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Abstract
A mathematical model is developed based on the empirical power law equation for post-
laminar flow through porous media. Hydraulic conductivity and the critical Reynolds num-
ber are used as boundary conditions. The developed model can predict hydraulic gradients 
for specific velocities, irrespective of the media sizes or porosities, over the complete flow 
transition. Therefore, the model can be very useful to recognise the specific flow regime or 
to predict the velocity and hydraulic gradient for a given flow regime. A parametric study 
is carried out concerning the behaviour of binomial (Forchheimer) and power law (Izbash 
and Wilkins) coefficients subjected to different media sizes, porosities and flow regimes. 
The observed behaviour of Forchheimer and Izbash coefficients with different media sizes 
and porosities are similar to the experimental results reported in the literature. However, 
the values of these coefficients differ when subjected to different flow regimes for any spe-
cific packing. The ratios of non-Darcy and Darcy coefficients of the Forchheimer equa-
tion suggest an increasing influence of inertia towards the turbulent regime. The maximum 
and minimum values of β are found to be 1.38 and 0.69 for laminar and turbulent regime, 
respectively. However, these values are found to be unaffected by the media size and 
porosity variation. The value of Wilkins coefficient w in the laminar regime is found to be 
4841.72 for all media sizes and porosities. However, the coefficient represents a decreas-
ing variation trend towards the turbulent regime which is also dependent of the media size 
variation.
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1 Introduction

Modelling of velocity and hydraulic gradient relationship through porous media is prereq-
uisite for understanding multiple events such as seepage of ground water and flow through 
aquifers, flow of oil and gases in the petroleum exploration, flow of water through rock-fill 
dams, water filters, and fractured rocks, etc. According to the pioneering study of Henry 
Darcy, the flow velocity is a linear function of head loss through any porous packing. The 
linear model developed by Darcy has been used explicitly to understand the flow phe-
nomena through porous media over the years. However, the actual head losses are often 
observed to be higher than the predicted values by Darcy’s law; especially when subjected 
to higher velocities (Trussell and Chang 1999). Such observation may lead to the conclu-
sion that the linear relationship between velocity and the hydraulic gradient is not applica-
ble for all cases, especially for high velocity flows (Hassanizadeh and Gray 1987).

The shift from Darcy’s linear model is often credited to the increasing influence of iner-
tia in higher flow rates. Based on the resisting forces, flow through porous media can be 
divided into three principal flow regimes, i.e. laminar, transition and turbulent (Bear 1972). 
Shift from laminar to transition and further to turbulent is often represented by Reynolds 
number which is defined as the ratio of inertia force to the viscous force. The definition 
and the limiting value of Reynolds number in the literature differ due to the complexities 
associated with the packing (Dybbs and Edwards 1984; Hellström and Lundström 2006; 
Horton and Pokrajac 2009; Kovacs 1971; Kundu et al. 2016; Seguin et al. 1998a, b).

Viscous force is the main resistive force in the laminar regime and is generally mod-
elled and described by Darcy’s linear equation. However, as the flow velocity/Reynolds 
number increases, effect of inertial resistance increases (Larsson et  al. 2018). Therefore, 
correction to Darcy’s linear equation and use of a non-linear form of equation is apparent 
to relate hydraulic gradient with velocity in the post-laminar regime (Lasseux and Valdés-
Parada 2017). The experimentally obtained velocities and hydraulic gradients from any 
porous packing represent a binomial or power law-type relation in the post-laminar regime 
expressed as Eqs. (1) and (2), respectively (Bordier and Zimmer 2000; Chen et al. 2015b; 
Lacey 2016; Mathias and Todman 2010; Moutsopoulos et al. 2009; Qian et al. 2005; Salahi 
et al. 2015; Sedghi-Asl et al. 2013, 2014; Wen et al. 2006).

where i is the hydraulic gradient; v (m/s) is the superficial velocity; a (s/m) and b  (s2/m2) 
are the Darcy and non-Darcy coefficients, m is an empirical coefficient, and j is an expo-
nent which varies between values 1–2 (Chen et al. 2015a; Sedghi-Asl et al. 2013), respec-
tively. The negative hydraulic gradients in these equations indicate that in a spontaneous 
process, the flow of fluid must take place from a higher head (total pressure) to a lower 
head (total pressure). However, since the objective of the present study is to understand the 
relation between the numerical values of hydraulic gradient and superficial velocity in the 
post-laminar regime, only the magnitude of these parameters are used in further sections.

