � is set to 0.4. Recalling 
that biofilms are mostly composed by water, we set the water volume fraction in the biofilm 
equal to 90%. We set the initial EPS and active bacterial volume fraction equal to 5%; thus, 

(54)K = KO

[(
� − �crit

�O − �crit

)
�

+ k

]
1

1 + k

(55)

K = KO[exp(−0.5(B∕Bc)
2)]

(
�

�O

)2

+ [1 − exp(−0.5(B∕Bc)
2)]

k

1 − [(1 − k∕KO)�∕�O]

Table 2   Core-scale equations for 
the model comparison (Chen-
Charpentier et al. 2009)

Name Equation

Darcy v = −K�zp, �zv = 0

Nutrients �tc + �z(cv − D�zc) = R

Porosity � = �O(1 − �B − �K )

Permeability K = KO(�∕�O)
�

Component B �t�B = YB�B�Bc∕(kB + c) − kres�B

Component K �t�K = YK�K�Kc∕(kK + c) − kres�K

Reactions R = −�B�Bc∕(kB + c) − �K�Kc∕(kK + c)
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the initial dead bacterial volume fraction is 0. In Table 3, the values of parameters for the 
numerical simulations are presented.

We implement the model equations in the commercial software COMSOL Multiphys-
ics (COMSOL 5.2a, Comsol Inc, Burlington, MA, www.comsol.com). A decoupled finite 
element algorithm is used to solve the mathematical model equations. First, we solve for 
the pressure and concentration. Then, we compute the volume fractions and biofilm height. 
We iterate between both steps until the difference between successive values of the solution 
drops below a given tolerance � . We perform numerical simulations and we compare the 
results of the two upscaled mathematical models.

Fig. 3   Ratio of initial to reduce 
permeability of different poros-
ity–permeability relations for two 
different biofilm permeability 
values k 
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Table 3   Model parameters for the numerical studies

Name Description Value References

� Water viscosity 10−3 Pa s Well known
�w Water density 103 kg m−3 Well known
�n Maximum growth rate 1.1 × 10−5 s−1 Alpkvist and Klapper (2007)
kn Monod-half velocity 10−4 kg m−3 Alpkvist and Klapper (2007)
�e EPS density 60 kg m−3 Alpkvist and Klapper (2007)
�a Bacterial density 60 kg m−3 Alpkvist and Klapper (2007)
�d Dead bacterial density 60 kg m−3 Alpkvist and Klapper (2007)
D Nutrient diffusion 1.7 × 10−9 m2 s−1 Duddu et al. (2009)
Ya Bacterial growth yield 0.553 Duddu et al. (2009)
Ye EPS growth yield 0.447 Duddu et al. (2009)
kres Bacterial decay rate 3.5 × 10−6 s−1 Duddu et al. (2009)
k Biofilm permeability 10−9 m2 Deng et al. (2013)
kstr Stress coefficient 2.6 × 10−10 m (Pa s)−1 Landa-Marbán et al. (2019)
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To check if there is a correspondence between the pore-scale and upscaled models as � 
is close to zero, numerical simulations can be done for both models to compare the average 
solution of one of the variables. Figure 4 compares the upscaled model with the pore-scale 
model in the channel for different values of � , where the percentage of biofilm on the whole 
domain is plotted over time. We called this coverage area a and for the channel and tube is 
given by

respectively.
For all numerical simulations, we fix the value of the height of the channel 2l, where we 

set the initial biofilm height as d = l∕5 . Then, the length of the channel is changed accord-
ingly to match the value of � . We observe that the coverage area in the pore-scale simula-
tions approaches the one computed from the upscaled model as � gets smaller.

