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Abstract
A dual-continuum model can offer a practical approach to understanding first-order
behaviours of poromechanically coupled multiscale systems. To close the governing equa-
tions, constitutive equations with models to calculate effective constitutive coefficients are
required. Several coefficient models have been proposed within the literature. However, a
holistic overview of the different modelling concepts is still missing. To address this we
first compare and contrast the dominant models existing within the literature. In terms of
the constitutive relations themselves, early relations were indirectly postulated that implic-
itly neglected the effect of the mechanical interaction arising between continuum pressures.
Further, recent users of complete constitutive systems that include inter-continuum pressure
coupling have explicitly neglected these couplings as a means of providing direct relations
between composite and constituent properties, and to simplify coefficient models. Within the
framework of micromechanics, we show heuristically that these explicit decouplings are in
fact coincident with bounds on the effective parameters themselves. Depending on the for-
mulation, these bounds correspond to end-member states of isostress or isostrain. We show
the impacts of using constitutive coefficient models, decoupling assumptions and parameter
bounds on poromechanical behaviours using analytical solutions for a 2D model problem.
Based on the findings herein, we offer recommendations for how and when to use different
coefficient modelling concepts.

Keywords Dual-continuum · Poromechanics · Constitutive models · Micromechanics ·
Multiscale porous media

1 Introduction

Many natural and manufactured geomaterials exhibit strong heterogeneities in their material
properties, owing to the existence of porous constituents at various length scales. Examples of
multiscale systems that are commonly encountered in subsurface operations include fissured
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or fractured rock and soil aggregates (Warren et al. 1963; Kazemi et al. 1976; Nelson 2001;
Gerke 2006; Koliji 2008; Romero et al. 2011). Modelling of such materials is invaluable
in understanding how these systems behave in response to extraneous activities. In general,
modelling can be done using either explicit (e.g. discrete fracture matrix models) or implicit
methods (e.g. continuum approaches) (Berre et al. 2018).

With respect to fractured systems, using explicit methods can be computationally
prohibitive at large scales (Karimi-Fard et al. 2006; Gong 2007; Garipov et al. 2016). Addi-
tionally, explicit methods may require data (e.g. spatial data) that are not obtainable without
direct access (Berkowitz 2002; Blessent et al. 2014). In cases where field-scale modelling of
multiscale systems is required, implicit representations are then often preferred. The most
common type of implicit model is the dual-continuum (or double-porosity) model, originally
attributed to Barenblatt et al. (1960). In this, the dual-material is considered as the superposi-
tion of two overlapping continua, which communicate through amass transfer term. Continua
are defined on the basis of their material properties. For example, fractures (or inter-aggregate
pores) generally have high permeabilities and poor storage capabilities, vice versa the matrix.
Although less detailed than their explicit counterparts, dual-continuum models can provide
practical and valuable insight into the first-order behaviours of multiscale systems. Further,
use of these models is desirable due to the low number of fitting parameters that allow for
efficient calibration to historical data.

Multiscale systems can also exhibit strong coupling between deformation and fluid flow,
and vice versa. This phenomenon is known as poromechanical coupling (Rutqvist and
Stephansson 2003) and is described by the well-established poromechanical theory (see,
for example, Biot 1941, 1977; Detournay and Cheng 1995; Coussy 1995, 2004; Wang 2000;
De Boer 2012; Cheng 2016).

Aifantis (1977, 1979) and Wilson and Aifantis (1982) were the first to introduce the
generalised notion of deformation within the dual-continuum setting. Further offerings then
came from Elsworth and Bai (1992), Lewis and Ghafouri (1997), and Bai et al. (1999).
However, all of these models implicitly neglected the effects of coupling between pressures
of different pore domains due to their postulation of the form of the constitutive equations.
The absence of these pressure couplings was shown to give unphysical responses by Khalili
(2003). Specifically, the author’s results showed discontinuous pressure jumps in the matrix
and fracture continua that were incompatible with the prescribed boundary conditions. The
cause of the observations made by Khalili (2003) still remains an open question.

Additional models in which the constitutive equations included inter-continuum pressure
coupling were introduced by Berryman and Wang (1995), Tuncay and Corapcioglu (1996),
Loret andRizzi (1999), Berryman and Pride (2002), Berryman (2002), Khalili andValliappan
(1996), and Khalili (2008). The difference between these presentations comes in the way that
the authors choose to calculate the constitutive coefficients that govern a dual-continuum’s
poromechanical behaviour. For example, some authors implicitly assume the high permeabil-
ity continuum to be all void space (e.g. Khalili and Valliappan 1996), whilst others allow for
an intrinsic phase stiffness (e.g. Berryman 2002). Models (referred to as coefficient models
herein) used to calculate the constitutive coefficients are required due to the potential diffi-
culty in measuring these properties experimentally. Whilst various coefficient models exist
within the literature, there is still no general guideline for how and when to use them.

More recent users of these later constitutive/coefficient models have explicitly decoupled
pore domain pressures when expressing the constitutive relations in terms of stress and con-
tinuum pressures (pure stiffness setting) (see, for example, Nguyen and Abousleiman 2010;
Kim et al. 2012; Mehrabian and Abousleiman 2014; Mehrabian 2018). This has been done
as a form of non-algebraic closure and to provide explicit relations between composite and
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constituent properties, resulting in simplified coefficient models. However, such decoupling
assumptions have been made without discussing the origin and sensitivities that may arise
as a result.

The aim of this paper is to formulate a set of recommendations for how and when to use
different constitutive modelling concepts. In doing we show the impacts of making implicit
and explicit decoupling assumptions. In the case of the latter, we use heuristic arguments
from micromechanics to show that these assumptions are coincident with bounds on the
effective parameters themselves.

We structure the paper as follows: In Sect. 2 we introduce the governing and consti-
tutive equations pertinent to double-porosity materials. For the latter set of equations, we
support their form using arguments from the energy approach to poromechanics (Coussy
2004). Section 3 presents the most prevalent modelling approaches for calculating the effec-
tive poromechanical coefficients. Section 4 details the origins of explicit assumptions made
on constitutive/coefficient models within the framework of micromechanics. From here we
offer upscaling recommendations for constituent moduli when composite moduli may not
be available. In Sect. 5 we use analytical solutions to the double-porosity Mandel problem to
explore the physical implications, and relevance, of different coefficient models and decou-
pling assumptions. We conclude by way of offering recommendations for how and when
to use coefficient models in light of (a) intrinsic fracture stiffness effects and (b) pressure
decoupling assumptions between pore domains. Throughout this paper, our reference multi-
scale material is that of a naturally fractured system. Such systems can be considered as void
space inclusion composites or stiff inclusion composites (Fig. 1).

We note that work has been done on the determination of effective properties of multiple-
porosity materials via homogenisation methods (e.g. Berryman 2006 and Levin et al. 2012).
However, equivalent continuum models can fail to provide insight into processes occurring
at the different porosity scales due to use of an averaged flow field (Berre et al. 2018).
In contrast, this work is concerned with double-porosity materials for which two distinct
flow fields exist. Upscaling of such flow fields for inelastic materials has been addressed by
periodic homogenisation (Arbogast et al. 1990), but such a treatment for deformablematerials
is, to the best of the authors knowledge, still missing. Given this context, the introduction
of the phenomenological approaches described herein for the determination of constitutive

Fig. 1 Examples of matrix-void inclusion (left) and matrix-stiff inclusion (right) composites. Fractures can
be considered as either depending on modelling assumptions
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coefficients is desirable due to their ease of use, and resulting explicit relations to underling
properties.

2 Double-Porosity Mathematical Model

We present the balance equations and constitutive laws for the dual-continuum systemwithin
the macroscopic framework of Coussy (1995, 2004). The dual system is considered as the
superposition of two overlapping poroelastic continua. Elastic deformation of each contin-
uum is thus implied. Quantities denoted by m and f refer to matrix and fracture continua,
respectively. It is assumed that the poroelastic double-porosity material is isotropic and is
saturated by a slightly compressible fluid which can undergo isothermal flow. Under the
assumptions of quasi-static deformations and infinitesimal transformations, the momentum
balance for the dual medium recovered as

∇ · σ + ρg = γ , (1)

where σ is the Cauchy stress tensor, g is the gravity vector, ρ = ρs(1 − φ) + ρlφ is the
density of the bulk medium, ρs is the intrinsic density of the solid matrix, ρl is the intrinsic
density of the fluid, and φ is the Lagrangian porosity. This property is defined as the ratio of
the current pore volume,�p , to the bulk volume of the undeformed configuration,�0, where
superscript 0 denotes measurement at reference conditions. Assuming small perturbations
in Lagrangian porosity, and solid and fluid densities, allows us to take these quantities at
reference conditions where necessary. In keeping with convention, stress is taken as positive
in the tensile direction. Finally, γ represents the momentum transfer arising as a result of
the mass transfer between the two pore continua. Often, γ is assumed to be negligible with
respect to the other force density terms (Elsworth andBai 1992; Pao and Lewis 2002; Fornells
et al. 2007; Kim et al. 2012).

