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Abstract
The contribution of Robin boundaries on the onset of convection in a horizontal saturated
porous layer covered by a free surface on the top is investigated here. The saturated solid
matrix is assumed in a regime where the temperature profile of the solid phase differs from a
fluid one. Two energy equations are adopted as a consequence of the local thermal non-
equilibrium model (LTNE), and four Biot numbers are arising out of the third kind of
boundaries imposed on both surfaces. The dimensionless parameters H and γ which rule
the transition from local thermal equilibrium (LTE) to non-equilibrium one or vice versa
are taken into account. The cases of equal and different Biot numbers have been considered
beside the asymptotic limits of LTE and LTNE one. A linear stability analysis of the basic
motionless state has been performed. The perturbation terms of the main steady flows are
evaluated in the form of plane waves. The eigenvalue problem is solved either analytically or
numerically depending on the temperature gradient of the fluid phase. The analytical solu-
tion is handled through a dispersion relation, while the numerical one is computed by the
Runge–Kutta solver combined with the shooting method. The variation in Darcy–Rayleigh
number and wave number is obtained with respect to Biot numbers for all resulting cases.

Keywords Porous medium · Free surface · Robin boundary conditions · Local thermal
non-equilibrium · Linear stability · Biot number

1 Introduction

The convection heat transfer in porous media is one of the widespread phenomena in the
thermal engineering applications, and it is usually investigated in the condition where both
phases are in local thermal equilibrium (LTE). The hypothesis of LTE implies that the solid
and fluid phases have an equal temperature profile so that a single energy equation is used
to model the common temperature field (Tyvand 2002; Barletta 2011). However, there exist
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some situations where LTE is required to be relaxed. For instance, when hot fluid with higher
thermal conductance flows into cold insulating solid matrix significant difference will arise
in the temperature distribution of the saturated medium which in turn will cause the local
thermal non-equilibrium model (LTNE) (Nield 2012; Kaviany 2012; Rees and Pop 2005;
Kuznetsov 1998). In this example, the temperature of the solid matrix will be equal to the
fluid one only after the passage of a certain specific time. This feature does not admit that the
LTNE occurs only in unsteady flows as it can also happen in steady regimes. Two models of
energy equation are employed to account for the difference in the temperature fields between
the solid matrix and the saturating fluid. The term of h combines the separate temperatures
in both energy equations and rules the heat lost or gained from one phase to another. Small
and vanishing values of h correspond to a weak transfer of heat between solid and fluid
phases, while conversely, such values as a large to an infinite give rise to strong equilibrium
effects. This behavior cannot be assured without supplement conditions imposed on thermal
conductivities ks and k f . Banu and Rees (2002) came up with two dimensionless numbers
H and γ which are modeled by a heat transfer coefficient h, as well as volumetric thermal
conductivities, to account for the LTNE effects on the onset of convection in Darcy–Bénard
configuration. The critical value of Darcy–Bénard problem using LTNE may arrive at 4π2 if
the limit of H → ∞ with γ ≈ O(1) or γ → ∞ with H ≈ O(1) is taken into consideration
(Banu and Rees 2002; Lapwood 1948; Horton and Rogers 1945; Rees 2000). Barletta et al.
(2015) adopted the setup of a Darcy–Bénard problem with a free surface on the top and rigid
isothermal wall at the bottom. The upper layer was subjected to Robin boundary condition
whose effect besideLTNEbrings about twodifferentBiot numbers. Instead of having a perfect
thermal conducting wall at the bottom, Celli et al. (2017) assumed the case where the lower
surface is heated by uniform heat flux (Model A). Celli et al. (2017) pointed out that the case
of H → 0 has the most stable configuration when a free surface behaves as an isoflux layer.
On the other hand, using rough boundary conditions can hinder the convective instability in
Rayleigh–Bénard problem (Siddheshwa 1995). Celli and Kuznetsov (2018) noticed that the
increase in roughness effects at the boundaries enhances the stability behavior of the fluid
medium.

In the present paper, we extend the previous problems by modeling both thermal layers as
a Robin boundary conditions with two different external ambient temperatures. The thermal
boundaries will give rise to four different Biot numbers, and more than one limiting cases
will be studied. The eigenvalue problem obtained from the normal modes method is handled
either numerically by using a Runge–Kutta procedure in combinationwith a shootingmethod
or analytically by defining an implicit dispersion relation.

2 Problem Statement and Formulation

Let us consider the archetype of Darcy–Bénard configuration with one free surface on the top
and one rigid wall at the bottom; see Fig. 1. Both surfaces are subjected to Robin boundaries
with two different external temperatures T1 > T2. The direction of gravity force contrasts
with the unit vector ez in the form of g = −gez. The hypothesis of Oberbeck–Boussinesq
approximation and Darcy’s law are taken into account. The temperature distribution of fluid
phase differs to solid one as a consequence of local thermal non-equilibrium model. More
than two different Biot numbers are considered due toRobin boundaries. TheNewton’s law of
cooling is used to model the layers exposed to external fluid in thermal boundary conditions.
The governing energy equations and Darcy’s law are thus written as
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Fig. 1 A horizontal porous channel

∇� · u� = 0, (1a)
μ

K
∇� × u� − ρ f βg∇� × [(T �

f − T1)ez] = 0, (1b)

(1 − φ)
∂T �

s

∂t�
= (1 − φ)αs ∇�2T �

s + h

(ρC)s
(T �

f − T �
s ), (1c)

φ
∂T �

f

∂t�
+ u� · ∇�T �

f = φα f ∇�2T �
f − h

(ρC) f
(T �

f − T �
s ). (1d)

The pressure gradient is neglected from Darcy’s law in Eq. (1b) by the curl operator. The
subscripts f and s denote the properties of the saturating fluid and of the solid matrix,
respectively. The star notation indicates dimensional variables and operators, where u is
velocity field (u, v, w), α is thermal diffusivity [m2/s], β is thermal expansion coefficient
[K−1], C is heat capacity [J/(Kg K)], φ is porosity, h is inter-phase heat transfer coefficient
[W/m3 K], μ is dynamic viscosity [Pa s], ρ is density, t is time, d is the layer thickness [m]
and K is the permeability of the medium [m2].