Figure  5a shows the biofilm height along the length for both porous media for an 
injected nutrient concentration of ci = 0.1 kg m−3 (ci∕kn = 103) . Initially, the left part 
( 0 < z < L∕2 ) has a biofilm height of d = l∕2 ( d = �∕2 for the tubular pores) while the 
right part ( L > z > L∕2 ) has a height of d = l∕4 ( d = �∕4 for the tubular pores). This initial 
condition is given to study the biofilm development after clogging. We observe that the 
biofilm keeps growing even though the left part of the pore is clogged. This result cannot 
be observed using the van Noorden model because the water flux stops once the channel is 
clogged. Figure 5b shows the biofilm coverage area for different ratios of injected nutrients 
and Monod-half nutrient velocity coefficient. Initially, the biofilm height is d = 0.1l for the 
tubular pores and d = 0.19l for the channel pores. This initial condition is given to study 
the biofilm development in both porous media for the same initial biofilm coverage area. 
We observe that the biofilm grows faster in the tubes when we inject enough nutrients and 

(56)aC(t) =

⎡
⎢⎢⎣
1

lL

L

∫
0

d(z, t)dz

⎤
⎥⎥⎦
100, aT (t) =

⎡
⎢⎢⎣
1 −

1

�
2L

L

∫
0

(� − d(z, t))2dz

⎤
⎥⎥⎦
100,

Fig. 4   Percentage of biofilm 
coverage area over time for the 
upscaled model and for decreas-
ing values of epsilon
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it grows faster in the channels when we lower the injected nutrient concentration. To give 
a physical explanation of this result, let us consider the case when the biofilm thickness is 
half value of the aperture ( d = 0.5 ). Then, 50% of the cross-sectional area is biofilm for the 
channel while 75% for the tube. This implies that in the tube, the biofilm needs to consume 
more nutrients to have this thickness in comparison with the channel.

6 � Conclusions

In this work, we upscale a mathematical model for permeable biofilm considering a thin chan-
nel and tubular pore geometries. The upscaled models differ mainly in the effective perme-
ability terms which are functions of the biofilm height. As � gets smaller, we obtain that the 
percentage of biofilm coverage area over time predicted by the pore-scale model approaches 
the one obtained using the effective equations, which shows a correspondence between both 
models. After comparing with the model proposed by van Noorden et al. (2010), it is possible 
to derive this model as a particular case of the channel model. The derived upscaled models 
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Fig. 5   Biofilm height (a) and coverage area (b) in the porous medium formed by channels and tubes

Fig. 6   Pore of length L, height 2l and width w in Cartesian coordinates
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and the Chen-Charpentier et al. (2009) model are very similar. In this manner, the upscaling 
provides additional support for this model. The numerical simulations show a faster increase 
in coverage area in the porous medium formed by tubes than the one formed by channels when 
a large nutrient concentration is injected ( ci∕kn = 104 ). These two upscaled models could be 
used to model porous media where the geometries of the fractures are similar to thin channels 
or tubes. To validate the core-scale upscaled models, designed laboratory experiments are nec-
essary which is the subject of our future research.
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Appendix: Upscaling of the Mathematical Model in a Thin Channel

In Sect. 4, we show with details how to obtain the upscaled model equations in a tube. Follow-
ing the same ideas, in this “Appendix” we show how to upscale the model equations in a chan-
nel. We consider a thin channel with height 2l, width w and length L. When the width is much 
smaller than the height, experiments show that the growing of the biofilm occurs only in the 
upper and lower walls along the channel (Liu et al. 2019). Therefore, we can model the bio-
film in the thin channel in a two-dimensional domain. Figure 6 shows the different domains, 
boundaries and interface in the rectangular geometry.

To achieve non-dimensional quantities, we use the reference values defined in Sect. 4 ( tref , 
Lref , qref , uref , pref and cref ), where we consider the height of the channel lref instead of the 
radius of the tube �ref . We define dimensionless coordinates and time as ỹ = y∕lref, z̃ = z∕Lref 
and t̃ = t∕tref . The thin channel is characterized by the ratio of its height to the length 
� = lref∕Lref . All dimensionless variables and quantities are analogously defined as in Sect. 3, 
where we use lref instead of �ref and we denote the dimensionless variables with ̃ instead of ̄.