Next we introduce the linearised strain tensor given according to the strain–displacement
compatibility relation

ε = ∇symu = 1

2
(∇u + ∇�u), (2)

where u denotes the displacement vector.
The inter-continuum momentum transfer is given by

γ =
∑

α=m, f

γαvl,α, (3)

where γα [α = m, f ] is the rate of mass transfer from pore continuum α to pore continuum β,
and vl,α is the absolute fluid velocity within each pore continuum. The rate of mass transfer
is conservative between the matrix and the fractures, and thus,

∑

α=m, f

γα = 0. (4)

The absolute fluid velocity, vl,α , is related to the volume flux, qα , within each continuum by

qα = φα ˜vl,α = φα(vl,α − vs), (5)
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where ˜vl,α is the relative fluid velocity, vs is the velocity of the solid matrix, and φα is the
Lagrangian porosity associated with each continuum. This is defined as

φα = �p,α

�0 , such that φ =
∑

α=m, f

φα, (6)

where �p,α is the current pore volume of continuum α. The volume flux for each pore
continuum is then given by Darcy’s law

qα = −kα

μl
(∇ pα − ρ0

l g), (7)

where kα and pα denote the permeability tensor and fluid pressures associated with pore
continuum α.

The balance of fluid mass for each continuum is then given as

∂ml,α

∂t
+ ρ0

l ∇ · qα = γα, (8)

where ml,α = ρlφα is the fluid mass content of continuum α.
We require constitutive laws to provide closure to themodel. In early presentations, consti-

tutive relations were indirectly postulated in which inter-continuum pressures were implicitly
decoupled (Aifantis 1977, 1979; Wilson and Aifantis 1982; Elsworth and Bai 1992; Lewis
and Ghafouri 1997; Bai et al. 1999). To provide more rigour to the form of the constitutive
equations, we make use of the energy approach to poromechanics under the assumption
of infinitesimal strain theory (Coussy 2004). It can be shown from a purely macroscopic
approach (Coussy 2004) or via micromechanical considerations (Dormieux et al. 2006)
that the increment in strain work density, dWs , on the skeleton due to the loading triplet
(dε, dpm, dp f ) can be expressed as

dWs = σdε + pmdφm + p f dφ f . (9)

Due to elasticity, our system is non-dissipative and thus, the skeletal strain energy is stored
entirely as an elastic potential

dWs = d	s, (10)

where 	s denotes the Helmholtz free energy of the skeleton, and from which it follows

σdε + pmdφm + p f dφf − d	s = 0. (11)

Equation (11) is a trivial extension of the skeleton free energy expression for single porosity
materials and is indeed analogous (and identical) to the expression for the multiphase fluid
single-porosity poromechanical problem (see, for example, Coussy 2004). Now introducing
the following Legendre transform

Fs = 	s − pmφm − pf φf , (12)

into Eq. (11) results in
σdε − φmdpf − φf dpf − dFs = 0. (13)

Next, it is useful to decompose the stress and strain tensors by way of their volumetric and
deviatoric parts

σ = σ1 + σ d, (14)

ε = 1

3
ε1 + εd , (15)
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where σ = 1
3 tr(σ ) is the mean stress, σ d is the deviatoric component of the stress tensor,

ε = tr(ε) is the volumetric strain, and εd is the deviatoric component of the total strain tensor.
Making use of the stress and strain decompositions from Eqs. (14) to (15) in (13), the state
equations for double-porosity poroelasticity are then given as

σ = ∂Fs
∂ε

; σ d = ∂Fs
∂εd

; φm = ∂Fs
∂ pm

; φ f = ∂Fs
∂ pf

. (16)

Applying Eqs. (16) to (13), and making use of the Maxwell symmetry relations which arise
naturally from Eq. (16) whilst also assuming isotropy of the material, we arrive at the con-
stitutive equations for a linear isotropic poroelastic dual-continuum

dσ = Kdrε − bmdpm − bf dpf , (17)

dφm = bmε + 1

Nm
dpm + 1

Q
dp f , (18)

dφ f = b f ε + 1

Q
dpm + 1

N f
dp f . (19)

dσ d = 2Gεd (20)

where parameters Kdr and G are the drained bulk and shear moduli of the dual medium,
respectively (Coussy2004).Coefficientsbα canbe thought of as effectiveBiot coefficients and
relate changes in effective Lagrangian porosity to skeletal straining under drained conditions.
Coefficients 1

Nα
relate changes in the Lagrangian porosity of continuum α to changes in fluid

pressure of the same medium, whilst the skeleton remains constrained and fluid pressure in
continuum β remains constant. Finally, 1

Q is a coupling coefficient that relates changes in
the Lagrangian porosity of continuum α and pressure changes in continuum β.

In poromechanics, it is common to formulate the constitutive equations in terms of the
fluid mass content such that

dml,α

ρl
= dφα + φα

dρl
ρl

≡ dφα + φα

dpα

Kl
, (21)

where Kl is the fluid compressibility given by

1

Kl
= 1

ρl

dρl
dp

. (22)

With Eq. (21), we can express Eqs. (18) to (19) as

dξm = bmε + 1

Mm
dpm + 1

Q
dp f , (23)

dξ f = b f ε + 1

Q
dpm + 1

M f
dp f , (24)

where

dξα = dml,α

ρ0
l

, (25)

Comparison between Eqs. (18) to (19) and (23) to (24) gives the additional relation

1

Mα

= 1

Nα

+ φ0
α

Kl
. (26)

Under long-term drainage conditions, the double-porosity model must be able to reduce to
the well known single-porosity model. This provides us with the following compatibility
relations
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b = bm + bf = 1 − Kdr

Ks
, (27)

1

Mα

+ 1

Q
= bα − φ0

α

Ks
+ φ0

α

Kl
. (28)

where b is the single-porosity Biot coefficient (Berryman and Wang 1995).
A final constitutive equation is required to describe the mass transfer rate between the

two pore continua. In accordance with Barenblatt et al. (1960) and Warren et al. (1963), the
simplest model for mass transfer between the two continua is given by

γm = η
ρ0
l k

μl
(p f − pm), γ f = η

ρ0
l k

μl
(pm − p f ), (29)

where k is the interface permeability, which here is taken as the matrix permeability (Baren-
blatt et al. 1960; Choo and Borja 2015), and η is the shape factor. The first-order nature of
Eq. (29) may in some cases over-simplify the physics of inter-continuum mass transfer. This
should be taken into consideration when working with the dual-continuum paradigm.

We make use of an analytical based shape factor as introduced in Lim and Aziz (1995).
For an isotropic material in two dimensions, η is defined as

η = 2π2

d2
, (30)

where d denotes the average spacing between the fractures.

3 Models of Constitutive Coefficients

We require substantiation of the constitutive coefficients in Eqs. (17) and (23) to (24).
One option is direct measurement of these effective parameters. However, this approach
is predicted to be non-trivial for dual-continua. For example, isolating matrix and fracture
contributions would be challenging.

An alternative option would be to calculate the effective parameters with models that use
more accessible quantities. In the following we compare three modelling concepts that make
use of different properties for the calculation of the constitutive parameters:

(i) Khalili and Valliappan (1996)—Constituent mechanical properties, assuming the high
permeability, low storage continuum is all void space (no intrinsic fracture properties),

(ii) Borja and Koliji (2009)—Constituent pore fractions, assuming the high permeability,
low storage continuum is all void space,

(iii) Berryman (2002)—Constituentmechanical properties, including intrinsic fracture prop-
erties.

We recognise thesemodels, to the best of our ability, as themost dominantwithin the literature.
They have been used in the works of Khalili et al. (2000), Callari and Federico (2000), Pao
and Lewis (2002), Fornells et al. (2007), Taron et al. (2009), Kim et al. (2012), Mehrabian
and Abousleiman (2014), Choo and Borja (2015), Choo et al. (2016) and Wang and Sun
(2018). It should be stressed that in most cases the modelling concepts introduced in this
section build on, or are aligned with, previous works and concepts introduced by Aifantis
(1977, 1979), Wilson and Aifantis (1982), Elsworth and Bai (1992), Berryman and Wang
(1995), Tuncay and Corapcioglu (1995, 1996), Loret and Rizzi (1999), and Dormieux et al.
(2006) to name but a few. These works should thus be borne in mind in the section to follow.
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3.1 Model Approaches and Assumptions

3.1.1 Khalili and Valliappan (1996)

The authors take a top-down approach, postulatingmacroscopic balance laws and an effective
stress expression. Closure for the model equations therein is then sought through thought
experiments that isolate volumetric changes of the constituents. Superposition due to linearity,
and Betti’s reciprocal work theorem finally allow for recovery of the macroscopic behaviour
in terms of constituent responses. In doing, expressions for the constitutive coefficients are
identified.