As the roughness of the boundaries is not taken into account, the relevant boundary
conditions are

z� = d : ∂w�

∂z�
= 0, −ks

∂T �
s

∂z�
= hs2(T

�
s − T2), −k f

∂T �
f

∂z�
= h f 2(T

�
f − T2). (2a)

z� = 0 : w� = 0, ks
∂T �

s

∂z�
= hs1(T

�
s − T1), k f

∂T �
f

∂z�
= h f 1(T

�
f − T1). (2b)

The velocity boundary condition has just one equation on each surface which is the
impermeability and the free surface. This feature is due to low derivative order of Darcy’s
model in the local momentum balance equation. k is the thermal conductivity [W/(mK)],
while the subscript “1” denotes the external environment below a rigid wall and the subscript
“2” denotes the external environment above a free surface.

3 Nondimensionlization

The dimensionless quantities are used to rescale the physical variables of this problem in the
form of
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∇� → ∇ 1

d
, t� → t

d2

α f
, u� → u

φα f

d
, T �

s, f → T2 + Ts, f (T1 − T2). (3)

The non-dimensional parameters are evaluated as :

H = hd2

φk f
, γ = φk f

(1 − φ)ks
, R = βΔT gKd

ναm
, ΔT = T1 − T2,

Bs1 = hs1d

ks
, B f 1 = h f 1d

k f
, Bs2 = hs2d

ks
, B f 2 = h f 2d

k f
,

λ = α f

αs
, km = (1 − φ)ks + φk f , α f = k f

(ρC) f
, αm = km

(ρC) f
. (4)

The parameters H and γ are the dimensionless inter-phase heat transfer coefficient and
thermal conductivity ratio, respectively. The symbol B defines the Biot number and the
symbol R indicates the Darcy–Rayleigh number.

The dimensionless quantities defined in Eqs. (3) and (4) are substituted into the governing
equations as well as into the boundary conditions. The dimensionless forms of the governing
equations and boundary conditions are given with respect to the stream functions Ψ in the
form of

∇2Ψ + 1 + γ

γ
R

∂T f

∂x
= 0, (5a)

λ
∂Ts
∂t

= ∇2Ts + γ H(T f − Ts), (5b)

∂T f

∂t
+ ∂Ψ

∂z

∂T f

∂x
− ∂Ψ

∂x

∂T f

∂z
= ∇2T f + H(Ts − T f ), (5c)

z = 1 : ∂Ψ

∂z
= 0, −∂Ts

∂z
= Bs2Ts, −∂T f

∂z
= B f 2T f , (5d)

z = 0 : Ψ = 0,
∂Ts
∂z

= Bs1(Ts − 1),
∂T f

∂z
= B f 1(T f − 1), (5e)

where the stream functions used in Eq. (5) are

u = −∂Ψ

∂x
, w = ∂Ψ

∂z
. (6)

4 Basic Flow

In the rest state, there is no motion of the Newtonian fluid through the solid skeleton which
means

Ψb = 0. (7)

The subscript b refers to the basic state. The current expressions of Ts,b and T f ,b possess
a huge number of governing parameters which lead both temperature fields to show a large
mathematical form in comparison with other limiting cases. Consequently, the two basic
temperature profiles are summed up in the following form:

T f ,b = N f ,b

Ds f ,b
and Ts,b = Ns,b

Ds f ,b
. (8)
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The term N f ,b is the numerator function of the basic solution obtained for the fluid phase.
Thus, the expression of N f ,b can be evaluated as

N f ,b = F0 + (F3 + F4 − F5)Ω coshΩ + (F8 − ΩF1) cosh(Ωz)

−(F9 + F2) sinh(Ωz) − (F6 + F7) sinhΩ. (9)

In the meantime, the numerator function of the solid phase Ns,b is written as

Ns,b = F0 + (F3 + F4 − F5)Ω coshΩ + γ cosh(Ωz)(ΩF1 − F8)

+γ sinh(Ωz)(F2 + F9) − (F6 + F7) sinhΩ. (10)

The coefficients F0, F1,…, F9 are defined as variable functions for Ns,b as well as N f ,b,
namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 = γΩ(Bs1 − B f 1)(B f 2 − Bs2),

F1 = (B f 2 − Bs2)(Bs1 + γ B f 1),

F2 = B f 1Bs1(B f 2 − Bs2)(1 + γ ),

F3 = Bs1(γ Bs2 + B f 2(1 − Bs2(z − 1)(1 + γ ))),

F4 = B f 1(γ B f 2 + γ Bs2(γ − B f 2(z − 1)(1 + γ ))),

F5 = B f 1Bs1(1 + γ )(Bs2(z − 1) − 1 + γ (B f 2(z − 1) − 1)),

F6 = B f 1Bs1(1 + γ )(−γ Bs2 + B f 2(Bs2(z − 1)(1 + γ ) − 1)),

F7 = Ω2(Bs1 + γ B f 1)(−1 + Bs2(z − 1) + (B f 2(z − 1) − 1)γ ),

F8 = (B f 1 − Bs1)((Bs2 + γ B f 2)Ω coshΩ + B f 2Bs2(1 + γ ) sinhΩ),

F9 = (B f 1 − Bs1)(B f 2Bs2(1 + γ ) coshΩ + (Bs2 + γ B f 2)Ω sinhΩ).