The dimensionless system of equations for the water flux is given by

(57)𝜕ỹq̃w,ỹ + 𝜕z̃q̃w,z̃ = 0 in 𝛺̃C,w(t̃),

(58)𝜇̃(𝜖2𝜕2
z̃
q̃w,ỹ + 𝜕

2
ỹ
q̃w,ỹ) = 𝜖

−2
𝜕ỹp̃w in 𝛺̃C,w(t̃),

(59)𝜇̃(𝜖2𝜕2
z̃
q̃w,z̃ + 𝜕

2
ỹ
q̃w,z̃) = 𝜕z̃p̃w in 𝛺̃C,w(t̃),

(60)𝜕ỹq̃b,ỹ + 𝜕z̃q̃b,z̃ = 0 in 𝛺̃C,b(t̃),

http://creativecommons.org/licenses/by/4.0/
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The equations for the nutrients become

where R̃b = −𝜇̃n𝜃a𝜌̃ac̃b∕(k̃n + c̃b).
The dimensionless equations for the growth velocity potential are given by

(61)
𝜇̃

𝜃w

(𝜖2𝜕2
z̃
q̃b,ỹ + 𝜕

2
ỹ
q̃b,ỹ) = 𝜖

−2
𝜕ỹp̃b +

𝜇̃

k̃
q̃b,ỹ in 𝛺̃C,b(t̃),

(62)
𝜇̃

𝜃w

(𝜖2𝜕2
z̃
q̃b,z̃ + 𝜕

2
ỹ
q̃b,z̃) = 𝜕z̃p̃b +

𝜇̃

k̃
q̃b,z̃ in 𝛺̃C,b(t̃),

(63)
2𝜇̄𝜕ȳq̄w,ȳ − 𝜀

−2p̄w − 2
𝜇̄

𝜃̄w

𝜕ȳq̄b,ȳ + 𝜀
−2p̄b = 𝜕z̄d̄

[
𝜇̄

𝜃̄w

(
𝜕ȳq̄b,z̄ + 𝜀

2
𝜕z̄q̄b,ȳ

)

−𝜇̄
(
𝜕ȳq̄w,z̄ + 𝜀

2
𝜕z̄q̄w,ȳ

)]
at 𝛤C,wb(t̃),

(64)

𝜇̄

(
𝜕ȳq̄w,z̄ + 𝜀

2
𝜕z̄q̄w,ȳ

)
= 𝜕z̄d̄

(
2𝜀2

𝜇̄

𝜃̄w

𝜕z̄q̄b,z̄ − p̄b

−2𝜀2𝜇̄𝜕z̄q̄w,z̄ + p̄w
)

+
𝜇̄

𝜃̄w

(
𝜕ȳq̄b,z̄ + 𝜀

2
𝜕z̄q̄b,ȳ

)
at 𝛤C,wb(t̃),

(65)(q̃w,ỹ, q̃w,z̃) = (q̃b,ỹ, q̃b,z̃) at 𝛤C,wb(t̃),

(66)(q̃b,ỹ, q̃b,z̃) = (0, 0) on 𝛤C,s.

(67)𝜕t̃ c̃w −
1

Pe
(𝜖−2𝜕2

ỹ
c̃w + 𝜕

2
z̃
c̃w) + 𝜕ỹ(q̃w,ỹc̃w) + 𝜕z̃(q̃w,z̃c̃w) = 0 in 𝛺̃C,w(t̃),

(68)
𝜇̄

(
𝜕ȳq̄w,z̄ + 𝜀

2
𝜕z̄q̄w,ȳ

)
=𝜕z̄d̄

(
2𝜀2

𝜇̄

𝜃̄w

𝜕z̄q̄b,z̄ − p̄b − 2𝜀2𝜇̄𝜕z̄q̄w,z̄ + p̄w

)

+
𝜇̄

𝜃̄w

(
𝜕ȳq̄b,z̄ + 𝜀

2
𝜕z̄q̄b,ȳ

)
at 𝛤C,wb(t̃),

(69)
−

1

Pe𝜖2
(𝜕ỹc̃w − 𝜃w𝜕ỹc̃b) − (c̃bq̃b,ỹ − c̃wq̃w,ỹ) + 𝜕t̃ d̃(𝜃wc̃b − c̃w)