Khalili and Valliappan (1996) implicitly assume that the fracture phase is all void space.
Additionally, the following assumption is also made: bmφ0

f = b f φ
0
m . This relation is restric-

tive and is later removed in Khalili (2003) and Khalili and Selvadurai (2003), due to the
resulting compatibility enforced between bulk moduli (Loret and Rizzi 1999). We present
coefficient models derived by the authors without this assumption (Table 1). The coefficient
models from Khalili and Valliappan (1996) (Table 1) are then consistent with results from
Berryman and Wang (1995), Loret and Rizzi (1999), and Dormieux et al. (2006).

3.1.2 Borja and Koliji (2009)

In Borja and Koliji (2009), the authors consider the evolution of internal energy density and
derive a thermodynamically consistent effective stress law. Aggregate material is used as
their reference material. The void space assumption is thus implicit. We present the effective
stress expression from Borja and Koliji (2009) for an isotropic single-phase dual-continuum
system as follows:

σ ′ = dσ +
∑

α=m, f

ψαbdpα, (31)

where σ ′ = Kdrε, and ψα denotes the pore fraction of continuum α such that

ψα = ϕα

1 − ϕs
. (32)

Notation ϕα is the Eulerian porosity of continuum α. This is defined as the ratio of the current
pore volume, �p,α , to the bulk volume of the current (deformed) configuration, �. Notation
ϕs = �s

�
is the current volume fraction of the solid phase. In the limit of infinitesimal

transformations, ϕα ≈ φα , from which, together with small perturbations in Lagrangian
porosity, follows ψα ≈ ψ0

α .
Comparison of Eqs. (31) with (17) leads to the following relations for effective Biot

coefficients, bm = ψ0
mb and b f = ψ0

f b.
Borja and Koliji (2009) identify the requirement for a constitutive expression forψα based

on energy conjugacy with pα (their Eq. (76)). However, explicit constitutive equations for
ψα remain, to the best of the current authors’ knowledge, an open question. We do note,
however, that Borja and Choo (2016) develop a framework that allows for the tracking of
pore fraction evolutions numerically.

As an initial approach to deriving an algebraic expression for variations in ψα we first
consider the following mass balance equation given in Borja and Koliji (2009)

bα

∂ε

∂t
+ (1 − φs)

∂ψα

∂t
+ φ0

α

Kl

∂ pα

∂t
+ qα

Kl
∇ pα + ∇ · qα = 1

ρ0
l

γα. (33)
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We can derive an alternative form of the mass balance here by substitution of Eq. (23) or
(24), together with Darcy’s law, into Eq. (8) such that

bα

∂ε

∂t
+

(
1

Nα

+ φ0
α

Kl

)
∂ pα

∂t
+ 1

Q

∂ pβ

∂t
+ ∇ · qα = 1

ρ0
l

γα, (34)

where we have used Eq. (26) to decompose 1
Mα

.
Under the assumption of small perturbations in fluid density, the fourth term on the left-

hand side of Eq. (33) can be neglected. Comparing Eqs. (33) and (34) leads to the following
identity

(1 − φs)
∂ψα

∂t
= 1

Nα

∂ pα

∂t
+ 1

Q

∂ pβ

∂t
(35)

In the works of Choo and Borja (2015) and Choo et al. (2016), the authors achieve non-
algebraic closure of the mass balance equations for each continuum by assuming ∂ψα

∂t ≈ 0.
This assumption is equivalent to

1

Nα

= 1

Q
= 0 or

∂ pα

∂t
= −Nα

Q

∂ pβ

∂t
, (36)

in Eq. (35). We discard the latter relation in Eq. (36) as it is overly restrictive with respect
to fluid exchange between matrix and fractures. Hence, we identify the closure condition
∂ψα

∂t ≈ 0 with values for material coefficients 1
Nα

and 1
Q of zero.

A summary of the coefficient models from Borja and Koliji (2009), under the explicit
assumption ∂ψα

∂t ≈ 0, mapped to the constitutive model of Eqs. (17) and (23) to (24) is
shown in Table 1.

3.1.3 Berryman (2002)

The motivation behind the approach by Berryman (2002) is to formulate coefficient models
using intrinsic fracture properties. Therefore, contrary to the previous models, no assumption
is made on the values of φ∗

f and K f . Inclusion of intrinsic fracture properties is concurrent
with the fracture continuum having an associated stiffness.

The authors use a top-down approach whose starting point is the macroscopic constitutive
model written within a pure stiffness setting (σ and pα as primary variables; contrary to
conventional poromechanical modelling),

⎛

⎝
ε

dξm
dξ f

⎞

⎠ =
⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠

⎛

⎝
dσ
dpm
dp f

⎞

⎠ , (37)

where the goal is then to find expressions for coefficients A11 − A33. Symmetry of the
coefficient matrix in Eq. (37) is implied. A comparison of Eqs. (37) with (17) and (23) to
(24) reveals the following relations

Kdr = 1

A11
, bm = A12

A11
, bf = A13

A11
,

1

Mm
= A22 − (A12)

2

A11
,

1

Q
= A23 − A12A13

A11
,

1

Mf
= A33 − (A13)

2

A11
. (38)

To identify expressions for the parameters in Eq. (37), Berryman (2002) considers scenarios
of uniform expansion (or contraction). These scenarios are equivalent to asking whether we
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can find variations in uniform stress, dσ = dσm = ddσ f , and variations in pore pressures,
dpm and dp f , such that ε = εm = ε f (Berryman 2002). As a result, the authors are able to
relate Eq. (37) to intrinsic constituent equations. The microscale equations used in Berryman
(2002) are postulated based on the assumption that each constituent belonging to the dual
medium behaves as a Gassmann material. That is, constituent solid phases are homogeneous
and isotropic (Cheng 2016). In the case of a Gassmann material, the constitutive equations
for a material α can be written as

(
εα

dξα

)
= 1

Kα

(
1 b∗

α

vαb∗
α

vαb∗
α

B∗
α

) (
dσα

dpα

)
, (39)

where vα denotes the volume fraction of material α, and poroelastic coefficients intrinsic to
a material α have been denoted by superscript ∗. Volume fractions for matrix and fracture
materials are given as

vm = �0
m

�0 , v f = �0
f

�0 , (40)

where �0
m and �0

f are the volumes of matrix and fracture continua at reference conditions,

respectively. Under the void space assumption v f = φ0
f . The intrinsic Biot and Skempton

coefficients, b∗
α and B∗

α for material α, respectively, are

b∗
α = 1 − Kα

K α
s

,

B∗
α = b∗

αM
∗
α

Kα + (b∗
α)2M∗

α

where
1

M∗
α

= φ∗
α

Kl
+ b∗

α − φ∗
α

K α
s

. (41)

where K α
s is the solid grainmodulus of the intactmaterial, andM∗

α andφ∗
α are the intrinsicBiot

modulus and intrinsic porosity (measurement at reference conditions is implied), respectively.
Expressions for A11−A33 are finally recovered (Table 2), using the uniform expan-

sion/contraction thought experiments described above. With the relations in Eq. (38), we
get material coefficient formulations pertaining to the conventional mixed compliance set-
ting (ε and pα as primary variables) (Table 1).

As a final note on the Berryman (2002) coefficient models, recent users have explicitly
assumed A23 = A32 = 0 as a closure condition to generalise the dual-continuum system
to a multi-continuum one (Kim et al. 2012; Mehrabian and Abousleiman 2014; Mehrabian
2018), providing explicit relations betweenmaterial properties and simplifying the coefficient
models. It is still unclear how this assumption may affect the system.

3.1.4 In Sum

Coefficient models from Khalili and Valliappan (1996) and Borja and Koliji (2009) both
make an underlying void space assumption for the high permeability, low storage continuum.
Models from Borja and Koliji (2009) make use of continuum pore fractions, but still require
a final closure relationship for the evolution of each pore fraction. Finally, models from
Berryman (2002) make no underlying assumption on the intrinsic porosity, and thus the
stiffness of the high permeability, low storage continuum.