(11)

Otherwise, there is only one denominator function Ds f ,b employed here as both basic
temperature solutions have the same bottom part in a fraction. Thus, denominator function
Ds f ,b is defined as

Ds f ,b = {−2γΩ(B f 1 − Bs1)(B f 2 − Bs2) + Ω coshΩ((B f 1 + B f 2)(Bs1 + Bs2 + Bs1Bs2)

+ γ (2B f 1B f 2 + B f 1(2 + B f 2)Bs1 + ((2 + B f 1)Bs1 + B f 2(2 + B f 1 + Bs1))Bs2)

+ (B f 1 + B f 2 + B f 1B f 2)(Bs1 + Bs2)γ
2) + ((1 + γ )(B f 1B f 2(Bs1 + Bs2 + Bs1Bs2)

+ γ Bs1Bs2(B f 1 + B f 2 + B f 1B f 2)) + (Bs1 + Bs2 + Bs1Bs2 + (B f 1 + B f 2 + Bs1

+ B f 2Bs1 + Bs2 + B f 1Bs2)γ + (B f 1 + B f 2 + B f 1B f 2)γ
2)Ω2) sinhΩ}. (12)

Therefore, the difference in temperature profiles between the solid and fluid phases for the
general case endows that

T f ,b − Ts,b = (1 + γ ) × {Ω −F1 cosh(Ωz) + coshΩ(1 − z)(B f 1 − Bs1)(Bs2 + γ B f 2)

Ds f ,b

− (1 + γ )(B f 1Bs1(B f 2 − Bs2) sinh(Ωz) + B f 2(Bs1 − B f 1)Bs2 sinhΩ(1 − z)))

Ds f ,b
}.
(13)

The dimensionless number of Ω is developed as

Ω = √
H(1 + γ ). (14)
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4.1 Limiting Case Bf1 = Bs1 and Bf2 = Bs2

The two phases can simultaneously have the same basic solution as the condition of
B f 1

Bs1
=

B f 2

Bs2
= 1 is taken into account. We find that the local thermal equilibrium is present for

whatever value of H and γ . Therefore, the basic solution of the two phases can be written
as

Ts,b = T f ,b = B f 1(1 + B f 2(1 − z))

B f 1 + B f 2 + B f 1B f 2
. (15)

4.2 Local Thermal Equilibrium (LTE)

There are just two different limits whose basic solution behaves as in the local thermal
equilibrium regime regardless of the Biot number effects :

– Limit H → ∞ with γ ≈ O(1) (1st case of LTE):
The limiting case of h → ∞with k f ≈ O(1) describes a necessary condition for getting
the occurrence of LTE between both phases. Under this condition, the basic temperature
profiles of the solid and fluid phases display again an identical form defined as

Ts,b = T f ,b = Bm1(1 + Bm2 − Bm2z)

Bm1 + Bm2 + Bm1Bm2
. (16)

The Robin boundary conditions define two effective Biot numbers, one for the lower
rigid wall Bm1 and one for the upper free surface Bm2. Thus, these two parameters can
be given as:

Bm1 = Bs1 + γ B f 1

1 + γ
and Bm2 = Bs2 + γ B f 2

1 + γ
. (17)

The difference in the asymptotes between the temperature gradients of the solid and fluid

phases in limit H → ∞, with the condition of
B f 1

Bs1
�= B f 2

Bs2
�= 1, is an expected result

as both layers are exposed to third kind of boundary conditions. Therefore, the limits of
the temperature gradients for all possible values of z in the range of [0, 1] are obtained
as

T ′
f ,b

H→∞
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− B f 1Bm2

Bm1 + Bm2 + Bm1Bm2
, if z = 0

− Bm1Bm2

Bm1 + Bm2 + Bm1Bm2
, if 0 < z < 1

− B f 2Bm1

Bm1 + Bm2 + Bm1Bm2
, if z = 1

, (18)

while

T ′
s,b

H→∞
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− Bs1Bm2

Bm1 + Bm2 + Bm1Bm2
, if z = 0

− Bm1Bm2

Bm1 + Bm2 + Bm1Bm2
, if 0 < z < 1

− Bs2Bm1

Bm1 + Bm2 + Bm1Bm2
, if z = 1

. (19)
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Fig. 2 Plots of Ts,b and T f ,b for γ = 100, B f 1 = 1 and B f 2 = 1 with H = 103

Owing to Robin boundaries Eq. (5), the temperature profiles and their gradient limits
behave strangely at vicinity regions of z = 0 as well as z = 1 despite the large value of
H as vividly exhibited in Fig. 2.

– Limit γ → ∞ with H ≈ O(1) (2nd case of LTE):
The special case describes the situations where the fluid phase has a higher capability to
conduct heat than a solid one. The feature breaks down the local thermal non-equilibrium
regime and gives rise to equilibrium one only if the condition of nonvanishing value in the
volumetric heat transfer coefficient is taken into account. As the limiting case is fulfilled,
both temperature phases have a congruence form in the basic solution which is expressed
as

T f ,b = Ts,b = B f 1(1 + B f 2 − B f 2z)

B f 1 + B f 2 + B f 1B f 2
. (20)

4.3 Limiting Case H → 0

The convection mode does not occur between both phases when the limit of h → 0 is
considered. The special case of H → 0 is valid if the conduction process exists with the
condition of γ ≈ O(1). In this case, both phases display unequal and decoupled temperature
profiles. However, we can notice a strongmathematical resemblance between the temperature
profile of solid and fluid phases. The basic solution of the two phases is