The binomial and power law relations presented as Eqs. (1) and (2) are also known as 
Forchheimer and Izbash equation, respectively. The Forchheimer equation represents the 
total head loss as a summation of the resistance offered by the viscous effect (av) and the 
inertial effect (bv2) in the post-laminar regime. In the laminar regime, the effect of inertial 
resistance is negligible; therefore, the second order term (bv2) becomes insignificant, and 
the Forchheimer equation converts into the form of Darcy’s linear equation. Similarly, in 

(1)−i = av + bv2

(2)−i = mvj
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the turbulent regime, the effect of viscous resistance is negligible; therefore, the hydraulic 
gradient is only a function of the second order term (bv2) (Chen et al. 2003; Fand et al. 
1987; Munson et al. 2006; Skjetne and Auriault 1999).

Extensive experimental studies suggest that the Darcy and non-Darcy coefficients of the 
Forchheimer equation are functions of large set of field, media and fluid properties such 
as media size (Huang et al. 2013; van Lopik et al. 2017; Nezhad et al. 2019; Salahi et al. 
2015), degree of packing (Banerjee et  al. 2018b; Boomsma and Poulikakos 2002; Dan 
et al. 2016), convergent angle (Banerjee and Pasupuleti 2019; Reddy and Rao 2006; Thiru-
vengadam and Kumar 1997; Venkataraman and Rao 2000), pore geometry (van Lopik 
et  al. 2017; Macini et  al. 2011) Reynolds number (Sidiropoulou et  al. 2007) etc. How-
ever, the variation trends reported by different researchers lack resemblance and therefore 
despite numerous reported results, the variation pattern and the behaviour of the Forch-
heimer coefficients (Darcy and non-Darcy coefficient) remain quite complex and ambigu-
ous till date (Banerjee et al. 2018b; Dukhan et al. 2014; Thiruvengadam and Kumar 1997). 
Furthermore, some experimental results reported in the literature advocates different val-
ues of Darcy and non-Darcy coefficients for the transition and turbulent regimes (Dukhan 
et al. 2014; Dukhan and Ali 2012; Lage et al. 1997). However, the experiments performed 
to understand the behaviour of Darcy and non-Darcy coefficients does not adequately 
acknowledge the effect of flow transition which may be a significant factor concerning the 
complex behaviour of these coefficients. The transition from laminar to turbulent regime 
is a gradual process (Dudgeon 1966), and in each phase of transition, the magnitude of 
viscous and inertial resistance may differ. Therefore, understanding the effect of flow tran-
sition over the Darcy and non-Darcy coefficients is a prerequisite for understanding and 
efficient modelling of these coefficients.

Similar observations can be made for the coefficient m of Izbash equation. Being the 
only coefficient, m accounts for all the variations in field, media and fluid parameters. 
Therefore, predicting the value of m for a given set of conditions is quite cumbersome. To 
reduce such obscurity, Eq. (2) is later modified by Wilkins (1955) after replacing the coef-
ficient m of Izbash equation as a function of pore size of the packing (hydraulic radius) and 
fluid viscosity as

where μ (Pa s) is the dynamic viscosity of the fluid; r (m) is the hydraulic radius; C, α, β 
and γ are the coefficients of Wilkins equation. For a given fluid, Eq. (3) can be presented as

The value of γ is widely presented as the illustration of the flow regime which ranges 
between 0.5 (fully developed turbulent flow) to 1 (laminar flow) (Giroud and Kavazanjian 
Jr 2014). The limited experimental results available in the literature on Wilkins coefficients 
point towards a non deviating behaviour of these coefficients with the variation in media 
size and porosity (Banerjee et al. 2018a, b; Garga et al. 1990; Kumar and Venkataraman 
1995; Wilkins 1955). However, resembling the Forchheimer coefficients, the behaviour of 
Wilkins coefficients are reported for specific flow regimes (value of γ), and the effect of 
variation in flow regime have never been considered. Therefore, it is not viable to use the 
results reported in the literature universally without understanding the behaviour of these 
coefficients over the complete zone of transition from laminar to turbulent.

