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Abstract
Given the analogy between the filtered equations of large eddy simulation and volume-
averaged Navier–Stokes equations in porous media, a subgrid-scale model is presented to
account for the residual stresses within the porous medium. The proposed model is based on
the kinetic energy balance of the filtered velocity field within a pore; hence, when using the
model, numerical simulations of the turbulent flow in the pores are not required. The accuracy
of the model is validated with available data in the literature on turbulent flow through packed
beds and staggered arrangement of square cylinders. The validation yields that the model
successfully captures the effect of the pore-scale turbulent motion. The model is then used
to study turbulent flow in a wall-bounded porous media to assess its accuracy.

Keywords Turbulence · Porous media · Volume average · LES · Subgrid-scale model

1 Introduction

Fluid flow through porous media takes place in many practical applications, such as heat
exchangers, cooling of electronic components, biological systems, geothermal engineering,
solid matrix heat exchangers, enhanced oil recovery, thermal insulation, canopy flow, flow
over vegetation, crop fields, grain storage, drying processes and chemical reactors (De Lemos
2009; Ljung et al. 2012; Vafai 2015). High Reynolds numbers, Re, in many of the aforemen-
tioned applications have motivated researchers to take into account the effects of turbulence
within the pores (Dybbs and Edwards 1984; Khayamyan et al. 2017a, b; Larsson et al. 2018;
Seguin et al. 1998). To exemplify, Dybbs and Edwards (1984) categorized the flow into four
regimes of pore Re, Rep , according to: Darcian regime (Rep < 1), Forchheimer regime
(1 − 10 < Rep < 150), unsteady-laminar (150 < Rep < 300) and turbulent regimes
(Rep > 300) based on results from an experimental study of flow through beds of rods,
spheres and complex rod bundles. However, experimental measurement and direct numer-
ical simulation of turbulent flow inside the pores in random systems are tricky due to the
complexity of the pore structures and their small size. This also implies that the compu-
tational effort required to exactly represent these systems is large especially for turbulent
flow. A method to circumvent this problem is to replace the complex system of pores with a
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homogeneous medium with averaged properties using volume averaging techniques (VAT)
(Whitaker 2013). Originating from this approach, several versions of macroscopic mod-
els are proposed in the literature. In most of these approaches, time averaging is used to
model turbulent effects and volume averaging to homogenously present the morphology of
the porous medium (Teruel 2009a). It should also be noted that during such averaging pro-
cesses, extra terms appear that often have to be modeled using experimental measurement or
numerical simulation of turbulent flow within the pores. Lee and Howell (1987), Antohe and
Lage (1997), Getachew et al. (2000), and Lien and Leschziner (1994) are among those who
proposed a two-equation macroscopic turbulence model by Reynolds averaging the volume-
averaged Navier–Stokes (VANS) equations. According to Nield (2001), their strategy leads
to a model of the macroscale Reynolds stresses, while the intra-pore stresses do not come
into play. Another group of researchers such as Nakayama and Kuwahara (1999, 2008),
Pedras and de Lemos (2001) and Nikora et al. (2007) applied the volume averaging operator
to the Reynolds averaged equations in order to macroscopically model the turbulent flow.
As a result, the models derived take into account the intra-pore turbulence in addition to its
macroscopic effects. It is shown by Pedras and de Lemos (2001) that the order of time and
volume averaging is not important except regarding the turbulence kinetic energy. In addi-
tion to the two-equation macroscopic turbulence models mentioned above, other turbulence
models have been reported in the literature such as the zero equation model by Masuoka
and Takatsu (1996), the one-equation model developed by Alvarez et al. (2003), multi-scale
four-equation eddy viscosity model of Kuwata et al. (2014) and Kuwata and Suga’s (2013)
based on a second moment closure. Two-equation turbulence models have, however, gained
the most attention in the literature similar to their clear fluid counterparts. As compared to
clear fluid flow, the transport equations of turbulent kinetic energy (TKE) and dissipation
rate equations for porous media flow include additional terms which quantify the effects of
the solid matrix on the turbulent parameters. Different correlations have been proposed in
the literature to model these extra production terms (Nakayama and Kuwahara 1999, 2008;
Pedras and de Lemos 2001). A comparison of the extra terms in TKE and dissipation rate
equations from different models is presented in Guo et al. (2006). By a comparison of the
results to experimental data, it is shown that the Nakayama and Kuwahara’s (1999) (N–K)
model produces more reasonable results as compared to the other models investigated in
their study. The original N–K model (Nakayama and Kuwahara 1999) and its modifications
have been extensively used in different applications (Chandesris et al. 2006; Hoffmann 2004;
Jouybari et al. 2018).