In terms of pressure decoupling assumptions, we have two types. The first are implicit
assumptions for which the constitutive relations are postulated without inter-continuum pres-
sure coupling. The second are explicit assumptions for which the full constitutive model is
the starting point (or the requirement for constitutive expressions is at least identified in the
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Table 2 Berryman (2002) material coefficient formulations for the pure stiffness constitutive model

Coefficient Berryman (2002) formulation

A11
1

Kdr

A12
b∗
m

Km

1−Kf /Kdr

1−Kf /Km

A13

b∗
f

Kf

1−Km/Kdr
1−Km/Kf

A22
vmb∗

m
B∗
mKm

−
(

b∗
m

1−Km/Kf

)2 {
vm
Km

+ vf

Kf
− 1

Kdr

}

A23

KmKf b∗
mb

∗
f

(Kf −Km)2

{
vm
Km

+ vf

Kf
− 1

Kdr

}

A33

vf b∗
f

B∗
f Kf

−
(

b∗
f

1−Kf /Km

)2 {
vm
Km

+ vf

Kf
− 1

Kdr

}

case of Borja and Koliji (2009)). The explicit decoupling assumptions are then made so as
to provide relations between material properties and to simplify coefficient models (e.g. due
to non-algebraic closure). However, the physical justifications and/or implications of these
assumptions still remain an open question.

It is of interest to investigate how differences in coefficient models, in addition to decou-
pling assumptions, may impact poromechanical behaviour. This is pursued in the remaining
sections.

4 Micromechanics of Dual-Continua

To establish the physical implications of explicit decoupling assumptions such as taking
A23 = A32 = 0, we make use of the theoretical framework of micromechanics. Microme-
chanics is used as a tool to relate the macroscopic behaviour and properties of a composite
to those of its underlying constituents (microscale) (Nemat-Nasser and Hori 1993). In the
following we consider the dual medium as a composite of two (poro-) elastic materials with
each material having its own intrinsic constitutive model.

4.1 Effective Elastic Properties

We define effective properties over a representative elementary volume (REV) taken from a
macroscopic body that is at least an order ofmagnitude greater in size than theREV itself. The
scale requirements for the identification of such an REV can be found in Bear and Bachmat
(2012). In addition to the material isotropy assumption, we assume the dual-material to be
statistically homogeneous. In its most simple interpretation, statistical homogeneity implies
that averages taken over any REV from a large composite body, approach averages taken
over the whole body itself. Averages are thus positionally invariant, and we can recover the
classical volume averaging expression accordingly

f = 1

�

∫

�

f (x) dV , (42)
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where f is an arbitrary field and � is the volume of any REV within a large macroscopic
body.

With the averagingoperationdefined,weproceed to formulate the effective elastic property
problem. In doing we make use of the works of Hill (1963) and Hashin (1972). Additionally,
we assume that the composite is drained and thus make no distinction between effective and
total stress fields.

Starting at the microscale, for which we have assumed linear elasticity, the micro-stress
and strain fields, s(x) and e(x), respectively, are related through the drained fourth-order
stiffness and compliance tensors, C∗

dr (x) and S∗
dr (x), respectively, by

s(x) = C∗
dr (x)e(x), (43)

e(x) = S∗
dr (x)s(x). (44)

It can be shown that macroscopic stress and strain tensors are related to their underlying
fields through the volume averaging operator (see, for example, Hashin 1972) such that,

σ = s = vm sm + v f s f , (45)

ε = e = vmem + v f e f . (46)

where eα = �−1
α

∫
�α

eα(x) dV (resp. sα). Substitution of Eqs. (43) to (44) in (45) to (46),
and making use of the decompositions in Eqs. (14) to (15) due to the isotropy of the dual
medium leads to

σ = Kdrε = vmKmem + vf Kf ef (47)

ε = Sdrσ = vmSmsm + vf Sf s f , (48)

where eα and sα are the average microscopic volumetric strain and mean stress fields of
continuum α, respectively, and Sdr is the drained compressibility of continuum α.

Fundamental to the micromechanics approach is understanding how macroscopic stress
and strain distribute between individual constituents. Due to the linearity of the material
behaviour, the following relations hold (Hashin and Shtrikman 1963)

em = Amε, e f = A f ε, (49)

sm = Bmσ, s f = B f σ, (50)

where Aα and Bα are concentration factors mapping macroscopic volumetric strain and
mean stress to the equivalent averaged microscopic fields. Importantly Aα and Bα encode
the geometrical information of the problem.

Additionally, Aα (resp. Bα) admit the following compatibility relations

vm Am + v f A f = 1, vmBm + v f B f = 1. (51)

Use of Eqs. (49) to (51) in (47) and Eq. (48) allows us to develop the following fundamental
relationships for effective moduli of two-phase composites,

Kdr = Km + vf (Kf − Km)Af , (52)

Sdr = Sm + vf (Sf − Sm)Bf . (53)

Finding effective moduli then amounts to determining Aα or Bα .
For given underlying constituent properties, Kdr (resp. Sdr ) can take on a range of val-

ues, existing between certain well-defined lower and upper bounds, due to the geometrical
variability of the problem. As a result, the effective coefficients also exhibit a bounded range
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of values due to their dependence on Kdr (Table 1). This dependence is further explored in
the following section.

4.2 Physical Implications of Explicit Decoupling

In the following we show that explicit decoupling assumptions are coincident with effec-
tive coefficient bounds. Bounds are attractive as they provide useful estimates of effective
properties of interest, as well as a means to verify the values of these properties (Torquato
1991).

We use arguments from micromechanics to show heuristically that the inverse to explicit
decoupling is to assume that Eqs. (52) or (53) can be calculated directly by considering
certain limiting behaviours and thus bounds on Kdr . Bounds, fromwhich explicit decouplings
naturally arise, on effective properties then follow from the bounds on Kdr .

4.2.1 Isostrain: 1Q = 0

Whilst this explicit assumption has not been used within the literature, its consideration
remains instructive. We define assumption 1

Q = 0 in terms of dφm (although converse

arguments may be used for dφ f ). The term 1
Q = 0 is then equivalent to

1

Q
= ∂φm

∂ p f

∣∣∣ ε=0
dpm=0

= 0. (54)

Next we define the following local constitutive model for a continuum α (Dormieux et al.
2006),

dsα = Kαeα − b∗
αdpα, (55)

dφα = vα

(
b∗
αeα + 1

N∗
α

dpα

)
. (56)

Consider the local model given by Eqs. (55) to (56) for the case α = m. Under a drained
matrix (dpm = 0), Eq. (56) shows that a zero matrix porosity variation (dφm = 0) can only
hold if the average matrix strain is zero (em = 0). Further, we can see from Eq. (55) that
if the matrix is drained and does not deform, then the variation in average matrix stress is
also zero (dsm = 0). This will be a useful result for discussions on the explicit decoupling
assumption A23 = 0.

Proceeding with Eq. (54) and the macroscopic strain constraint, ε = 0, the strain partition
in Eq. (46) shows that if ε = em = 0, then e f = 0. The condition 1

Q = 0 is therefore
consistent with a condition of isostrain

ε = em = e f , Am = A f = 1. (57)

This distribution of strain can be obtained when elements are set in parallel to the direction of
loading (Fig. 2). Under isostrain, the bulk modulus of the composite is then the Voigt average
of the constituent moduli (Voigt 1928)

KV
dr = vmKm + vf Kf . (58)

Hill (1963) used variational principles to show that the Voigt average represents an upper
bound on Kdr and is naturally obtained by substitution of A f = 1 into Eq. (52). As a result,
effective coefficients calculated with KV

dr correspond to bounds on these parameters. To
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Fig. 2 Element arrangement in
the isostrain condition

explore this further, we consider the case for the effective Biot coefficients under the void
space assumption.

When assuming a drained void fracture continuum (dp f = 0), and fromEq. (56), effective

fracture strain is equal to the effective fracture pore strain, e f = dφ f

φ0
f
, and thus, in analogy

to Eq. (57), isostrain can be summarised in this case as

ε = em = dφ f

φ0
f

. (59)

Note that Eq. (59), and, isostrain more generally, Eq. (57) are only equal to zero under the
constrained macroscopic strain condition (ε = 0). However, in general Eqs. (57) and (59)
are nonzero due to macroscopic deformation (ε �= 0).

From Eq. (19), with drained matrix and fracture continua, together with the void space
isostrain condition, Eq. (59), we get the following lower bound on b f

b f = ∂φ f

∂ε

∣∣∣dpm=0
dp f =0

= φ0
f . (60)

From Eq. (27) the lower bound on b f corresponds to an upper bound for bm

bm = vm

(
1 − Km

Ks

)
, (61)

where vm = 1 − φ0
f , and where we have used Kdr = KV

dr = vmKm .