The present study is therefore initiated to model the velocity and hydraulic gradient rela-
tionship over the complete flow transition. The power law-type equation is especially sig-
nificant for modelling the post-laminar flow because its exponent j represents the gradual 

(3)v = C��r� i�

(4)v = wr� i� withw = C��;
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transition of flow from laminar to the turbulent regime. The value of j is 1 when the flow is 
laminar and gradually increases as the flow shifts towards its maximum value 2 in the tur-
bulent regime. Therefore, given a constant hydraulic gradient, alteration in the flow velocity 
due to the variation in flow regime can easily be accounted with the power law-type equation. 
On the other hand, there is no proper representation for flow regimes in the binomial-type 
equation. The hydraulic gradient in any flow regime depends on the values of Darcy and non-
Darcy coefficients which are also functions of various factors associated with the packing as 
discussed earlier. Therefore, the traditional power law equation/Izbash equation (Eq. 2) is used 
in the present study to develop the model. Furthermore, the behaviour of the coefficients of 
the binomial and power law equations are also investigated for different flow regimes. The 
developed model can predict the velocity corresponding to any hydraulic gradient for the com-
plete flow regime (laminar to turbulent) packed with a given media size and porosity. This in 
turn may aid the designers and engineers to estimate the velocity and discharge through any 
hydraulic structure related to porous media flow.

2  Methodology and Model Development

Following assumptions are made prior to the analysis:

• Flow is steady and one dimensional.
• Media is homogeneously packed and porosity of the media is uniform.
• The flow path is assumed to be straight and undeviating through the porous packing.

The power law or Izbash equation (Eq. 2) can be presented as

After modification, Eq. (5) can be presented as

The mean square error E can be expressed as follows

where E is a function of m and j for given values of velocity (v) and hydraulic gradient (i). 
Therefore, to achieve the minimum value of E, dE

dj
 and dE

dm
 has to be zero.

From the first condition dE
dj

= 0 ; it can be concluded that

Similarly, the second condition; dE
dm

= 0 yields

(5)i = mvj

(6)log i = logm + j log v

(7)E =

n∑
s=1

[
log is − (logm + j log vs)

]2

(8)

n∑
s=1

log is log vs = logm

n∑
s=1

log vs + j

n∑
s=1

(log vs)
2

[
assuming n number of data points

]

(9)
n∑

s=1

log is = n logm + j

n∑
s=1

log vs
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The value of j is obtained after performing numerical operation 

(Eq. (8) × n) −

�
Eq. (9) ×

n∑
s=1

log vs

�
 as follows

For n = 2, from Eq. (11)

Equation (12) can be modified as

given the values of v1 and v2 , let’s assume that

Therefore, after replacing the values of log v1, log v2 and
∑2

s=1
log vs Eq.  (13) can be 

presented as

Similarly for n = 3

Further,

(10)j =

∑n

s=1
log is

∑n

s=1
log vs − n

∑n

s=1
log is log vs�∑n

s=1
log vs

�2
− n

∑n

s=1
(log vs)

2

(11)� =

�∑n

s=1
log vs

�2
− n

∑n

s=1
(log vs)

2

∑n

s=1
log is

∑n

s=1
log vs − n

∑n

s=1
log is log vs

(since � =
1

j
)

(12)� =

�∑2

s=1
log vs

�2

− 2
�
(log v1)

2 + (log v2)
2
�

(log i1 + log i2)
∑2

s=1
log vs − 2

�
log i1 log v1 + log i2 log v2

�

(13)