In spite of the extensiveworksmentioned above on turbulent flow in porousmedia,much is
still unknown including an uncertainty on the existence of large structures in the flow. Several
researches have reported that the pore size of the porousmedium sets the upper limit of the size
of turbulent eddies since these structures become confined in the pores (Jin and Kuznetsov
2017; Jin et al. 2015; Nield 1991; Uth et al. 2016). However, Uth et al. (2016) reported that
large structures may exist in porous media with very large porosities equal to 0.995 which is
discussed to be unrealistic by Jin and Kuznetsov (2017). Also, direct numerical simulations
(DNS) performed by Chandesris et al. (2013) and Breugem and Boersma (2005) for turbulent
flow in a channel partially filled with a porous medium showed that large structures forming
above a porous–fluid interface penetrate into the upper layer of the porous bed. In order to
capture these large structures and considering the analogy between the filtered equations of
large eddy simulations (LES) with VANS equations in porous media, Breugem et al. (2006)
simulated turbulent flow over and inside a packed bed in a channel using LES. The filter
size was considered sufficiently small so that the subfilter-scale dispersion in the channel
region was negligible in their study. Breugem et al. (2006) showed that the residual stresses
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in porous media are small for their case. Obviously, this assumption may not be valid when
the Re in the pores is so high that turbulent effects are not negligible. LES modeling of
turbulent flow within and over forests as porous media have also been previously reported
in several studies including Dwyer et al. (1997), Kanda and Hino (1994), Shaw and Patton
(2003) and Watanabe (2004).

Based on the introduction above, the aim of the present study is to present a subgrid-
scale model for the intra-pore residual stresses that emerge in the VANS equations. To this
end, a model is proposed based on filtered kinetic energy balance within the pores. One
advantage with this model is that prior numerical simulations of turbulent flow within the
pores are not required in order to close the macroscopic equations. For cases where large
structures are present, the VANS equations directly represent the larger motions, whereas the
residual motions in the REV are captured with the subgrid-scale model. Otherwise, if there is
microscopic turbulence and nomacroscopic turbulence, the subgrid-scale model accounts for
the turbulence effects within the pores and theVANS equationswill be solved in the sameway
as in laminar flows. Therefore, no turbulence model is used for the macroscopic turbulence
and no extra equation is solved for turbulent quantities such as TKE and dissipation rate.

2 Governing Equations

2.1 Filtered Equations

The governing equations for the filtered field when turbulence is modeled with LES and
the flow is treated as incompressible are obtained by applying a filtering operation to the
continuity and Navier–stokes equations as follows:

∂Ui

∂x j
� 0 (1)

∂U j

∂t
+

∂UiU j

∂xi
� − 1

ρ

∂ p̄

∂x j
+ υ

∂2U j

∂xi∂xi
− ∂τ ri j

∂xi
(2)

The filtered mass and momentum equations can be solved with a residual stress model
so that τ ri j � UiU j − UiU j can be evaluated. As mentioned in Pope (2000), the filter
type and width, �, do not appear explicitly in Eqs. (1) and (2). They indirectly affect the
filtered velocity through the model for the residual stresses. Several subgrid-scale models
are proposed for τ ri j in the literature to close the filtered equations. The model proposed by
Smagorinsky is the simplest one which is based on a linear viscosity model (Pope 2000), as:

τ ri j � −2υr S̄i j (3)

where S̄i j � 1
2

(
∂Ui
∂x j

+
∂Uj
∂xi

)
and υr are the filtered rate of the strain tensor and the eddy

viscosity of the residual motions, respectively. This model also forms the basis for other
more complex models. Using the mixing-length analogy, the eddy viscosity is formulated as:

υr � �2s S̄ � (Cs�)2 S̄ (4)

where S̄ ≡ (
2Si j Si j

)1/ 2 and �s are the characteristics filtered rate of strain and the Smagorin-
sky length scale, respectively. The latter is assumed to be proportional to � through the
Smagorinsky constant, Cs (Pope 2000). � is the filter cut-off width that defines the limit for
the size of eddies which are resolved and those that are modeled. It is usually selected to be
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of the same order of the grid size (Versteeg and Malalasekera 2007). Assuming the grid cells
with different length�x , width�y and height�z , the cut-off width is calculated as the cubic
root of the cell volume as:

� � 3
√

�x�y�z (5)

According to Pope (2000), the size of � should be selected such that at least 80% of
energy is resolved.