+
𝜕z̃d̃

Pe
(𝜕z̃c̃w − 𝜃w𝜕z̃c̃b) + 𝜕z̃d̃(c̃bq̃b,z̃ − c̃wq̃w,z̃) = 0 at 𝛤C,wb(t̃),

(70)c̃b = c̃w at 𝛤C,wb(t̃),

(71)𝜕ỹc̃b = 0 on 𝛤C,s
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where 𝛴̃ = (1 − 𝜃w)
−1[(Ye𝜌̃a∕𝜌̃e + Ya)𝜇̃n𝜃ac̃b∕(k̃n + c̃b) + (𝜌̃a∕𝜌̃d − 1)k̃res𝜃a].

The equations for the biomass components become

For the biofilm height, we have

where

and

We define the average water velocity ⟨q̃⟩ as the following integral

(72)
uref

qref
(𝜕ỹũỹ + 𝜕z̃ũz̃) = 𝛴̃ in 𝛺̃C,b(t̃),

(73)(ũỹ, ũz̃) = −(𝜕ỹ𝛷̃, 𝜖2𝜕z̃𝛷̃) in 𝛺̃C,b(t̃),

(74)𝛷̃ = 0 at 𝛤C,wb(t̃),

(75)𝜕ỹ𝛷̃ = 0 on 𝛤C,s

(76)𝜕t̃𝜃e +
uref

qref
(ũỹ𝜕z̃𝜃e + ũz̃𝜕ỹ𝜃e) = Ye𝜇̃n𝜃a

𝜌̃a

𝜌̃e

c̃b

k̃n + c̃b
− 𝜃e𝛴̃ in 𝛺̃C,b(t̃),

(77)𝜕t̃𝜃a +
uref

qref
(ũỹ𝜕z̃𝜃a + ũz̃𝜕ỹ𝜃a) = Ya𝜇̃n𝜃a

c̃b

k̃n + c̃b
− k̃res𝜃a − 𝜃a𝛴̃ in 𝛺̃C,b(t̃),

(78)𝜕t̃𝜃d +
uref

qref
(ũỹ𝜕z̃𝜃d + ũz̃𝜕ỹ𝜃d) = k̃res

𝜌̃a

𝜌̃d

𝜃a − 𝜃d𝛴̃ in 𝛺̃C,b(t̃),

(79)− 𝜕ỹ𝜃i + 𝜖𝜕z̃d̃𝜕z̃𝜃i = 0 i ∈ {e, a, d} at 𝛤C,wb(t̃),

(80)𝜕ỹ𝜃i = 0 i ∈ {e, a, d} on 𝛤C,s.

(81)

𝜕t̃ d̃ =

⎧⎪⎨⎪⎩

f −((ũỹ − 𝜕z̃d̃ũz̃)uref∕qref), d̃ = 1

−

�
1 + (𝜖𝜕z̃d̃)

2
𝜖k̃strS̃ + (ũỹ − 𝜕z̃d̃ũz̃)uref∕qref, 0 < d̃ < 1

0, d̃ = 0

at 𝛤C,wb(t̃)

(82)S̃ = ||(𝕀 − 𝝂𝝂
T )𝜇̃(𝕄̃ + 𝕄̃

T )𝝂𝜖|| at 𝛤C,wb(t̃)

(83)𝕄̃ =

(
𝜕ỹq̃w,ỹ 𝜖𝜕z̃q̃w,ỹ

𝜖
−1
𝜕ỹq̃w,z̃ 𝜕z̃q̃w,z̃

)
at 𝛤C,wb(t̃).