Ts,b = Bs1(1 + Bs2 − Bs2z)

Bs1 + Bs2 + Bs1Bs2
, T f ,b = B f 1(1 + B f 2 − B f 2z)

B f 1 + B f 2 + B f 1B f 2
. (21)

4.4 Limiting Case � → 0

The assumption ks � k f with H ≈ O(1) is stemmed from the higher ability of the solid
matrix in conducting heat. This effect sustains the inverse behavior of LTE which drives to
different temperature fields. However, the two phases are slightly coupled to each other in
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the basic temperature profile by means of Biot numbers. Consequently, the basic solutions
of the special case are written as

Ts,b = Bs1(1 + Bs2 − Bs2z)

Bs1 + Bs2 + Bs1Bs2
, (22)

T f ,b = Bs1(Bs2 − B f 2)
√
H cosh(

√
Hz) + B f 1B f 2Bs1 sinh

√
H

(Bs1 + Bs2 + Bs1Bs2)((B f 1 + B f 2)
√
H cosh

√
H + (B f 1B f 2 + H) sinh

√
H)

+ B f 1B f 2Bs1Bs2 sinh
√
H + (B f 1 + B f 2)Bs1

√
H(1 − Bs2(z − 1)) cosh

√
H

(Bs1 + Bs2 + Bs1Bs2)((B f 1 + B f 2)
√
H cosh

√
H + (B f 1B f 2 + H) sinh

√
H)

+ Bs1H sinh
√
H + Bs1Bs2H sinh

√
H + (B f 1 − Bs1)Bs2

√
H cosh(

√
H(z − 1))

(Bs1 + Bs2 + Bs1Bs2)((B f 1 + B f 2)
√
H cosh

√
H + (B f 1B f 2 + H) sinh

√
H)

− B f 1B f 2Bs2 sinh(
√
H(z−1))−B f 1B f 2Bs1Bs2z sinh

√
H−Bs1Bs2Hz sinh

√
H

(Bs1+Bs2+Bs1Bs2)((B f 1+B f 2)
√
H cosh

√
H+(B f 1B f 2+H) sinh

√
H)

− B f 2Bs1Bs2 sinh(
√
H(z−1))+B f 1Bs1(Bs2−B f 2) sinh(

√
Hz)

(Bs1+Bs2+Bs1Bs2)((B f 1+B f 2)
√
H cosh

√
H+(B f 1B f 2+H) sinh

√
H)

.

(23)

5 Stability Analysis

As themomentum and the energy equations are nonlinear, the perturbationmethod is applied.
Thus, the dependent variables are written as

{
T f s = T f s,b + εT̃ f s(x, z, t),

Ψ = Ψb + εΨ̃ (x, z, t).
(24)

The coefficient ε is a small amplitude fluctuation assumed as ε << 1, while the rescaled
streamfunction amplitude is noted as Ψ̃ . Both T̃ f and T̃s are, on the other hand, the per-
turbation temperature profile of the solid and the fluid phases, respectively. By substituting
Eq. (24) into Eq. (5), the linear form of the governing equations is obtained as

∇2Ψ̃ = −R
1 + γ

γ

∂ T̃s
∂x

, (25a)

χ
∂ T̃s
∂t

= ∇2T̃s + γ H(T̃ f − T̃s), (25b)

∂ T̃ f

∂t
− ∂Ψ̃

∂x
T ′
f b = ∇2T̃ f + H(T̃s − T̃ f ). (25c)

The perturbation functions can be evaluated by means of normal modes method as standing
waves, which are expressed as

{
Ψ̃ (x, z, t), T̃s(x, z, t), T̃ f (x, z, t)

}
=

{
iψ(z), ϕ(z), θ(z)

}
ei(ax−ωt). (26)

The functionsψ(z), ϕ(z) and θ(z) are the dimensionless amplitudes of the normal modes.
The perturbation forms of Eq. (26) are substituted into Eq. (25) which give rise to a set of
ordinary differential equations with a dimensionless complex frequency ω = ωR + iωI and
a wavenumber a. The imaginary part ωI is the temporal growth rate of fluctuation, while the
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real part ωR is the angular frequency of the wave. Consequently, the ordinary differential
equations are written as

ψ,zz − a2ψ + aR
1 + γ

γ
θ = 0, (27a)

ϕ,zz − a2ϕ + γ H(θ − ϕ) + iωχϕ = 0, (27b)

θ,zz − a2θ + H(ϕ − θ) − aψT f b,z + iωθ = 0. (27c)

The subscript zz refers to the second derivative with respect to z-axis. The principle of
exchange of instabilities has to be valid for whole cases before looking forward to the analyt-
ical or numerical procedures used for investigating the stability behavior of the basic flows.
The condition under which the eigenvalues problem satisfies the principle of exchange of
instabilities is when no traveling modes arising out of the perturbed basic solution. A formal
proof is carried out in Appendix A for a limiting case H → 0. The procedure that is used
to valid the principle of exchange of instabilities in Appendix A can also be applied to other
cases. The variable coefficients of T ′

f b in the general case and γ → 0 hinder the condition of
ωR = 0 to be analytically demonstrated. However, the numerical results exhibit the absence
of the oscillatory modes in these two cases. Otherwise, as the linear stability analysis is look-
ing for neutral modes, the condition of ωI = 0 must be taken into consideration. Therefore,
the eigenvalues problem can be simplified as

ψ,zz − a2ψ + aR
1 + γ

γ
θ = 0, (28a)

ϕ,zz − a2ϕ + γ H(θ − ϕ) = 0, (28b)

θ,zz − a2θ + H(ϕ − θ) − aψT f b,z = 0, (28c)

while the boundary conditions are

ψ(0) = 0, ϕ,z(0) − ϕ(0)B f 1 = 0, θ,z(0) − θ(0)B f 1 = 0, (29a)

ψ,z(1) = 0, ϕ,z(1) + ϕ(1)B f 2 = 0, θ,z(1) + θ(1)B f 2 = 0. (29b)

6 Analytical Solutions

The analytical solution for each case is restricted with such common condition related to
the nature coefficients of T f b,z . On the whole, the dispersion relation can be determined
analytically from those limiting cases whose basic solution displays the expression T f b,z as
an independent function of the variable z.