2.2 Volume-Averaged Equations for Flows in Porous Media

According to Breugem and Boersma (2005), the superficial average of an arbitrary parameter
ϕ within a porous medium can be expressed as:

〈ϕ〉εx �
∫

V
γ (r)m( y)ϕ(r)dV (6)

where 〈 〉εx denotes the superficial average at the centroid x of a REV with a volume of V ,
y�r − x is the relative position, γ is the phase indicator being 1 in the fluid phase and 0 in
the solid phase and m is the weighting function. A schematic of a REV for a random porous
media is shown in Fig. 1 for which the REV is a sphere with radius r0 where m is defined as:

m( y) �
{
3/

(
4πr30

)
, | y| ≤ r0

0, | y| ≤ r0
. (7)

Applying the volume averaging operator to a general parameter ϕ results in

ϕ � 〈ϕ〉 + �ϕ (8)

where �ϕ denotes deviation from the averaged value of ϕ or subfilter-scale ϕ in LES termi-
nology. Also, 〈ϕ〉 � 〈ϕ〉ε/ε in Eq. (8) is the intrinsic average of ϕ and ε denotes the porosity
of the porous medium, which is defined as:

ε(x) ≡
∫

V
γ (r)m( y)dV . (9)

Fig. 1 Averaging volume (REV) in volume averaging
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The volume-averaged continuity and Navier–stokes equations for incompressible flows
in porous media is simply obtained by applying the volume averaging operator to these
equations (Whitaker 2013), according to

∂ε〈Ui 〉
∂x j

� 0 (10)

∂
〈
Uj

〉

∂t
+
1

ε

∂

∂xi

(
ε〈Ui 〉

〈
Uj

〉) � − 1

ερ

∂

∂x j
(ε〈p〉) + υ

ε

∂2
(
ε
〈
Uj

〉)

∂xi∂xi
− 1

ε

∂
(
ετ

p
i j

)

∂xi
+ f j (11)

where τ
p
i j at high Re corresponds to the intra-pore stresses arising from turbulent motions

within the pores of the porous medium since the size of the filter in the volume averaging
approach is equal to one REV consisting of at least 10–15 pores (Qin and Hassanizadeh
2015). It is known as residual stress or subgrid-scale stresses using LES terminology. It is
defined as:

τ
p
i j � 〈

UiU j
〉 − 〈Ui 〉

〈
Uj

〉 ≈ 〈�Ui
�Uj

〉
. (12)

The f j in Eq. (11) represents the drag force per unit mass exerted by the solid matrix on
the fluid passing through the porous medium and is given by:

f j � − υ

K
ε
〈
Uj

〉 − bε2(〈Ui 〉〈Ui 〉)1/ 2
〈
Uj

〉
(13)

where b and K are the pressure drag constant and permeability of the porous medium,
respectively. As can be observed, the VANS equations and filtered equations are similar
since the last term on the RHS of Eq. (11) which corresponds to the drag force is zero for
fluid flow outside of porousmedia (ε � 1 and f � 0 since K → ∞). However, the difference
lies in the terms representing the residual motion, τ ri j and τ

p
i j in Eqs. (2) and (10), respectively.

While τ ri j in Eq. (2) is modeled to consider the effects of small-scale motions in clear flow,

τ
p
i j in VANSmomentum equation, Eq. (11) has to be modeled so that it takes into account the
turbulent effects within the pores. Breugem et al. (2006) used the equations presented above
to study turbulent flow in a channel partially filled with porous media. They showed that the
τ
p
i j term is negligible compared to the drag force or other stresses for the case they studied

and its effect was therefore not taken into account. However, it is reasonable to think that τ p
i j

matters for high Re turbulent flow in porous media.