From the first equality in Eq. (54), we expect 1
Q ≤ 0 since matrix porosity must reduce

in order to accommodate the pressure-driven fracture expansion (see also similar arguments
in Berryman and Wang (1995)). Thus, based on the arguments described in this section, we
can infer that the explicit decoupling assumption 1

Q = 0 is concurrent with an upper bound

on 1
Q .
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4.2.2 Incompressible Grain Isostrain: 1
N˛

= 1
Q = 0

We now consider the coefficient models from Borja and Koliji (2009) under the assumption
∂ψα

∂t ≈ 0 made by Choo and Borja (2015) and Choo et al. (2016).

In Sect. 3.1.2, we identified that ∂ψα

∂t ≈ 0 amounts to 1
Nα

= 1
Q = 0 when mapping to the

constitutive model shown in Eqs. (17) to (19). It is of interest to see under what conditions
the result 1

Nα
= 1

Q = 0 arises when starting from the void space coefficient models built
from constituent mechanical properties (i.e. those from Khalili and Valliappan (1996)).

The set of explicit assumptions: 1
Nα

= 1
Q = 0, can easily be derived from the microscale

by first considering isostrain (and thus 1
Q = 0). With the resulting bounds arising from

isostrain, Eqs. (60) to (61), along with the assumption Ks = ∞, we obtain 1
Nα

= 0 using the
coefficient models of Khalili and Valliappan (1996) (Table 1, with Eq. (26) to decompose
1
Mα

). We therefore refer to conditions resulting in 1
Nα

= 1
Q = 0 as incompressible grain

isostrain
As far as parameters in the balance of mass are concerned, Eqs. (33) and (34) are identical

when assuming ∂ψα

∂t ≈ 0 in the former and incompressible grain isostrain using the constituent
mechanical property void space coefficient models in the latter. However, differences in mass
balance behaviour may be introduced through the way in which bα is modelled. It is therefore
of interest to see how the effective Biot coefficients calculated using the respective void space
coefficient models under incompressible grain isostrain compare to the bounds established
in Eqs. (60) to (61).

Under the incompressible grain assumption, the upper bound for bm now reads bm = vm .
When using KV

dr = vmKm in the coefficient models of Khalili and Valliappan (1996), we
can see that the bounds in Eqs. (60) to (61) are naturally recovered (see Table 1). In contrast,
from Table 1 the effective Biot coefficients calculated using the models of Borja and Koliji
(2009) are equivalent to pore fractions, since b = 1 for incompressible grains. Due to the
differences in effective Biot coefficients (and thus other constitutive parameters), we expect
disparity in poroelastic behaviour when using the two sets of void space coefficient models.

4.2.3 Isostress: A23(= A32) = 0

Finally, we study the pure stiffness setting with the condition A23 = 0 in light of the
assumptions made in Nguyen and Abousleiman (2010), Kim et al. (2012), Mehrabian and
Abousleiman (2014) and Mehrabian (2018). We continue to work in terms of dφm . Accord-
ingly, and using similar arguments to those used in the derivations of Eqs. (23) to (24),

A23 = ∂ξm

∂ p f

∣∣∣ dσ=0
dpm=0

≡ ∂φm

∂ p f

∣∣∣ dσ=0
dpm=0

= 0. (62)

In Sect. 4.2.1 we established that a drained matrix experiencing no deformation is concurrent
with a condition of zero (average) matrix stress. From the macroscopic stress constraint in
Eq. (62), dσ = 0, and the stress partition in Eq. (45), if dσ = dsm = 0, then ds f = 0. The
condition A23 is therefore consistent with a condition of isostress

dσ = dsm = ds f , Bm = B f = 1. (63)

The classical configuration under which an isostress distribution is observed is elements that
are arranged transversely to the direction of applied load (Fig. 3a). For isotropic fracture
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Fig. 3 Typical element
arrangements in the isostress
condition

networks, a more frequent configuration that shows isostress behaviour is within a solid–
fluid suspension (Fig. 3b). Such a situation may occur if a network of open fractures totally
permeates the solid, thus completely dissociating the matrix material.

Under isostress, the bulk modulus of the composite is then the Reuss average of the
constituent bulk moduli (Reuss 1929),

1

K R
dr

= vm

Km
+ vf

Kf
. (64)

Hill (1963) showed that the Reuss average is a lower bound on Kdr and is naturally obtained
by substitution of B f = 1 into Eq. (53), or from A23 = 0 in Table 2. In analogy to KV

dr , use
of K R

dr for the calculation of the effective constitutive parameters will result in bounds on
these parameters.

Consider the case when K f is zero (void space fracture phase), we can see from Eq. (64)
that Kdr is also zero. Using the void space assumption and the isostress condition, Eq. (63),
with Eq. (17) for dσ and Eq. (55) for dσm and dσ f gives us the following

bmdpm − b f dp f = Kmem − b∗
mdpm = −1dp f . (65)

From the required isostress equality, σ = s f , Eq. (65) followed by Eq. (27) allows us to
establish the following bounds

b f = 1, bm = 0. (66)

Equation (66) shows that use of the Reuss bound corresponds to an upper bound on b f and
a lower bound on bm . Interestingly the bounds on b f from this section and Sect. 4.2.1, i.e.
φ0
f ≤ b f ≤ 1 are very similar to those established on b for the single-porosity model (see

Dormieux et al. 2006).

4.3 OnModuli Upscaling

In Nguyen and Abousleiman (2010), Kim et al. (2012), Kim and Moridis (2013), Mehrabian
and Abousleiman (2014, 2015) and more recently Mehrabian (2018), isostress is implicitly
assumed. Upscaling of constituent moduli is then admitted through the Reuss average. This
raises the question as to whether this is a reasonable approach to upscaling or not?
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The Reuss average and Voigt average represent lower and upper bounds for effective
moduli, respectively (Hill 1963). Moduli bounds represent a minimum and maximum limit,
between, or at which, effective moduli arise. For the bulk modulus, bounds by Hashin and
Shtrikman (1963) have been shown in the same paper to be the best possible for isotropic
composites, given only constituent moduli and volume fractions. This result is obtained by
solving exactly for the bulk modulus of a specific geometry composite (composite sphere
assemblage), and observing that the resultant solution coincides with either bound depending
on the stiffness of the inclusion relative to the host material. The lower Hashin–Shtrikman
(HS) effective bulk modulus bound is given as

K HS−
dr = K f + vm

(Km − K f )−1 + v f (K f + 4
3G f )−1

, (67)

where G f denotes the shear modulus of the fracture material. The upper bound, K HS+
dr , can

be determined by swapping subscripts f and m in Eq. (67).
When G f = 0, such as in a fluid suspension geometry, the HS lower bound and the Reuss

bound coincide. It follows that in this geometry, with the stiffness of a void space fracture
phase (K f = 0), both the Reuss and HS lower bound result in K R

dr = K HS+
dr = 0. However,

in situations when the fracture phase has an intrinsic stiffness, the Reuss andHS lower bounds
may be significantly different (Watt et al. 1976).

Bounds can be used as a first approach to upscaling under certain geometries. If a fracture
network completely percolates a matrix, then it will have the maximum effect of weakening
the rock (Watt et al. 1976). The effective bulk modulus of the composite will then coincide
with the HS lower bound (Boucher 1974; Watt et al. 1976). In the general case fractures are
likely to have an associated stiffness (Bandis et al. 1983). We thus recommend using the HS
lower bound over the Reuss average as a first approach to upscaling for such geometries.
This procedure is also in line with the assumptions built into the continuum approach: The
continuum assumption is linked to one’s ability to define an REV over which properties
can be averaged. For a fractured system, such an REV cannot be justified if the system is
poorly connected (Berkowitz 2002). Use of the HS lower bound, as a first approach to moduli
averaging, thus supports the notion of awell-connected isotropic dense fracture network, over
which an REV could be defined.

When the underlying composite geometry precludes the use of bounds as methods for
upscaling, one must use other methods of averaging. Comprehensive summaries of such
approaches can be found in the works of Aboudi (1992), Nemat-Nasser and Hori (1993) and
Torquato (2002), for example.

5 Qualitative Analysis Using theMandel Problem

We use solutions to the double-porosity Mandel problem (Nguyen and Abousleiman 2010),
to investigate the physical impacts of different coefficient modelling concepts and assump-
tions, on the poromechanical response of a dual-continuum material. We consider implicit
assumptions, where the constitutive model starts with no pressure coupling, and explicit
assumptions, where the full constitutive model, Eqs. (17) and (23) to (24), is the starting
point, but pressure coupling is neglected, leading to bounds being used for the calculation of
Kdr (and thus the calculation of the effective constitutive coefficients).

We first investigate the effects of considering the fractured dual medium as a void space
inclusion composite or stiff inclusion composite as assumed by the coefficient models of
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Fig. 4 Dual-continuum Mandel problem setup

Khalili and Valliappan (1996) and Berryman (2002), respectively. Second, we study the
effects of decoupling assumptions.