6.1 Limiting Case Bf1 = Bs1 and Bf2 = Bs2

The eigenvalue problem for this special case is defined as

ψ,zz − a2ψ + aR
γ + 1

γ
θ = 0, (30a)

ϕ,zz − a2ϕ + Hγ (θ − ϕ) = 0, (30b)

θ,zz − a2θ − H(θ − ϕ) + a B̃ f 12ψ = 0. (30c)

z = 0 : ψ = 0, ϕ,z − ϕB f 1 = 0, θ,z − θB f 1 = 0, (30d)

z = 1 : ψ,z = 0, ϕ,z + ϕB f 2 = 0, θ,z + θB f 2 = 0. (30e)
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The solution of Eq. (30) is obtained by expressing the functions ψ(z), ϕ(z) and θ(z) as
sequence of exponential forms written as

ψ(z) =
6∑

n=1

Cne
χn z, (31a)

ϕ(z) =
6∑

n=1

a B̃ f 12(a2 + Hγ − χn
2)

(a2 − χn
2)(a2 + H + Hγ − χn

2)
Cne

χn z, (31b)

θ(z) =
6∑

n=1

aHγ B̃ f 12

(a2 − χn
2)(a2 + H + Hγ − χn

2)
Cne

χn z . (31c)

The coefficients χn are defined as

χ1,2 = ±(σ1)
1/2, χ3,4 = ±(σ2)

1/2, χ5,6 = ±(σ3)
1/2. (32)

The root parameters σ1, σ2 and σ3 can be obtained from the following equation:

a2
RB̃ f 12(1 + γ )

γ
(a2 + Hγ − σ) − (a2 − σ)2(a2 + H + Hγ − σ) = 0, (33)

The dimensionless number B̃ f 12 is given as

B̃ f 12 = B f 1B f 2

(B f 1 + B f 2 + B f 1B f 2)
. (34)

Now, we substitute Eq. (31) into the boundary conditions Eq. (30) to obtain a linear homoge-
neous system composed of six algebraic equations. These resulting equations yield a square
matrix M multiplied by a column vector c = {C1, . . . ,C6} written as

M · c = 0. (35)

The determinant of thematrixM is strictly null if the constraint {C1, . . . ,C6} �= 0 is satisfied.
The validity of this condition can be admitted through the boundary conditions defined
in Eq. (30). The resulting function which is obtained from the determinant of the matrix
M is the dispersion relation of the marginal stability curves R(a) drawn for every fixed
value of (H , γ, Bs). The dispersion relation is defined as a combination of the parameters
a, R, H , B f 1, B f 2, and for the sake of brevity it is not reported here.

6.2 Limiting Case H → ∞ (LTE)

The analytical solution of LTE case is investigated by rescaling the parameters θm and ψ̂ as
:

θm = γ θ + ϕ

1 + γ
, ψ̂ = γ

1 + γ
ψ. (36)

The temperature fields became equal when LTE case is hold which means θ = ϕ. On account
of Eq. (36), we can infer that θ = ϕ = θm . Consequently, Eqs. (28) and (29) are simplified
to
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ψ̂,zz − a2ψ̂ + aRθm = 0, (37a)

θm,zz − a2θm + a
B f m1B f m2

B f m1 + B f m2 + B f m1B f m2
ψ̂ = 0. (37b)

z = 0 : ψ̂(0) = 0, θm,z(0) − θm(0)Bm2 = 0, (37c)

z = 1 : ψ̂,z(1) = 0, θm,z(1) + θm(1)Bm1 = 0. (37d)

The analytical solution of ψ̂(z) and θm(z) is evaluated in the following form:

ψ̂(z) = C1e
η1z + C2e

−η1z + C3e
η2z + C4e

−η2z (38a)

θm(z) =
√

Bm1Bm2

(Bm1 + Bm2 + Bm1Bm2)R
(C4e

−η2z + C3e
η2z − C−η1z

2 − C1e
η1z), (38b)

while the coefficients of σ1 and σ2 are determined as

σ1,2 =
√
√
√
√a(a ±

√
Bm1Bm2R

Bm1 + Bm2 + Bm1Bm2
). (39)

The dispersion relation for a LTE case is computed by the same procedure employed for a
special one B f 1 = Bs1 and B f 2 = Bs2. The case of LTE contrasts with the previous one in
the number of vectors Cn . The linear algebraic equations resulted by substituting Eqs. (38)
into (37) give rise to a just five coefficients in the column vector of c and 4 × 4 matrix. The
determinant of the square matrixM defines a dispersion relation in a function of a, R, H , γ ,
Bm1 and Bm2.