2.2.1 Modeling of Subfilter-Scale Stress in Porous Media

In order to close theVANS equations in turbulent flow, a correlation has to be presented for the
subfilter-scale stresses in terms of volume-averaged quantities. Similar to the steps followed
tomodel the residual stress in the LES formulation, τ p

i j is correlatedwith the volume-averaged
strain rate tensor using the linear eddy viscosity model, according to:

τ
p
i j � −2υrε

〈
Si j

〉
(14)

where the volume-averaged strain rate tensor is defined as:

〈
Si j

〉 � 1

2

(
∂〈Ui 〉
∂x j

+
∂
〈
Uj

〉

∂xi

)
. (15)

Now, the closure problem reduces to the calculation of υrφ within the pores. Since struc-
tures larger than the REV are solved directly by using the VANS equations, υrφ corresponds
to sub-REV stresses within the pores. Turbulent quantities within the pores have been derived
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by several researchers such as Nakayama and Kuwahara (1999, 2008), Pedras and de Lemos
(2001), Teruel and Uddin (2009b) and Chandesris et al. (2006) to close their macroscopic
turbulence models. Table 1 summarizes the turbulent quantities and the pore-scale residual
stress calculated from these quantities proposed by Nakayama and Kuwahara (1999) and
Nakayama and Kuwahara (2008) for their macroscopic k − ε model. However, the υrφ will
be calculated based on the Smagorinsky model in the present study as:

υrε � �2s 〈S〉 � (
Csdp

)2(2〈Si j Si j
〉
)1/ 2. (16)

where � in Eq. (4) is substituted by dp in Eq. (16) for turbulent flow in porous media. The〈
Si j Si j

〉
is expressed as:

〈
Si j Si j

〉 � 〈
Si j

〉〈
Si j

〉
+

〈�Si j �Si j
〉

(17)

It can be assumed that in the Smagorinsky model for clear fluid, the second term on
the RHS of Eq. (17) can be neglected due to its minor effect on the residual stresses as
compared to the first term. However, as mentioned by Nakayama and Kuwahara (2008),
the characteristics filtered strain rate (the first term on the RHS of Eq. (17) is negligible
compared to the characteristics residual strain rate (the second term on the RHS of Eq. (17))
for turbulent flow in porous media.

Evaluation of Characteristics Residual Strain Rate Consider fluid flow passing through a
pore in a porous medium and considering a filter width being much smaller than the pore
size, the kinetic energy of the filtered field within the pore is given by:




DE f



Dt
− ∂

∂xi

[



U j

(
2υ




Si j − τ ri j −


p

ρ
δi j

)]
� −2υ




Si j



Si j + τ ri j



Si j . (18)

To distinguish between the filtered equations shown in Eqs. (1) and (2) and filtered equa-

tions in the pore of a porous medium, the filtered velocity field in the pores is denoted by



U j

instead of Ū j where E f � 1
2

�

U · �

U represents the kinetic energy of the filtered velocity field

in the pore. The filter size



� within a pore is considered to be too small so that dispersion
by the residual motions is negligible. According to Pope (2000), the terms on the LHS of
Eq. (18) represent the transport and those on the RHS of the same equation denote the source
and sink terms. However, according to Nakayama and Kuwahara (2008), extra terms appear
after volume averaging of the pressure term in Eq. (18) similar to that presented in Eq. (13)
which are associated with the source/sink terms. Therefore, the pressure term is kept on the

Table 1 Extra source terms in turbulence equations

References Sk � εd∞ Sε � ε2d∞
k∞

υrε/υ

N–K (Nakayama
and Kuwahara
1999)

k∞ � 3.7ϕ3/ 2(1 − ϕ)
〈
Ū j

〉〈
Ū j

〉 f

εd∞ � 39ϕ2

(1 − ϕ)5/ 2
(〈
Ū j

〉〈
Ū j

〉)3/ 2
d

υrε
υ � 0.0316 ε√

1−ε

〈
Ū j

〉
d

υ

N–K (Nakayama
and Kuwahara
2008)

k∞ � 0.673
〈
Ū j

〉〈
Ū j

〉
εd∞ �
1.75(1−ϕ)

ϕ

(〈
Ū j

〉〈
Ū j

〉)3/ 2
d

υrε
υ � 0.0233 ε

1−ε

〈
Ū j

〉
d

υ Packed bed

υrε
υ � 0.0099

( 〈
Ū j

〉
dp

υ

)3/ 4
Channels & Pipes
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LHS along with the terms on the RHS of Eq. (18) for volume averaging. The other terms in
Eq. (18)which represent the spatial transport of filtered kinetic energy do not affect the kinetic
energy balance within a pore which is in agreement with observation of Jin and Kuznetsov
(2017) who showed that the rate of TKE production is in balance with the dissipation rate in
each REV. Volume averaging of Eq. (18) results in