5.1 Double-Porosity Mandel Problem

The problem geometry is described as an infinitely long (rectangular) cuboid domain such
that the plane-strain condition holds (i.e. uy = 0 and qm,y = q f ,y = 0) (Fig. 4). The domain
is sandwiched between two impermeable, rigid plates, and is free to displace both laterally
and vertically. A constant compressive force,

∫ a
−a σzzdx = −2Fa, is applied at the rigid

plate boundaries, ΓN and ΓS (north and south boundaries, respectively). The east and west
boundaries, ΓE and ΓW, respectively, are then free to drain such that pm = p f = 0 at these
boundaries.

In summary the boundary conditions are

σxx = σxz = pm = p f = 0 on ΓE ∪ ΓW,

σxz = qm,z = q f ,z = 0 on ΓN ∪ ΓS,∫ a

−a
σzzdx = −2Fa on ΓN ∪ ΓS.

(68)

Due to the symmetry of the problem, only a quarter of the domain need be considered.
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For an isotropic double-porositymaterial, Eqs. (17) and (20) can be rewritten and extended
to

dσ = 2Gε + λε1 −
∑

α=m, f

bαdpα1 (69)

where λ = 2Gv
1−2v is the Lamé constant, in which v is Poisson’s ratio. Substitution of Eqs. (69)

and (2) in (1) yields

G∇2u + (λ + G)∇ε =
∑

α=m, f

bα∇ pα1 − ρg, (70)

where we assume γ ≈ 0. It can be shown that ∇2u = ∇ε, with which, and in the absence of
body forces, Eq. (70) reduces to

∇ε =
∑

α=m, f

cα∇ pα, (71)

where cα = bα(1−2v)
2G(1−v)

is the consolidation coefficient belonging to material α.
Integration of Eq. (71) leads to

ε =
∑

i=m, f

cα pα + f (t), (72)

where f (t) is an integration function. Use of Eq. (72) in (34) leads to a set of diffusion
equations written entirely in terms of continuum pressures. Solutions to the resulting sys-
tem of equations are presented in Nguyen and Abousleiman (2010), and Mehrabian and
Abousleiman (2014). Further, these solutions allow for calculation of vertical stress and
strain (see Nguyen and Abousleiman 2010 or Mehrabian and Abousleiman 2014).

5.2 Data for Analysis

For the qualitative analysis we use a quarter of a 2 m × 2 m deformable porous domain.
The studied domain is subjected to a constant top boundary force,

∫ 1
0 −2 × 106 Pa dx =

−2MPam. Where possible we use values for material properties that are typically encoun-
tered in naturally fractured carbonate reservoirs. The mechanical properties are then Km =
20GPa, Ks = 70GPa, and v = 0.2 (Wang 2000). Values for Kdr and K f are problem
dependent. In cases where no rigorous justification is used, we choose values for Kdr

and Kf arbitrarily (denoted by a superscript †). Fluid properties are for that of water:
ρ0
l = 1000 kg m−3, μl = 1 cp and Kl = 2.3 GPa. Rock properties related to fluid stor-

age and flow are φ0
m = 0.05, km = 0.01 md and φ0

f = 0.01 (Nelson 2001). Effective
permeability of the fracture is assumed to be k f ≈ 1000 md. With the cubic law (Wither-
spoon et al. 1980), this corresponds to an aperture, a f = 7 × 10−5 m, and fracture spacing,
d = 2.8 × 10−2 m.

5.3 Test Cases

We consider one test case to investigate the differences between void space and stiff inclu-
sion composite coefficient models, and three test cases to investigate implicit and explicit
decoupling assumptions. In each case, analytical solutions to the double-porosity Mandel
problem are compared. Differences in solutions for each case then arise due to the parameter
permutations described in the case descriptions that follow.
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5.3.1 Case 1: Intrinsic Fracture Properties

In Case 1 we are interested in comparing the differences that arise when considering intrinsic
fracture properties. In particular, it is of interest to investigate if coefficient models from
Khalili and Valliappan (1996) could still be used even when a fracture has an associated
phase stiffness.

From Tables 1 and 2, we hypothesise that provided that φ∗
f ≈ 1 and the fracture phase

stiffness is orders of magnitude lower than the grain stiffness (K f � K f
s ), effects arising due

to deviations of intrinsic fracture coefficients under the void space assumption (i.e. deviations
from: b∗

f = 1, 1
M∗

α
= 1

Kl
and B∗

α = 1) are negligible. Void space coefficient models could
then be used in place of coefficient models that include intrinsic fracture properties. When
φ∗
f = 1, we use coefficient models from Khalili and Valliappan (1996), and when φ∗

f < 1,

we use coefficient models from Berryman (2002) with K f
s = Ks .

Strictly speaking, use of void space coefficient models implies K f = 0. However, the
aim of this test case is to highlight the effect of missing physics by not including intrinsic
poromechanical parameters within coefficient model formulations. To do this, and to ensure
nonzero values of Kdr , we use the same upscaled bulk modulus for both sets of coefficient
models, which is calculated with a nonzero K f . We consider a composite medium with a
network of fractures that completely dissociates the matrix. Upscaling is then done through
the HS lower bound. To test our hypothesis, we use combinations of various values of φ∗

f
and K f .

We compare results from coefficient models calculated using a fracture modulus several

orders of magnitude lower than the solid grain modulus, (K †
f = K f

s
1750 ), versus ones that use

a fracture modulus only an order of magnitude lower than the solid modulus, (K †
f = K f

s
35 ).

5.3.2 Case 2: Implicit Decoupling Assumptions

For Case 2 we investigate the impact of implicit decoupling assumptions. This is particularly
poignant considering the use of such decoupled constitutive models in the recent works of
Alberto et al. (2019) and Hajiabadi and Khoei (2019). To mimic implicit assumptions, we
consider 1

Q = 0 and A23 = 0 and make no acknowledgement of these assumptions with

respect to relations between mechanical properties. When considering 1
Q = 0 and A23 = 0,

we use coefficient models from Khalili and Valliappan (1996) and Berryman (2002), with
K f = 0, respectively. We reference these results against ones for which no decoupling is
made with coefficient models from Khalili and Valliappan (1996).

Use of the void space models implies K f = 0. Since we do not enforce relations on Kdr

(a fundamental difference between the implicit assumptions considered here and explicit
assumptions), we take an arbitrary value of K †

dr = 10 GPa. As a result, bounds on the
effective constitutive coefficients are not enforced.

5.3.3 Case 3: Explicit Decoupling Assumption—Isostrain

We investigate the effect of assuming isostrain at the microscale whilst making use of
coefficient models from Khalili and Valliappan (1996). Under isostrain the composite and
constituent bulk moduli are linked by the Voigt average (KV

dr = 19.8 GPa). This leads natu-
rally to bounds on the effective constitutive coefficients, with 1

Q = 0 representing an upper
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bound. We compare the isostrain results to those computed when using coefficient models
with a composite bulk modulus coinciding with the HS upper bound and an arbitrary value
(K HS+

dr = 19.5 GPa and K †
dr = 10 GPa, respectively).

Further, we investigate the disparity between results when using the void space coefficient
models of Borja and Koliji (2009) under the assumption of ∂ψα

∂t = 0, and Khalili and Valliap-
pan (1996) under the assumption of incompressible grain isostrain. We use KV

dr = 19.8 GPa
and Ks = ∞ for both sets of coefficient models in this latter isostrain investigation.

5.3.4 Case 4: Explicit Decoupling Assumption—Isostress

For Case 4 we study the effect of assuming isostress at the microscale. In previous works the
coefficient models of Berryman (2002) have been used with an explicit decoupling assump-
tion (A23 = 0) that implies isostress (Kim et al. 2012; Mehrabian and Abousleiman 2014;
Mehrabian 2018).

To avoid cases where Kdr = 0, we consider the fracture phase to have the following
properties: φ∗

f = 0.7 with K f
s = Ks and K †

f = Km
500 . Coefficient models from Berryman

(2002) are then used.
We compare results arising when calculating the composite bulk modulus with the Reuss

average (K R
dr = 3.3 GPa), the HS lower bound (K HS−

dr = 5.7 GPa), and an arithmetic
average of the HS bounds (K AHS

dr = 12.7 GPa). The latter modulus is tested in analogy to
a dual system with inclusions that do not have the maximum weakening effect on the host
material. One example would be a fracture system composed of a network of open and closed
fractures. Another would be aggregate material.

6 Results and Discussions

In the following, we show results of the test cases described above for the double-porosity
Mandel problem. Results are given in terms in evolutions of matrix and fracture pressures,
and vertical strain with time.