6.3 Limiting Case H → 0

The complete thermal decoupling case highlighted by limit H → 0 with γ ≈ O(1) yields
the following eigenvalues problem:

ψ,zz − a2ψ + a
1 + γ

γ
Rθ = 0, (40a)

θ,zz − a2θ + a B̃ f 12ψ = 0. (40b)

z = 0 : ψ(0) = 0, θ,z(0) − θ(0)B f 1 = 0, (40c)

z = 1 : ψ,z(1) = 0, θ,z(1) + θ(1)B f 2 = 0. (40d)

We mention that the eigenvalues problem considered in the case of LTE is nearly the same as
the one obtained when H → 0. The two opposite behaviors of H → ∞ and H → 0 differ

in the Darcy–Rayleigh number just by an overall scaling factor
γ

γ + 1
, namely

1 + γ

γ
R → R. (41)

Therefore, the modified dispersion relation can be analytically inferred from that of H → ∞
by applying

Bm1 → B f 1, Bm2 → B f 2. (42)
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7 Numerical Solutions

The numerical procedure adopted in looking for the neutral stability curves is applicable
for all basic state in contrast to the analytical method which is not available for a full case
and γ → 0. Consequently, the two cases are solved only numerically by employing the
sixth-order Runge–Kutta solver with the shooting method. The same numerical procedure
can be followed by other limiting cases to assess the compatibility between the analytical
and numerical results. The use of a sixth-order Runge–Kutta technique required from the
boundary conditions to be supported by such additional initial conditions at target z = 0:

– The supplement conditions for general case,

ψ ′(0) = 1, θ(0) = s1, ϕ(0) = s2. (43)

– The supplement conditions for limiting case γ → 0,

ψ ′(0) = 1, θ(0) = s1. (44)

As the governing equations are homogeneous, the normalization condition of ψ ′(0) = 1
is fixed in both cases. The parameters s1 and s2 are denoted as unknown values for ϕ(0)
and θ(0), respectively. On the other hand, the eigenvalue R is, in fact, computed alongside
the parameters s1 and s2 by means of a shooting method to fulfill the constraints imposed
by the boundary conditions at z = 1.

– For the general case,

ψ ′(1) = 0, θ ′(1) + B f 2θ(1) = 0, ϕ′(1) + Bs2ϕ(1) = 0. (45)

– For the limiting case γ → 0,

ψ ′(1) = 0, θ ′(1) + B f 2θ(1) = 0. (46)

The Runge–Kutta solver and the shooting method are together implemented in theMath-
ematica 8 (© Wolfram Research) environment, through the built-in functions NDSolve
and FindRoot, respectively. The former function is employed in the numerical procedure
as to deal with the initial value problem defined in Eqs. (28) and (29), while the latter
one is used to valid the constraints of Eqs. (45) and (46). Moreover, the input data (H , γ ,
a, B f 1, Bs1, B f 2, Bs2) are required to be assigned in the overall numerical procedure to
obtain the absolute minimum of the neutral stability curve R(a), which in turn describes
the threshold values (acr, Rcr) for the initiate of the convective instability.

Table 1 elucidates a comparison in the general case, of the numerical and analytical results
tackled by using a shooting method and a dispersion relation for H = 0 with γ = 10. The

Table 1 Critical wave number andDarcy–Rayleigh number for different values of B f 1 and B f 2 in the limiting
case H → 0

Bs1 = γ B f 1, Bs2 = γ B f 2 and γ = 10 in the limit H → 0

B f 1 B f 2 acr(A) acr(N ) Rcr(A) Rcr(N )

0.1 10 1.662229329 1.662229329 146.741970484 146.741970807

1 1 1.465972662 1.465972662 25.831309830 25.831309870

10 0.1 1.531118663 1.531118666 95.180897551 95.180897976

“A” denotes the analytical solution and “N” the numerical solution
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congruence between the numerical and analytical values of the critical wavenumber and the
critical Rayleigh–Darcy number is very clear, in particular with first eight figures.

8 Discussion of the Results

In a general case, the authors try to explore an explicit relationship between the Biot numbers
by adjusting the request porosity of the medium as 1/2 and the heat transfer coefficients as
the following form: hs1/h f 1 = hs2/h f 2 = 1.

8.1 General Case Bf1 = �Bs1 and Bf2 = �Bs2

The relative behavior of the general case Eq. (28) is highlighted in Figs. 3 and 4. The results
plotted in these figures are, briefly, obtained by means of the numerical technique defined in
Sect. 7. We would remind that stable flows always lay below each marginal stability curves
whichmeans less destabilization effects are concentrated in the thermoconvective region. The
marginal stability curves in Fig. 3 show the familiar shape of stability problems related to
Horton–Rogers–Lapwood configuration. Figure 3 exhibits the neutral curves of R against a
for a different range of values of Biot numbers, with fixed H = 1 and γ = 10. If we compare
the curves of the upper frames with those of the lower one, we notice a minor difference
between the lowest branch of the marginal stability curves of Bs1 = 1 and Bs2 = 1, and also
between those of B f 1 = 1 and B f 2 = 1. Comparison of Bs1 = 1 or Bs2 = 1 with B f 1 = 1
or B f 2 = 1 exhibits that the variation in R(a) is more sensitive to the Biot numbers of the
solid phase than the fluid one as the marginal curves show the largest threshold values when
solid boundary layers have a poor ability to absorb or lose heat to the external medium.

Otherwise, to uphold the remarks deduced from the neutral curves, Fig. 4 displays the
main trend of Rc and ac for various values of γ with H = 1. The curves of R in the left
frames show a clear non-monotonic increasing behavior with the Biot numbers of the solid
phase and γ , whereas in the right frames, the trend of ac is an increasing function of Bs1 and
Bs2, on the other hand, a decreasing function of γ . In other words, the basic solution always is
stable when both layers behave as an insulating surface, but as one layer approaches Dirichlet
boundary conditions, the destabilization effects grow in a porousmedium and a basic solution
becomes less stable with maximum critical values Rc = 974.213 and Rc = 581.367 attained
for γ → ∞. Otherwise, the increasing behavior of Rc with respect to γ resembles the one
defined for a more general case in Barletta et al. (2015) and Celli et al. (2017). The peculiar
shape of the curves defined in Fig. 4 refers to the implicit role of the factor γ in the assumption
assigned by the authors for a general case and in a transition effect of the Biot numbers from
an adiabatic state to an isothermal one. Shortly, the basic flow exhibits the most stable state
in the configurations of Bs1 → 0, Bs2 → 0, Bs1 ≈ γ → ∞ and Bs2 ≈ γ → ∞.