〈
− 1

ρ




U j
∂



p

∂x j
− 2(υ + υr )




Si j



Si j

〉
≈ 0. (19)

Since



� is too small, it can be assumed that
〈


ϕ
〉

� 〈ϕ〉 for a general parameter ϕ. After

expanding the terms as proposed in Nakayama and Kuwahara (2008), the following expres-
sion will be obtained for residual characteristics residual strain rate

2υrε
〈�Si j �Si j

〉 ≈ − 1

ρ

〈
Uj

〉∂〈p〉
∂x j

≈ ε2b
(〈
Uj

〉〈
Uj

〉)3/ 2

〈�Si j �Si j
〉 ≈ ε2b

(〈
Uj

〉〈
Uj

〉)3/ 2
2υrε

. (20)

Substituting
〈�Si j �Si j

〉
into Eqs. (16) and (17) yields

υrε � (
Csdp

)4/ 3(ε2b
(〈
Uj

〉〈
Uj

〉)3/ 2)1/ 3. (21)

where a Cs value of 0.1 is chosen which has been reported according to ANSYS Fluent
(2015). Nakayama and Kuwahara (2008) proposed the approach described above to compute
the extra source terms appearing after volume averaging ofTKEanddissipation rate equations
in porous media. In order to measure the validity of Eq. (21) in the case of fully turbulent flow
in porous media, the eddy viscosity of residual stress calculated by Eq. (21) is compared with
the macroscopically fully turbulent flow through two types of porous media in the following
section. The mean shear is considered to be zero, and therefore, the macroscopic Reynolds
stresses are negligible for this condition. Consequently, the reported eddy viscosities are
mainly due to pore-scale stresses. The values used to compare the present results were
obtained for the same condition.

3 Evaluation of �r" for Two Types of Porous Media

3.1 Turbulent Flow in a Packed Bed

For a packed bed with the particle diameter of D, the following expressions may be formed
(Nakayama and Kuwahara 2008; Seguin et al. 1998):

K � ε3

150(1 − ε)2
D2 (22)

b � 1.75(1 − ε)

ε3D
(23)

dp � εD

1 − ε
(24)
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Fig. 2 Comparison of the present results with the experimental of Bey and Eigenberger (1997) and (Nakayama
and Kuwahara 2008) model for packed beds with ε � 0.4

where dp is the pore diameter. Substituting these quantities in Eq. (21) yields the subfilter
scale stress, as:

υrε

υ
� 0.0566

(
ε

1 − ε

) 〈U 〉D
υ

. (25)

Figure 2 illustrates a comparison between the intra-pore stress, υrε, as calculated from
Eq. (25) for a packed bed with ε � 0.4, as computed with the N–K model (Nakayama
and Kuwahara 2008), as calculated from N–K model (Nakayama and Kuwahara 1999) in
Guo et al. (2006) and as obtained from experimental measurements in Bey and Eigenberger
(1997). As can be observed, the present results are between the results predicted by the N–K

model and the experimental measurements for ReD � uDD
/

υ >
∼

300.

3.2 Turbulent Flow in Staggered Arrangement of Square Cylinders

For a staggered array of square cylinders of sizeD (Fig. 3),K and b are defined as (Kuwahara
et al. 2006):

K � ε3

120(1 − ε)2
D2 (26)

b � 2(1 − ε)

ε3D
(27)

The pore diameter for the staggered array of square cylinders shown in Fig. 2 is defined
as:

dp � 2 × (H − D) � 2D

(
1√
1 − ε

− 1

)
. (28)
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Fig. 3 Staggered array of square cylinders

Fig. 4 Comparison of the present results with the N–K (Nakayama and Kuwahara 2008) model for packed
beds for ε � 0.3, 0.5, 0.7 and 0.9

Substituting these quantities into Eq. (21) yields:

υ3/ 2
rε �

(
Cs2D

(
1√
1 − ε

− 1

))2(
ε2

2(1 − ε)

ε3d

(〈
Uj

〉〈
Uj

〉)3/ 2
)1/ 2

(29)

υrε

υ
� 0.147(ε(1 − ε))−1/ 3

(
1 − √

1 − ε
)4/ 3 〈U 〉D

υ
. (30)