�

[
log i1

(
2∑

s=1

log v
s
− 2 log v1

)
+ log i2

(
2∑

s=1

log v
s
− 2 log v2

)]

=

(
2∑

s=1

log v
s

)2

− 2
[
(log v1)

2 + (log v2)
2
]

log v1 = x1, log v2 = x2 and

2∑
s=1

log vs =(log v1 + log v2) = X2

(14)�
[
log i1(X2 − 2x1) + log i2(X2 − 2x2)

]
= X2

2
− 2(x2

1
+ x2

2
)

(15)

� =

�∑3

s=1
log vs

�2

− 3
�
(log v1)

2 + (log v2)
2 + (log v3)

2
�

(log i1 + log i2 + log i3)
∑3

s=1
log vs − 3

�
log i1 log v1 + log i2 log v2 + log i3 log v3

�

(16)

�

[
log i1

(
3∑

s=1

log vs − 3 log v1

)
+ log i2

(
3∑

s=1

log vs − 3 log v2

)
+ log i3

(
3∑

s=1

log vs − 3 log v3

)]

=

(
3∑

s=1

log vs

)2

− 3
[
(log v1)

2 + (log v2)
2 + (log v3)

2
]
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given the values of v1, v2 and v3 , let’s assume that

replacing the values of log v1, log v2, log v3 and
3∑

s=1

log vs Eq. (16)

Finally, for n number of data points, the equation can be represented in its general-
ised form as

for the values of v1, v2, v3 ⋯ vn , it may be assumed that

Therefore Eq. (18) can be presented as

The system of equations thus obtained always has one extra unknown as compared to 
the number of equations. For example, for a given set of velocities ( v1 and v2 ) and spe-
cific flow regime (known value of γ), Eq. (13) has two unknowns ( i1 and i2 ). Similarly 
Eqs. (13) and (14) have three unknowns ( i1, i2 and i3 ) for the velocity set ( v1, v2 and v3 ). 
Hence, to close the equation system, the initial velocity ( v1 ) is assumed to be the veloc-
ity required for just overcoming the laminar regime. Therefore, it is assumed that the 
flow is in the transition regime; however, viscous effect still dominates the flow. As a 
result, the linear relationship between velocity and the hydraulic gradient can still 
be applicable at this stage. The initial velocity ( v1 ) required to overcome the laminar 
regime is calculated using the following equation.

log v1 = x1, log v2 = x2, log v3 = x3 and

3∑
s=1

log vs =(log v1 + log v2 + log v3) = X3

(17)
�
[
log i1(X3 − 3x1) + log i2(X3 − 3x2) + log i3(X3 − 3x3)

]
= [X2

3
− 3(x2

1
+ x2

2
+ x2

3
)]

(18)

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log i1

�
n�

s=1

log v
s
− n log v1

�
+ log i2

�
n�

s=1

log v
s
− n log v2

�

+ log i3

�
n�

s=1

log v
s
− n log v3

�
+⋯

+ log i
n

�
n�

s=1

log v
s
− n log v

n

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

�
n�

s=1

log v
s

�2

− n
�
(log v1)

2 + (log v2)
2 + (log v3)

2 +⋯ + (log v
n
)2
�

log v1 = x1, log v2 = x2, log v3 = x3, log vn = x
n
and∑n

s=1
log v

s
=(log v1 + log v2 +⋯ + log v

n
) = X

n

(19)
�
[
log i1(Xn

− nx1) + log i2(Xn
− nx2) + log i3(Xn

− nx3) +⋯ + log i
n
(X

n
− nx

n
)
]

=
[
X
2
n
− n(x2

1
+ x

2
2
+ x

2
3
+⋯ + x

2
n
)
]

(20)v1 =
Relim × �

� × d
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where Relim , μ, ρ, and d are the limiting Reynolds number, dynamic viscosity of the fluid 
(N-s/m2), density of the fluid (kg/m3) and the diameter of the media (m), respectively. 
The limiting value of Reynolds number suggested by Bu et  al. (2014) for random pack-
ing is used in the present model. However, dissimilar values of the Reynolds numbers are 
reported for transition from the laminar regime in the literature based on the media size, 
porosity and type of packing (Bu et al. 2014, 2015; Dybbs and Edwards 1984; Jolls and 
Hanratty 1966; Latifi et al. 1989). Therefore, a single value of the Reynolds number may 
not be appropriate for all packing.