8.2 Limiting Case Bf1 = Bs1 and Bf2 = Bs2

The analytical results defined for this limiting case are illustrated in Fig. 5. Figure 5 displays
the change in Rc andac versusBiot numbers for different values ofγ andfixedvalueofH = 1.
The trend of Rc in Fig. 5 is monotonically increasing function as Bs1 or Bs2 decreases. In this
case, the basic solution experiences the stability behavior only when surface layers have a
poor ability to exchange heat with external fluid. The figure also exhibits that an infinite value
of Rc appears in the case where a perfect conducting fluid phase is present. This would imply
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Fig. 3 General case Bs1 = γ B f 1 and Bs2 = γ B f 2: neutral stability curves relative to H = 1 and γ = 10
with various values of Biot numbers

that for an insulating solid boundary layer and with an infinite thermal conductivity ratio the
basic flow always is stable. Otherwise, increasing Bs1 or Bs2 means a monotonic decreasing
behavior of Rc with a maximum critical values Rc = 26.070 and Rc = 40.640 obtained
when a fluid phase has the highest thermal conductivity. This implies that the destabilization
effects increase as the solid boundary layers become nearer to isothermal state. We remind
that Barletta et al. (2015) have attained Rc = 26.749 in the conditions where H = 10 and
γ = 10 for a configuration of isothermal Robin boundary conditions. On the other hand,
the variation in ac versus Bs1 and Bs2 displays a monotonic increasing behavior as Bs1 or
Bs2 increases. The asymptotic dashed line in the curves of the critical wavenumber refer to
cases defined by Bs1 ≈ γ → ∞ and Bs2 ≈ γ → ∞ where ac = 1.787 and ac = 1.959,
respectively. Broadly speaking, despite the infinite value of γ in this limiting case the porous
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Fig. 4 General case Bs1 = γ B f 1 and Bs2 = γ B f 2: the trend of Rc and ac with H = 1 for different values
of γ . The upper frames display curves for Bs1 = 1, while the lower frames display curves for Bs2 = 1

layer is considered less stable in the configuration of Bs1 → ∞ and Bs2 → ∞ than the
general one, whereas in the configuration of Bs1 → 0 or Bs2 → 0 both cases show the same
stabilization effects.

8.3 Special Case of LTE

The analytical results plotted for LTE case are based on the dispersion relation defined in
Sect. 6.2. Figure 6 summarizes both variation in Rc andac versus Bm1 for a case of Bm2 → ∞.
The trend of ac in Fig. 6 has a monotonically increasing behavior as Bm1 increases, while
the curves of Rc decreases as Bm1 increases. We remark that Rc is bounded by an infinite
value when Bm1 → 0 and by Rc = 27.0976 when Bm1 → ∞. The threshold values Rc =
27.0976 and ac = 2.3262 are attained for a configuration where both layers have a perfect
conducting effective temperature surface. We recall that Rc = 27.0976 and ac = 2.3262 are
the standard critical values obtained for Darcy– Bénard problem with one free surface and
Dirichlet temperature conditions. The limits of Bm1 → ∞ and Bm2 → ∞ can adopt several
configurations at the same time. For example, it can correspond to B f 1 ≈ B f 2 → ∞ with
γ = Bs1 = Bs2 ≈ O(1) or Bs1 = B f 1 → ∞ and Bs2 = B f 2 → ∞ with γ ≈ O(1). On the
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Fig. 5 Limiting case Bs1 = B f 1 and Bs2 = B f 2: the trend of Rc and ac with H = 1 for different values of
γ

whole, the more the values of Bm1 approach isothermal case, the more the porous medium
produces destabilization effects.

8.4 Limiting Case H → 0

The suitable analytical results of the limiting case H → 0 are concluded from the dispersion
relation defined in the LTE case. We would remind that the two cases of LTE and H → 0 are
formally similar in the eigenvalues problem as Bm1 → B f 1 and Bm2 → B f 2. We prescribe
the ordinate axes of the frames with Rc instead of (1 + γ /γ )Rc to facilitate the interpretation
of the plots displayed in Fig. 7. This latter describes how the trend of Rc can vary with respect
to B f 1 and B f 2 for different values of γ . The curves of Rc exhibit a non-monotonic decrease
as one of theBiot numbers and γ increase.We notice that the threshold values of Rc = 40.640
and Rc = 26.070 in the configuration of B f 2 = γ → ∞ and B f 1 = γ → ∞ are exactly
the same to those highlighted in the special case of B f 1 = Bs1 and B f 2 = Bs2 with one
perfect conducting fluid boundary. Figure 7 also displays that the basic flow always has a
stable configurationwhen one of the fluid boundaries behaves as a perfect insulatingmedium.
Otherwise, the stability behavior has a more significant effect in the case of B f 2 → ∞ than
the case of B f 1 → ∞.
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Fig. 6 Local thermal equilibrium: the trend of Rc and ac versus Bm1 in the limiting case H → ∞

Fig. 7 Limiting case H → 0: plots of Rc versus B f 1 = 1 (right frame) and B f 2 = 1 (left frame) for different
values of γ