A comparison between the non-dimensional pore-scale stress calculated from Eq. (30)
with those evaluated from N–K’s (Nakayama and Kuwahara 1999) pore-scale simulation in
Fig. 4 illustrates that the present model successfully predicts the value of residual stress in
the staggered array of square cylinders.
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4 Assessment of the Present Model for Turbulent Flow
inWall-Bounded Porous Media

The results of present model will be compared against the DNS results of Jin and Kuznetsov
(2017) for turbulent flow in a porousmedia consisting of spherical particles confined between
twowalls. The size of the channel, porosity, permeability and formdrag coefficient is extracted
from those reported in Jin and Kuznetsov (2017). Figure 5 illustrates the geometry consid-
ered for numerical simulation. Due to symmetry, only half of the channel is simulated using
symmetry boundary condition at the middle. No-slip boundary condition is used for the
upper wall and symmetry boundary conditions are adopted for the side walls. The automatic
wall function is used on the upper solid wall which helps to accurately capture the near
wall turbulence. The inlet and outlet of flow in the x direction are considered to be periodic.
Advection terms are discretized using bounded central difference method and second-order
Euler backward method is used for the discretization of unsteady terms. The numerical sim-
ulations are carried out in Ansys CFX where the present subgrid-scale model is added to
include the turbulence effects within the pores. The LES model is selected to capture any
possible large structures in the channel. A grid independency study is carried out and it is
observed that the velocity profile does not change for an increase in elements from approx-
imately 3200 to 6400. Therefore, 3200 elements are selected for the simulations. Figure 6
shows a comparison between the normalized velocity profiles calculated from the present
model and DNS case A in Jin and Kuznetsov 2017. This case is a porous medium with
s
/
d � 0.75, ε � 0.69, H

/
s � 40 and Re � uDd

/
υ � 257 which correspond to channel

Re of Re � uD2H
/

υ � 15400. The results are obtained at the large time interval for which
the time averaging velocity is independent of the time of starting the averaging process. This
time interval has been checked for different starting times of averaging process in order to
verify the independency of the final results. It should be noted that no large structures are
observed in the present simulations which are in agreement with Jin and Kuznetsov (2017),
Jin et al. (2015), Nield (1991) and Uth et al. (2016). Therefore, the main turbulent effects
are mainly due to turbulence within the pores. As can be observed in Fig. 6, the present
results are in a good agreement with the normalized velocity calculated from the DNS data
in Jin and Kuznetsov (2017). As a final comparison, Fig. 7 illustrates ∂

(
ε
〈
u′v′〉)/∂y as cal-

culated from DNS results in Jin and Kuznetsov (2017), model results in Jin and Kuznetsov
(2017) which are calculated from υrε � cμ〈k〉2/ 〈εd〉 assuming that the TKE, k, and dissi-
pation rate, εd, are those calculated from DNS results and the present results from Eq. (25).
As can be seen, the present results are in a good agreement with the model results in Jin
and Kuznetsov (2017). Due to negligible velocity gradient in most of the channel height,
a small amount of Reynolds stress is calculated from eddy viscosity except for the region
close to the wall where the velocity gradient takes large values. Consequently, both of the
present model results and model results of Jin and Kuznetsov (2017) increase close to the
wall which agree reasonably well with the DNS data of Jin and Kuznetsov (2017).

5 Conclusion

Due to the similarity between the filtered Navier–stokes and VANS equations within porous
media, it is found that these equations may be used to directly solve the large structures of
turbulence provided that a proper model for the subgrid-scale is adopted. To this end, the
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Fig. 5 Porous channel with upper and lower solid wall

Fig. 6 Normalized velocity profile from Jin and Kuznetsov (2017) and the present study

filtered kinetic energy within the pores in a REV is re-examined to reach a balance between
the production and dissipation terms in the pores. As a result, a subfilter-scale model for the
residual stresses in porousmedia is presentedwithout a need of doing a prerequisite numerical
simulation of turbulent flow within the pores. The present model is validated with numerical
and experimental results from the literature for packed beds and staggered array of square
cylinders. The present model is also used to model turbulent flow in a wall-bounded porous
media. Although no large structures are observed in the domain, the present subgrid-scale
model successfully predicts the level of subgrid Reynolds stress close to the wall and within
the porous medium.
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Fig. 7 Comparison of ∂
(
ε
〈
u′v′〉)/ ∂y normalized by g1 calculated from the present model and those of Jin and

Kuznetsov (2017) for case A
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