The initial hydraulic gradient ( i1 ) corresponding to the obtained initial velocity ( v1 ) is 
then calculated after dividing the initial velocity ( v1 ) by the hydraulic conductivity (K) of 
the packing. The hydraulic conductivity (K) of a packing can be experimentally determined 
after performing a constant head or falling head permeability test. However, in the absence 
of experimental results, the hydraulic conductivity can be calculated using the standard 
definition as

where K is the hydraulic conductivity (m/s), k is the intrinsic permeability  (m2) which rep-
resents the properties of the packing, μ and ρ are the dynamic viscosity Pa s and density of 
the fluid (kg/m3) and g is the acceleration due to gravity (m/s2).

The values of the intrinsic permeability (k) reported by Venkataraman and Rao (1998) 
for a wide range of media sizes and porosities are plotted against their corresponding 
hydraulic radius (Fig. 1). The hydraulic radius of the reported media sizes and porosities 
are calculated using Eq. (22) (Banerjee et al. 2018b; Thiruvengadam and Kumar 1997)

where, e is the void ratio = f

(1−f )
 with f  is the porosity and s0 is the specific surface (/m) of 

the media; calculated as:

where d is the diameter of the media, and α is known as the shape factor. For spheres the 
value of α is 6 and for irregular shaped gravels the average value of α is calculated as 8.8 
(Thiruvengadam and Kumar 1997). Finally, the relation presented as Eq. (24) is obtained 
using the best fit method between intrinsic permeability and hydraulic radius from Fig. 1.

The intrinsic permeability obtained from Eq. (24) can be used to calculate the hydraulic 
conductivity for a given fluid which is essential for the calculation of the initial hydraulic 
gradient (i1) corresponding to the initial velocity (v1).

After incorporating v1 and i1 in Eq. (13), the hydraulic gradient i2 can be calculated for a 
given value of v2 . Similarly, the hydraulic gradients ( i3, i4 ⋯ in ) corresponding to a known 
set of velocities ( v3, v4 ⋯ vn ) can be calculated using the developed equation series. A com-
puter programme can be developed using the prepared model for the calculation of hydrau-
lic gradients corresponding to specific velocities for a given media size and porosity. A 
stepwise methodology is presented in “Appendix” which can aid to develop a programme 
in any programming language.

(21)K = k
�

�g

(22)r =
e

s0

(23)s0 =
�

d

(24)k = 0.000496 r1.381181
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Hydraulic conductivity is the representation of the pore geometry in the developed 
model, which includes the effect of factors such as interlinking and angularity of the media 
which are otherwise very difficult to measure. Therefore, with accurate values of hydrau-
lic conductivity, the model can account for such complex parameters. Furthermore, the 
model can be used for the development of theoretical plots which can be readily utilised to 
determine the hydraulic gradient for a known velocity through any media size packed with 
specific porosity. Thus, the model can be convenient for designers and engineers while esti-
mating and predicting discharge through hydraulic structures which are subjected to post-
laminar flow such as flow through aquifers, filter beds, rock-fill dams, etc.