(84)

⟨q̃⟩(z̃, t̃) = ⟨q̃w⟩(z̃, t̃) + ⟨q̃b⟩(z̃, t̃) = 1

2

�
∫

1−d̃0

−(1−d̃0)

q̃w,z̃,0dỹ + ∫
−(1−d̃0)

−1

q̃b,z̃,0dỹ + ∫
1

1−d̃0

q̃b,z̃,0dỹ

�
.
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We define the following space regions in the channel

Integrating (57) and (60) over the previous regions and using the Gauss’s theorem yield

Recalling the no-slip condition for the water flux on the wall (66) and the continuity of 
fluxes at the interface (65), the previous equation becomes

Dividing the previous equation by �z and letting �z approach zero, we obtain for the lowest 
order terms in �

where we use the definition of the water velocity ⟨q̃⟩ (84).
The lowest order terms in the Stokes model (57–59) lead to

From (85b), we conclude that p̃w,0 does not depend on the ỹ coordinate. Analogously, for 
the Brinkman model (60–62), the lower-order terms in � give

From (86b), we obtain that p̃b,0 does not depend on the ỹ coordinate and from the low-
est order terms in (63), we conclude that p̃w,0(z̃, t̃) = p̃b,0(z̃, t̃) = p̃0(z̃, t̃) . Integrating twice 
(85) and (86) with respect to ỹ and using the symmetry, interface and boundary conditions 
(64–66)

𝛯̃u ={x̃| 1 − d̃ ≤ ỹ ≤ 1 ∧ z1 ≤ z̃ ≤ z1 + 𝛿z},

𝛯̃m ={x̃| |ỹ| ≤ 1 − d̃ ∧ z1 ≤ z̃ ≤ z1 + 𝛿z},

𝛯̃l ={x̃| − 1 ≤ ỹ ≤ −(1 − d̃) ∧ z1 ≤ z̃ ≤ z1 + 𝛿z}.

0 =∫
𝛯̃u

∇̃ ⋅ q̃bdṼ + ∫
𝛯̃m

∇̃ ⋅ q̃wdṼ + ∫
𝛯̃l

∇̃ ⋅ q̃bdṼ

=2∫
z1+𝛿z

z1

q̃w ⋅ 𝝂||ỹ=1−d̃dz̃ + ∫
1−d̃

−(1−d̃)

(
q̃w,z̃

||z̃=z1+𝛿z − q̃w,z̃
||z̃=z1

)
dỹ

− ∫
z1+𝛿z

z1

(
q̃b ⋅ 𝝂

||ỹ=−(1−d̃) + q̃b ⋅ 𝝂
||ỹ=−1

)
dz̃ + ∫

−(1−d̃)

−1

(
q̃b,z̃

||z̃=z1+𝛿z − q̃b,z̃
||z̃=z1

)
dỹ

− ∫
z1+𝛿z

z1

(
q̃b ⋅ 𝝂

||ỹ=1 + q̃b ⋅ 𝝂
||ỹ=1−d̃

)
dz̃ + ∫

1

1−d̃

(
q̃b,z̃

||z̃=z1+𝛿z − q̃b,z̃
||z̃=z1

)
dỹ.

∫
1−d̃

−(1−d̃)

(
q̃w,z̃

||z̃=z1+𝛿z − q̃w,z̃
||z̃=z1

)
dỹ + ∫

−(1−d̃)

−1

(
q̃b,z̃

||z̃=z1+𝛿z − q̃b,z̃
||z̃=z1

)
dỹ

+ ∫
1

1−d̃

(
q̃b,z̃

||z̃=z1+𝛿z − q̃b,z̃
||z̃=z1

)
dỹ = 0.

𝜕z̃⟨q̃⟩ = 𝜕z̃⟨q̃w⟩(z̃, t̃) + 𝜕z̃⟨q̃b⟩(z̃, t̃) = 0

(85a,b,c)𝜕ỹq̃w,ỹ,0 + 𝜕z̃q̃w,z̃,0 = 0, 𝜕ỹp̃w,0 = 0, 𝜇̃𝜕
2
ỹ
q̃w,z̃,0 = 𝜕z̃p̃w,0.

(86a,b,c)
𝜕ỹq̃b,ỹ,0 + 𝜕z̃q̃b,z̃,0 = 0, 𝜕ỹp̃b,0 = 0, 𝜇̃𝜕

2
y
q̃b,z̃,0∕𝜃w − 𝜇̃q̃b,z̃,0∕k̃ = 𝜕z̃p̃b,0.