To aid in our analysis for pressure and vertical strain, we introduce the following notions
of the instantaneous problem and the time-dependent problem. In both cases, mechanical
equilibrium is governed, for this system, by Eq. (70). In the instantaneous problem, fluid
pressure for continuum α can be shown to be a state function of total stress and fluid pressure
β. In the time-dependent problem, continuum pressures are governed by way of the diffusion
equation, Eq. (34).

The instantaneous problemconsiders the changeof the system fromanunloaded state, t(0),
to a loaded state, t(0+), upon application of instantaneous loading. Under such conditions
the rate of loading is infinitely faster than the rate of inter-continuum fluid transfer (Coussy

2004). Consequently, each continuum is undrained,mt(0+)
l,α = mt(0)

l,α . From Eqs. (23) and (24),
together with the undrained condition (dml,α = 0) we can recover

dpα =
(

1

Mα

− Mβ

(Q)2

)−1 (
Mβbβ

Q
− bα

)
ε. (73)

We note that εzz ∝ ε. Substitution of Eqs. (17) into (73) leads to

dpα = − Mαbα

{Kdr + Mα(bα)2}
{
dσ +

(
bβ + Kdr

bαQ

)
dpβ

}
. (74)
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6.1 Case 1: Intrinsic Fracture Properties

Figure 5a and c showmatrix and fracture pressure evolutions whilst varying intrinsic fracture
properties. We find a good match in both matrix and fracture pressure evolutions using
coefficientmodels fromKhalili andValliappan (1996) andBerryman (2002)when the fracture
is almost all void space (φ∗

f ≈ 1) and the fracture phase stiffness is orders of magnitude lower

than the solid grain stiffness (K f � K f
s ) (Fig. 5a). Even when the intrinsic fracture porosity

is diminishing (φ∗
f = 0.2), provided that the fracture phase stiffness is orders of magnitude

lower than the solid stiffness, the difference between early time matrix pressures with the
different coefficient model formulations is small (Fig. 5b). However, when the fracture bulk
modulus is only an order of magnitude lower than the solid modulus (K f �� K f

s ), early
time fracture pressure differences become measurable as intrinsic porosity decreases (Fig.
5c). This phenomenon can be explained by considering the intrinsic Skempton coefficient,
B∗

α , written in the following form for the fracture phase (Cheng 2016),

B∗
f = 1 − φ∗

f K f (K
f
s − Kl)

Kl(K
f
s − K f ) + φ∗

f K f (K
f
s − Kl)

. (75)

Use of Eq. (75) allows us to cast our observations as a bounding problem such that

B∗
f (φ

∗
f = 1, K f ) < B∗

f (φ
∗
f < 1, K f ) ≤ 1. (76)

The lower bound in Eq. (76) is a fictitious one in that technically materials with an intrinsic
porosity of one should also have a zero stiffness. However, accepting this contradiction is
useful in approaching the bounding problem from a purely quantitative point of view. For the
upper bound, Eq. (75) shows that as φ∗

f approaches zero, B
∗
f must asymptotically approach

one.
If the lower bound in Eq. (76) for a given K f is close to one, then changes in intrinsic

fracture porosity are negligible due to the proximity of the lower and upper bounds. This is
the case when K f � K f

s . If the fracture phase stiffness is not orders of magnitude lower
than the solid stiffness, then the lower bound of B∗

f may be significantly less than one. In
this case, changes in B∗

f cannot be captured when using void space coefficient models, and
thus, early time fracture pressure is underestimated as φ∗

f decreases (Fig. 5c).
Figure 5b and d show the variation in vertical strain for the softer and stiffer fracture

phases, respectively. In Fig. 5b, the strain evolutions are almost identical when using the
more compliant fracture phase for the range of intrinsic fracture porosities. This observation
is coupled to the similarity in pressure evolutions. Whilst induced fracture pressures are
significantly larger when fracture stiffness and intrinsic porosity are non-negligible, Fig. 5d
shows very little differences in vertical strain across the whole intrinsic porosity range. This
is a direct consequence of the algebraic coefficient of strain in Eq. (73) for the fracture phase,
which scales proportionally with the variation in fracture pressure.

6.2 Case 2: Implicit Decoupling

Pressure and vertical strain results for the implicit decoupling assumptions test case are
presented in Fig. 6. When assuming A23 = 0, the matrix and fracture pressure evolutions are
almost identical to the reference case (Fig. 6a),with vertical strains also being correspondingly
very similar (Fig. 6b). When assuming 1

Q = 0, the early time matrix and fracture pressures
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Fig. 5 Matrix (‘M’) and fracture (‘F’) pressure (a, c), and vertical strain (b, d) evolutions for the double-
porosity Mandel problem whilst considering the effects of intrinsic fracture properties. ‘K&V’ denote models
fromKhalili and Valliappan (1996). Different values of intrinsic fracture porosity φ∗

f = 1 (‘K&V’), φ∗
f = 0.8,

φ∗
f = 0.2, and hence different coefficient models, are tested for K †

f = K f
s

1750 , (a, b), and K †
f = K f

s
35 , (c, d)

are measurably lower than the reference case (Fig. 6a). The early time vertical strain is greater
when 1

Q = 0 than the strain in the reference case (Fig. 6b).

The results in Fig. 6a suggest that the assumption 1
Q = 0 has the most noticeable effect

on the poromechanical behaviour of the dual medium. As discussed in Sect. 4.2.1 we would
expect 1

Q < 0. From Eq. (74), setting 1
Q = 0 thus has the effect of removing a pressure

source from continuum α. Removal of this poromechanical coupling explains the lower than
expected induced matrix and fracture pressures. From Eq. (73) we can see dpα ∝ ε−1.
Underestimated pressures therefore explain the overestimated strain when taking 1

Q = 0.

In contrast, Eq. (38) shows that although A23 = 0, 1
Q �= 0. The pressures in each con-

tinuum therefore remain poromechanically coupled with respect to the mixed compliance
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Fig. 6 Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions for the double-porosity
Mandel problem whilst considering macroscale assumptions 1

Q = 0 and A23 = 0. Results are referenced
against the set of coefficient models from Khalili and Valliappan (1996) for which no assumptions have been
made

setting, hence the similarities in pressures and vertical strain when A23 = 0 versus the
reference case.

The current results suggest that assuming A23 = 0 is a reasonable implicit assumption
to make. However, we advise caution when interpreting this result. Based on the results in
this section it would be easy, and incorrect, to use them as a justification for assumptions
made at the microscale. In Sect. 4.2 it was shown that explicit assumptions affect all of the
constitutive coefficients due to bounds on bulk moduli. The remainder of this results section
aims at qualitatively supporting these findings.

6.3 Case 3: Explicit Decoupling—Isostrain

Figure 7a gives the results for the comparison between coefficient models calculated with
different values of Kdr , pertaining to cases of isostrain (Voigt average), the HS upper bound
and an arbitrary value. In the isostrain and HS upper bound cases, matrix pressure evolutions
appear to be almost identical. However, for the arbitrary Kdr case the fracture pressures are
significantly higher. Further, for the arbitrary case the matrix pressures are slightly higher
at early to middle times relative to the aforementioned upper bound cases. The contrast in
fracture pressures is most pronounced between the isostrain and arbitrary composite bulk
modulus cases. For the induced problem, different values of Kdr , which go on to affect
constitutive coefficient calculations, explain the differences in pressure by way of Eq. (74).

An alternative, heuristic approach to explaining the pressure distributions in Fig. 7a can
be achieved by considering the required geometry that would be necessary to give a Kdr that
is lower than the Voigt average. Departure from this upper bound occurs when inclusions are
arranged so as to weaken the composite. They then take on a greater portion of the distributed
stress. We therefore observe a greater induced fracture pressure when using a lower value of
Kdr compared to the Voigt bound, due to the proportionality between stress and pressure.

The early time vertical strains in Fig. 7b can be explained by way of Eq. (73) or through
the heuristic argument. With the latter, towards the upper bounds of Kdr the matrix supports
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Fig. 7 Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions for the double-porosity
Mandel problemconsidering isostrain. ‘KV

dr ’ denotes coefficientmodels forwhich isostrain is assumed (KV
dr =

19.8 GPa). ‘K HS+
dr ’ are models calculated using the upper Hashin–Shtrikman bound for K HS+

dr (19.5 GPa).

‘K †
dr ’ are coefficient models calculated with an arbitrary bulk modulus of 10 GPa

the majority of deformation. Since the matrix is stiff, deformation is low. In contrast, when
fractures are arranged such that they have a greater weakening effect on the solid, deformation
is high.