3  Model Validation

Values of velocities and corresponding hydraulic gradients obtained from the present 
model are validated with the experimental results reported by Banerjee et  al. (2018b), 
Cheng et al. (2008) and Sedghi-Asl et al. (2014). The reported media sizes and porosities 
in the mentioned literature are used to calculate the hydraulic radius. The corresponding 
intrinsic permeability and hydraulic conductivities are calculated using Eqs. (24) and (21). 
After calculating the hydraulic conductivities, the velocities corresponding to the reported 
hydraulic gradients are calculated following the method described in the Methodology and 
Model development section. The limiting Reynolds number reported by Bu et al. (2015, 
2014) for random and structured porous media is used for validating the model. Finally, 
velocities obtained from the model are plotted with the reported results in the mentioned 
literature for the same hydraulic gradients. Figure 2a–c represents the comparison of results 
obtained from the model with the experimental results reported by Banerjee et al. (2018b) 
for 29.8 mm, 34.78 mm and 41.59 mm crushed stones, respectively. Similar comparisons 
are presented in Fig. 2d, e with the experimental results reported by Cheng et al. (2008) 
and Sedghi-Asl et al. (2014). Furthermore, the results from the model are also compared 
with the unpublished experimental results obtained by the authors from the experimental 
set-up presented in Banerjee et al. (2018a, b) with glass spheres of 17.51 mm, 25.46 mm 
and 33.42 mm packed with 47.26%, 51.93% and 54.01% porosity, respectively, in Fig. 2f.

The similarities observed between the reported experimental results and the model 
outputs advocate the validity of the present model. The deviations whatsoever observed 
as compared to the experimental results may be attributed to the value of the limiting 
Reynolds number and the hydraulic conductivity used in the model. Values of both the 

Fig. 1  Variation of intrinsic 
permeability (k) with hydraulic 
radius (r), (data of Venkataraman 
and Rao (1998))
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parameters used for validation are determined from the reported literature (Bu et al. 2014, 
2015; Venkataraman and Rao 1998). However, due to the complexity associated with the 
packing, their values vary for different media sizes, porosities as well as with the packing 
conditions. For that reason, there is no universal relation available to accurately estimate 

Fig. 2  Comparison of theoretical results with the experimental results for a 29.8  mm crushed stones, b 
34.78 mm crushed stones, c 41.59 mm crushed stones reported by Banerjee et al. (2018b), d results from 
Cheng et al. (2008), e results obtained by Sedghi-Asl et al. (2014), f unpublished data by the authors from 
glass spheres packed with different porosity
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the hydraulic conductivity and critical Reynolds number for a given packing. Therefore, to 
achieve results with higher precision, the critical Reynolds number of flow, as well as the 
hydraulic conductivity used in the model, should be carefully determined for each packing.

4  Results and Discussions

After validating the model outputs with the experimental data reported in the literature, 
hydraulic gradients corresponding to the different velocities are calculated for 5  mm, 
10  mm, 20  mm, 30  mm, 40  mm and 50  mm media sizes each packed with 30%, 35%, 
40%, 45%, and 50% porosities. The values of � (representation of the flow regime) are 
selected at a regular interval of 0.1 ranging from its minimum value 0.5 (turbulent flow) to 
the maximum value 1 (laminar flow) to understand the variation of velocity with hydraulic 
gradient over the complete transition zone (from laminar to turbulent). The velocities and 
hydraulic gradients corresponding to different flow regimes obtained from 50 mm media 
diameter are presented in Fig.  3a–f. Similar plots are obtained for other reported media 
sizes. These plots can be very useful to develop ready to use charts relating the velocities 
and hydraulic gradients corresponding to different media sizes and porosities for different 
flow regimes. This type of charts can be of immense help to understand the flow regime 
for a given velocity and hydraulic gradient from any hydraulic structure or to estimate the 
hydraulic gradients for a given velocity in different flow regimes.

The velocities and hydraulic gradients calculated from the model are further used to 
understand the behaviour of binomial and power law-type equations in different flow 
regimes which are elaborated in later sections.

4.1  Behaviour of the Coefficients of Binomial Equations in Different Flow Regimes

The Darcy and non-Darcy coefficients have been subjected to extensive experimental and 
theoretical investigation over the years. However, the effect of different flow regimes on 
Forchheimer coefficients has rarely been addressed in the literature. The present study 
investigates the behaviour of Darcy and non-Darcy coefficients of the Forchheimer equa-
tion with the variation in flow regime through porous media.