(87a,b)q̃w,z̃,0 =

(
ỹ2

2
+ V

)
𝜕z̃p̃0

𝜇̃

, q̃b,z̃,0 =
(
Weỹ𝜆 + Xe−ỹ𝜆 − k̃

)𝜕z̃p̃0
𝜇̃

,
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where 𝜆 =

√
𝜃w∕k̃ and the coefficients are given by

where h = 1 − d̃0.
To obtain the water velocity defined in (84), we integrate (87) as follows

This is the Darcy’s law ⟨q̃⟩ = −𝜅C(d̃0)𝜕z̃p̃0∕𝜇̃ , where 𝜅C(d̃0) is the effective permeability 
given by

The growth velocity potential equations (72) and (73) for the lower-order terms in � are

where the conditions at the interface (74) become 𝛷̃0 = 0 and wall (75) becomes 𝜕ỹ𝛷̃0 = 0.
In dimensionless form, the volume fraction equations (76–78) are

with i = {e, a, d} . We focus on biofilms where the biomass components change slightly 
along the ỹ direction, resulting in the approximation 𝜃i,0(ỹ, z̃, t̃) = 𝜃i,0(z̃, t̃) . Using (88c), the 
lower-order terms in (89) are

Integrating (88a) over ỹ and using the boundary conditions (74–75), one gets

V = −
(
h2

2
+ k̃)(e−d̃0𝜆 + ed̃0𝜆) −

√
k̃𝜃wh(e

−d̃0𝜆 − ed̃0𝜆) − 2k̃

e−d̃0𝜆 + ed̃0𝜆
,

W =
k̃eh𝜆 −

√
k̃𝜃whe

𝜆

e−d̃0𝜆 + ed̃0𝜆
, X =

k̃e−h𝜆 +

√
k̃𝜃whe

−𝜆

e−d̃0𝜆 + ed̃0𝜆

⟨q̃⟩ =𝜕z̃p̃0

2𝜇̃

�
∫

1−d̃0

−(1−d̃0)

�
ỹ2

2
+ V

�
dỹ + 2∫

−(1−d̃0)

−1

�
Weỹ𝜆 + Xe−ỹ𝜆 − k̃

�
dỹ

�

=

⎡⎢⎢⎢⎣
𝜆
3

6
+ V𝜆 +

We−𝜆
�
ed̃0𝜆 − 1

�
− Xe𝜆

�
e−d̃0𝜆 − 1

�

𝜆

− k̃d̃0

⎤⎥⎥⎥⎦

𝜕z̃p̃0

𝜇̃

= −
𝜅C(d̃0)

𝜇̃

𝜕z̃p̃0.

𝜅C(d̃0) = −
𝜆
3

6
− 𝜆V −

We−𝜆
(
ed̃0𝜆 − 1

)
− Xe𝜆

(
e−d̃0𝜆 − 1

)

𝜆

+ k̃d̃0.

(88)uref(𝜕ỹũỹ,0 + 𝜕z̃ũz̃,0)∕qref = 𝛴̃0, ũỹ,0 = −𝜕ỹ𝛷̃0, ũz̃,0 = 0

(89)𝜕t̃𝜃i + uref(ũỹ𝜕ỹ𝜃i + ũz̃𝜕z̃𝜃i)∕qref = R̃i − 𝜃i𝛴̃

(90)𝜕t̃𝜃i,0 = R̃i,0 − 𝜃i,0𝛴̃0.
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For the nutrients, integrating (67) and (68) yields

Interchanging the integration and the differentiation operators, these equations become

Next, the lower-order terms in the equations for the conservation of nutrients (67–68) are 
𝜕
2
ỹ
c̃w,0 = 0 and 𝜕2

ỹ
c̃b,0 = 0 . The interface coupling condition (70) becomes c̃b,0 = c̃w,0, while 

the boundary condition on the wall (71) becomes 𝜕ỹc̃b,0 = 0 . The symmetry in ỹ implies that 
both nutrient concentrations do not depend on ỹ , resulting in c̃w,0(z̃, t̃) = c̃b,0(z̃, t̃) = c̃0(z̃, t̃) . 
Using the aforementioned results, both equations (92) and (93) can be written as

where we use the interface condition (69). Then, adding both equations we finally obtain

(91)ũỹ,0 = qref𝛴̃0(ỹ + 1)∕uref.