8.5 Limiting Case � → 0

The numerical results in this limiting case are usually reported by the rescaled term of the
Darcy–Rayleigh number R̂ which is defined as

R̂ = 1 + γ

γ
R ≈ O(1). (47)

The scaling procedure is performed to improve the understanding of this limiting case as
R → 0. Furthermore, the numerical procedure is computed with the presence of B f 1 = Bs1

and B f 2 = B f 2 in order to optimize the large number of the input parameters. Figure 8
exhibits the variation plots of R̂c and ac for various values of H ranging from 0 to 102. The
upper frames display that increasing Bs2 and H , consequently, leads to a monotonic increase
in both R̂c and ac. On the other hand, the lower frames elucidate themonotonic decrease in R̂c

when Bs1 and H increase. The plots of ac change as function of H and Bs2, and they become
strictly horizontal as Bs1 and H increase. This would mean that the basic flow attains the
most stable configurations when one of the situations defined with Bs1 → 0 and Bs2 → ∞
or Bs2 ≈ Bs1 → 0 is satisfied: R̂c = 635.205, ac = 6.033 and R̂c = 208.817, ac = 4.168,
respectively.
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Fig. 8 Limiting case γ → 0: plots of R̂c versus Bs1 = 1 (right frame) and Bs2 = 1 (left frame) for the sample
case of B f 1 = Bs1 and B f 2 = Bs2 with different values of H

9 Conclusion

The stability of the basic stationary flow in the modified version of the Darcy–Bérnad prob-
lem has been investigated. A horizontal porous layer with infinite extent is saturated by
a Newtonian fluid, confined between a free surface on the top and rigid wall at the bot-
tom. Both surface layers are modeled as Robin boundary conditions in which different heat
exchange coefficients are considered. The number of the characteristic dimensionless param-
eters stemmed from Robin boundaries has increased into four Biot numbers besides H and γ

whose effects are taken into account due to LTNE. The difference in Biot numbers between
the free surface on the top and rigid wall in the bottom provided more limiting cases and
variables. On the other hand, the response to a small linear fluctuation is adopted by means
of normal modes method. The resulting eigenvalue problem is solved either analytically or
numerically. The main results obtained for different choices of the governing parameters
(H , γ, B f 1, Bs1, B f 2, Bs2) in every special case are summarized as:

– The Biot numbers in limits of perfect insulating layers for the more general case have
the more stabilization effect on medium than isothermal boundaries.
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– When the LTE behavior is taken into account, the basic solution defined for a more
general case in the configurations of Bs1 → ∞ with Bs2 ≈ O(1) or Bs2 → ∞ with
Bs1 ≈ O(1) is much more stable than the special one of B f 1 = Bs1 and B f 2 = Bs2.

– The prevailing effect of buoyancy forces in a solid matrix with a poor thermal resistance
than the saturating fluid is less efficient in the case where a solid phase has a higher heat
transfer coefficient at the upper free surface. The basic solution also shows the more
stable configurations when both layers have a weak ability to exchange heat with the
surrounding medium.

– The case characterized by no thermal energy transferred from one phase to another
behaves exactly as we have simultaneously the case of the LTE model with the condition
of B f 1 = Bs1 and B f 2 = Bs2.

Appendix A : The Principle of Exchange of Instabilities for Limiting Case
H → 0

The eigenvalue problem obtained for the case characterized by no transfer of the heat is
carried out between the two phases is

ψ ′′ − a2ψ + a
1 + γ

γ
Rθ = 0, (48a)

θ ′′ − a2θ + a B̃ f 12ψ + iωR
χ + γ

1 + γ
θ = 0. (48b)

z = 0 : ψ(0) = 0, θ ′(0) + B f 1θ(0) = 0, (48c)

z = 1 : ψ ′(1) = 0, θ ′(1) + B f 2θ(1) = 0. (48d)

Multiplying Eqs. (48a), (48b) by the complex conjugate quantities ψ̄ and θ̄ , respectively,
gives rise to two complex resulting equations. These equations are integrated by part with
the use of boundary conditions, namely

−
∫ 1

0
|ψ ′|2 dz − a2

∫ 1

0
|ψ |2 dz + a R

1 + γ

γ

∫ 1

0
θ ψ dz = 0, (49a)

B f 1|θ(0)|2 − B f 2|θ(1)|2 −
∫ 1

0
|θ ′|2 dz − a2

∫ 1

0
|θ |2 dz

+a B̃ f 12

∫ 1

0
ψ θ dz + iωR

χ + γ

1 + γ

∫ 1

0
|θ |2 dz = 0. (49b)

After multiplying Eq. (49a) by the parameter
−γ B̃ f 12

R(1 + γ )
, we can now add it to Eq. (49b) to

obtain

γ B̃ f 12

R(1 + γ )

(∫ 1

0
|ψ ′|2 dz + a2

∫ 1

0
|ψ |2 dz

)

+B f 1|θ(0)|2 − B f 2|θ(1)|2 −
∫ 1

0
|θ ′|2 dz − a2

∫ 1

0
|θ |2 dz+iωR

χ+γ

1+γ

∫ 1

0
|θ |2 dz=0.

(50)
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The two parts of real and imaginary in Eq. (50) have to be independently equal to zero to
satisfy the condition of

ωR

∫ 1

0
|θ |2 dz = 0. (51)

Equation (51) defines two different assumptions. The first one is θ = 0 which means no
secondary flow exists in the basic state. This condition cannot be acceptable because it would
imply a contradiction with what we are looking for. Thus, this result supports the validity of
the second assumption which is ωR = 0. Consequently, we can assure that the eigenvalue
problem of this limiting cases holds the principle of exchange of instabilities.
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