At later times vertical strain between both the upper bound and arbitrary Kdr cases
diverges. Towards the upper bounds for Kdr , b f < bm . In the case of isostrain, this fact
is easily seen from the relations in Eqs. (60) to (61). The magnitude of bm means that defor-
mation is more strongly coupled to differences in matrix pressure relative to fracture pressure
by way of momentum balance, Eq. (70). This explains the growth in vertical strain separation
at later times shown in Fig. 7b.

Of further interest, considering these both represent upper bounds on the composite bulk
modulus, is the difference in early time fracture pressures between the isostrain and HS
upper bound cases. The early time fracture pressure associated with the HS upper bound is
over double that of the isostrain case. This highlights the need for caution before making
assumptions on the distribution of strain between constituents.

Figure 8a displays the results for the incompressible grain isostrain investigation. For the
case of coefficient models from Khalili and Valliappan (1996), the induced matrix pressure
is significantly larger than the induced fracture pressure. Conversely, when using coefficient
models from Borja and Koliji (2009) with the assumption ∂ψα

∂t ≈ 0, induced matrix and
fracture pressures are equal. This can be explained by considering Eq. (73) which allows us
to equate induced variations in matrix and fracture pressures such that

(
1

Mm
− M f

(Q)2

)(
M f b f

Q
− bm

)−1

dpm

=
(

1

M f
− Mm

(Q)2

) (
Mmbm
Q

− b f

)−1

dp f . (77)
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Fig. 8 Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions for the double-porosity
Mandel problem considering incompressible grain isostrain. ‘K&V’ and ‘B&K’ denote coefficient models
associated with Khalili and Valliappan (1996) and Borja and Koliji (2009), respectively. The latter includes

the assumption ∂ψα
∂t ≈ 0. This allows us to map the effective stress model from Borja and Koliji (2009) onto

the constitutive model Eqs. (17) to (19)

Assuming ∂ψα

∂t ≈ 0 together with the effective Biot coefficient expressions from Borja and
Koliji (2009) (Table 1), Eq. (77) reduces to

(
φ0
m

Kl

1 − φs

φ0
m

)
dpm =

(
φ0
f

Kl

1 − φs

φ0
f

)
dp f , (78)

from which it is easy to see that dpm = dp f .
Under isostrain, we would expect the distribution of stress required to maintain strain

uniformity between matrix and fractures to lead to disparate matrix and fracture pressures.
The result dpm = dp f therefore suggests that the closure condition

∂ψα

∂t ≈ 0 may be an even
stronger assumption than incompressible grain isostrain alone.

Figure 8b shows vertical strain is lower at early times when using coefficient models from
Khalili and Valliappan (1996) under incompressible grain isostrain. This can be explained by
Eq. (73), which is affected by differences in bα arising from each set of coefficient models.

In light of the discussions in Sect. 4.2.2 and the results presented herein, assuming ∂ψα

∂t ≈ 0
appears to be a strong closure assumption to make. Thus, we suggest further development
of a constitutive model for ψα , along with its relationship to the constitutive model shown in
Eqs. (17) to (19).

6.4 Case 4: Explicit Decoupling—Isostress

Figure 9a shows further impacts of the upscaling method on matrix and fracture pressure
evolutions. A stiffer composite bulk modulus leads to a lower induced fracture pressure and
earlier onset of pressure diffusion in the same continuum. This is the case when using the
arithmetic mean of the HS bounds. Non-monotonic rises in matrix and fracture pressures are
more pronounced for more compliant composites. This is the case when assuming isostress
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Fig. 9 Matrix (‘M’) and fracture (‘F’) pressure (a), and vertical strain (b) evolutions for the double-porosity
Mandel problem whilst considering isostress (Reuss average) and other upscaling approaches. ‘K R

dr ’ denotes

coefficient models for which isostress is assumed (KR
dr = 3.3 GPa). Notations ‘K HS−

dr ’ and ‘K AHS
dr ’ are

models calculated using the lower Hashin–Shtrikman bound and the arithmetic mean of the Hashin–Shtrikman
bounds for Kdr , respectively (5.7 GPa and 12.7 GPa, respectively)

(Reuss average) and the HS lower bound. Additionally, more compliant composites exhibit
a faster decrease in matrix pressure at later times when compared to the stiffer modulus case.

Non-monotonic pressure rises are often referred to as the Mandel-Cryer effect within
the literature (Wang 2000; Cheng 2016). We predict that such rises lead to greater pressure
differentials at middle to late times between the matrix and fracture domains. This would
explain the higher rate of matrix pressure diffusion in the compliant material cases.

Figure 9b shows pronounced distinctions in vertical strain for the three different upscaling
cases. As expected, the stiffer arithmetic mean of the HS bounds shows the lowest defor-
mation. Of more interest, considering that they both correspond to lower bounds, are the
difference in strains between the cases of isostress and HS lower bound. Vertical strain at late
times is approximately 75% larger when assuming isostress compared to when using the HS
lower bound.

The cause of the difference in vertical strains between the isostress and HS lower bound
cases canbe explainedusing similar discussions as to those used inSects. 5.3.2 and5.3.3. First,
using the heuristic argument the HS lower bound is higher than the Reuss bound, suggesting
that the matrix is capable of supporting a greater distribution of strain. This explains the
difference in vertical strain at early times. Late time differences can be explained by the
differences in fracture pressure. In contrast to Sect. 5.3.3, towards the lower bounds for
Kdr , b f > bm . The magnitude of b f means that deformation is more strongly coupled to
differences in fracture pressure relative to matrix pressure by way of momentum balance,
Eq. (70).

With a view towards multi-continuum generalisations, based on the results in Sect. 4.2.3
and the qualitative results herein, we recommend care before assuming isostress. This stress
distribution has strong geometrical implications that without experimental substantiation to
prove otherwise, would seem unlikely to hold within a multi-continuum material.

123



Foundations and Their Practical Implications for the… 727

7 Conclusion

The goal of this paper was to formulate a set of recommendations for how and when to use
different constitutive modelling concepts. In doing we revisited and reviewed three main
modelling approaches, which differ in the parameters, and/or assumptions, used for the
calculation of the effective constitutive coefficients. The parameters and assumptions used
in these approaches are summarised as follows:

(i) Constituent mechanical properties; assuming the high permeability, low storage contin-
uum is all void space (no intrinsic fracture properties),

(ii) Constituent pore fractions; assuming the high permeability, low storage continuum is
all void space,

(iii) Constituent mechanical properties, including intrinsic fracture properties.

Based on theoretical and qualitative findings in this paper, we recommend further work
on algebraic closure conditions for models built using continuum pore fractions. Compar-
ing coefficient models (i) and (iii) we found that the effects of intrinsic fracture properties
become measurable when there are significant deviations from the intrinsic poromechani-
cal constitutive coefficients of a void space fracture continuum. In this case φ∗

f < 1 and

K f �� K f
s , and it is advisable to use coefficient models where intrinsic fracture properties

are naturally incorporated. We envisage the aforementioned conditions, and thus real benefit
of using models (iii), to be observed when considering nonlinear poromechanics, where the
internal structure of the high permeability, low storage continuum is evolving (e.g. fracture
closure), thus leading to cases where φ∗

f < 1 and K f �� K f
s . However, in the linear case,

our results show models of type (i) to give very good matches to models of type (iii) even
when φ∗

f < 1, provided K f � K f
s . Therefore, as a first approach we recommend the use

of models (i) for poromechanical dual-continuum modelling given that we expect the high
permeability, low storage continuum to be mechanically weaker than solid grains.

The second set of recommendations is formed on the basis of our investigations into
implicit and explicit decoupling assumptions. In both cases mechanical coupling between
continuum pressures is neglected. In the former we showed that implicit assumptions can
lead to the removal of pressure sources, leading to physically unreliable results. We therefore
recommend the use of a full constitutive system where possible.

Even with a full constitutive system, explicit assumptions have been made as a passage
to simplifying relations between composite and constituent moduli without considering the
physical implications of their use. In this casewe showed that explicit decoupling assumptions
are coincident with bounds on compositemoduli that arise naturally under end-member states
of isostrain and isostress. However, for isotropic composite materials, it is well known that
the bounds obtained under isostrain and isostress can be loose, and that tighter bounds using
similar quantities are readily available within the literature. Our qualitative investigations
showed clear differences in poromechanical behaviour when using these different bounds.

To conclude, bounds arising from isostrain and isostress states, which are concurrent with
explicit decoupling assumptions, can provide a useful means for guiding our intuition into
multiscale poromechanical behaviour, given their ease of computation. However, for practical
subsurface applications, we recommend against the use of explicit decoupling assumptions,
as they have physical and geometrical implications that are unlikely to be justified within
isotropic multiscale materials.
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