∫
1−d̃

−(1−d̃)

[
𝜕t̃ c̃w −

1

Pe

(
𝜖
−2
𝜕
2
ỹ
c̃w + 𝜕

2
z̃
c̃w

)
+ 𝜕ỹ(q̃w,ỹc̃w) + 𝜕z̃(q̃w,z̃c̃w)

]
dỹ = 0,

2∫
−(1−d̃)

−1

[
𝜕t̃(𝜃wc̃b) −

𝜃w

Pe

(
𝜖
−2
𝜕
2
ỹ
c̃b + 𝜕

2
z̃
c̃b

)
+ 𝜕ỹ(q̃b,ỹc̃b) + 𝜕z̃(q̃b,z̃c̃b)

+𝜇̃n𝜃a𝜌̃a

c̃b

k̃n + c̃b

]
dỹ = 0.

(92)𝜕t̃

(
∫

1−d̃

−(1−d̃)

c̃wdỹ

)
+ 2𝜕t̃ d̃c̃w

||ỹ=−(1−d̃) − 𝜕z̃

[
∫

1−d̃)

−(1−d̃)

(
1

Pe
𝜕z̃c̃w − q̃w,z̃c̃w

)
dỹ

]

(93)

− 2𝜕z̃d̃
(
1

Pe
𝜕z̃c̃w − q̃w,z̃c̃w

)||||ỹ=−(1−d̃) − 2
(

1

𝜖
2Pe

𝜕ỹc̃w − q̃w,ỹc̃w

)||||ỹ=−(1−d̃) = 0,

2𝜕t̃

(
∫

−(1−d̃)

−1

𝜃wc̃bdỹ

)
− 2𝜃w𝜕t̃ d̃c̃b

||ỹ=−(1−d̃)

− 2𝜕z̃

[
∫

−(1−d̃)

−1

(
𝜃w

Pe
𝜕z̃c̃b − q̃b,z̃c̃b

)
dỹ

]
+ 2𝜕z̃d̃

(
𝜃w

Pe
𝜕z̃c̃b − q̃b,z̃c̃b

)||||ỹ=−(1−d̃)

+ 2

(
𝜃w

𝜖
2Pe

𝜕ỹc̃b − q̃b,ỹc̃b

)||||ỹ=−(1−d̃) + 2𝜇̃n𝜌̃a ∫
−(1−d̃)

−1

𝜃a

c̃b

k̃n + c̃b
dỹ = 0.

𝜕t̃[c̃0(2 − 2d̃0)] − 𝜕z̃

(
2 − 2d̃0

Pe
𝜕z̃c̃0

)
+ 𝜕z̃

(
c̃0 ∫

1−d̃0

−(1−d̃0)

q̃w,z̃,0dỹ

)
= 0,

𝜕t̃(2d̃0𝜃wc̃0) − 𝜕z̃

(
2d̃0

𝜃w

Pe
𝜕z̃c̃0

)
+ 𝜕z̃

(
c̃0 ∫

−(1−d̃0)

−1

q̃b,z̃,0dỹ

)
+ 2d̃0𝜇̃n𝜌̃a𝜃a,0

c̃0

k̃n + c̃0
= 0

𝜕t̃[c̃0𝛩C(d̃0, 𝜃w)] + 𝜕z̃

�
c̃0⟨q̃⟩ −

𝛩C(d̃0, 𝜃w)

Pe
𝜕z̃c̃0

�
= −d̃0𝜇̃n𝜃a,0𝜌̃a

c̃0

k̃n + c̃0
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where we define 𝛩C(d̃0, 𝜃w) as

We focus on the water–biofilm interface (81):

Using the set-valued Heaviside graphs (49), we can write the previous equations as

Using the regularized Heaviside functions (51), we can write (94) as

Using (82–83, 87a, 88a, 91), for the lower-order terms in � we have

Letting � go to zero in order to return to the non-regularized formulation, we get
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