The velocities obtained from the different media sizes and porosities are plotted for cor-
responding hydraulic gradients and different flow regimes similar to Fig. 3. Values of the 
Darcy and non-Darcy coefficients are calculated after fitting a binomial curve to the data 
using the best fit method. The Darcy and non-Darcy coefficients are observed to be a func-
tion of the velocity range. The experimental outcomes from the literature have reported 
similar observation (Antohe et al. 1997; Lage et al. 1997; Ovalle-Villamil and Sasanakul 
2019). Therefore, it is essential to mention the range of the velocity before analysing the 
behaviours of these coefficients. In the present study, the Darcy and non-Darcy coefficients 
are calculated for the velocity range of 0.03 m/s to 0.21 m/s with a standard deviation of 
0.01 m/s.

Obtained values of non-Darcy and Darcy coefficients in the different flow regimes 
are plotted in Figs. 4a–f and 5a–f. The figures represent a decreasing variation trend of 
the Darcy and non-Darcy coefficients with an increase in media size and porosity. Simi-
lar observations are reported in the literature from the experimental outcomes. Further-
more, the behaviour of Darcy and non-Darcy coefficients are investigated for the transi-
tion period (laminar to turbulent). The non-Darcy coefficient which is a representation 
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of the pressure loss due to the inertia force represents a decreasing trend towards the 
laminar regime irrespective of media size and porosity of the packing (Fig. 4a–f). How-
ever, with the variation in media size and porosity, the Darcy coefficients represent a 
steady transition in its variation pattern with the flow regime (Fig.  5a–f). In the case 
of flow through smaller pore sizes, the viscous force between the media boundary and 
the fluid exerts a significant influence on the total resistance and it increases as the flow 
shifts towards the laminar regime. This may be the reason for the slight increasing trend 
observed in 5  mm media (Fig.  5a). As the porosity of the media (Fig.  5b) increases, 

Fig. 3  Variation of velocity with the hydraulic gradients for 50  mm media sizes packed with different 
porosities at different flow regimes with a � = 0.5 , b � = 0.6 , c � = 0.7 , d � = 0.8 , e � = 0.9 , f � = 1
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the value of the Darcy coefficient gradually decreases towards the laminar regime. The 
increasing influence of the inertia force with the increase in pore size may be the rea-
son for such behaviour. As the pore size of the packing increases, the effect of viscous 
resistance between the boundary of the packing and the fluid reduces, and the influence 
of the inertial resistance increases. As a result, for flow through larger pores, the pres-
sure loss is often governed by the inertial resistance. As the flow shifts towards the 
laminar regime ( � = 1 ), the inertial resistance decreases. Since inertia is the dominating 

Fig. 4  Variation of non-Darcy coefficient (b) with � for a 5 mm, b 10 mm, c 20 mm, d 30 mm, e 40 mm, f 
50 mm media packed with 30–50% porosity
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force in such conditions, the total head loss also decreases towards the laminar regime. 
As a result, the Darcy coefficients represent a decreasing variation trend towards the 
laminar regime for flow through bigger media sizes and higher porosities (Fig. 5c–f). 
However, when the ratio of the non-Darcy and Darcy coefficients are studied for dif-
ferent flow regimes (γ = .6–0.9), it is evident from Table 1 that the influence of Darcy 
coefficient or the viscous resistance on the total head loss gradually increases towards 
the laminar regime. Furthermore, for a given velocity range, the ratios of non-Darcy to 

Fig. 5  Variation of Darcy coefficient (a) with � for a 5 mm, b 10 mm, c 20 mm, d 30 mm, e 40 mm, f 
50 mm media packed with 30–50% porosity
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Darcy coefficients corresponding to the specific flow regimes are observed to be con-
stant universally.

A similar study is performed to understand the behaviour of Darcy and non-Darcy coef-
ficients for a constant range of hydraulic gradients. The hydraulic gradients are selected 
between arbitrary ranges of 0.1–0.46 with a standard deviation of 0.02. Velocities corre-
sponding to the mentioned hydraulic gradients are calculated for the given media sizes and 
porosities. The Darcy and non-Darcy coefficients are calculated from the obtained velocity 
and hydraulic gradient plots. The coefficients represent similar variation pattern with the 
flow regime (value of γ). Furthermore, the ratios of non-Darcy to Darcy coefficients for 
different flow regimes represent an increasing influence of the Darcy coefficient towards 
the laminar regime (Fig. 6a–f). However, the ratios are not constant for all media sizes and 
porosities as it is observed for a constant velocity range. The observation confirms that the 
ratio of viscous and inertial resistance in a specific flow regime primarily depends on the 
velocity range.

The observation suggests that the variation in media size and porosity has a significant 
effect on the individual values of the Darcy and non-Darcy coefficients calculated for a 
given range of velocities or hydraulic gradients. However, the ratios of these coefficients in 
a specific flow regime are not dependent on pore parameters and are only a function of the 
velocity range.

Finally, it can be concluded from the analysis that the Forchheimer or binomial equation 
seems to represent the post-laminar flow through porous media with significant accuracy. 
However, the coefficients of the equation depend significantly on the flow regime. For a 
similar media size and porosity, different values of Darcy and non-Darcy coefficients can 
be observed in different flow regimes. Furthermore, the values of the coefficients are also 
dependent on the range of the velocity tested in the study. Therefore, specific information 
on factors such as flow regime, range of velocity and hydraulic gradient is necessary along 
with different media, fluid and field conditions to accurately predict the values of Darcy 
and non-Darcy coefficients for flow through porous media.

4.2  Behaviour of Power Law Coefficients in Different Flow Regimes

The coefficient m of the traditional power law equation is reported to have a very obscure 
variation trend and is very difficult to predict for a given set of media size, porosity or vis-
cosity. On the other hand, the coefficients of Wilkins equations are often reported to be 
constants in the literature (Banerjee et al. 2018a, b; Garga et al. 1990; Kumar and Venka-
taraman 1995; Wilkins 1955). However, all the results in the literature are reported for a 
specific value of � or j(flow regime). Therefore, behaviour of the coefficients in different 
flow regimes is still largely unexplored. The developed model provides an insight into the 

Table 1  Ratio of non-Darcy to 
Darcy coefficients for different 
flow regimes when subjected to a 
constant velocity range

γ Ratio of non-Darcy to Darcy coefficients

5 mm 10 mm 20 mm 30 mm 40 mm 50 mm

0.6 20.22 20.21 20.21 20.19 20.21 20.21
0.7 7.50 7.51 7.50 7.50 7.50 7.51
0.8 3.31 3.31 3.31 3.31 3.31 3.31
0.9 1.23 1.23 1.23 1.23 1.23 1.23
1 0.00 0.00 0.00 0.00 0.00 0.00
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behaviour of the power law and Wilkins coefficients over the complete flow regime (laminar 
to turbulent).

The coefficients of Izbash equation (m and j) are calculated after fitting power law curve 
to the obtained velocity and hydraulic gradient plots from the model (Fig. 3). The variation 
pattern of the coefficient m is plotted with the hydraulic radius for different flow regimes 
in Fig. 7a–f. The logarithms of the parameters are used in the plot since the actual values 

Fig. 6  Variation of the non-Darcy coefficient to Darcy coefficient ratio with � for a 5  mm, b 10  mm, c 
20 mm, d 30 mm, e 40 mm, f 50 mm media packed with 30–50% porosity subjected to a constant hydraulic 
gradient range
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represent a wide range of the variation. An increase in the flow resistance is observed 
towards the turbulent regime from the plots. Consequently, values of the coefficient m also 
represent an increasing trend towards the turbulent regime ( � = 0.5 ). Furthermore, for a 
given value of � , the value of m decreases with an increase in the pore size (hydraulic 
radius). In view of these observations, the coefficient m can be reported as the represen-
tation of the total head loss in any given flow regime. Since m is the only coefficient to 
account for the variation in total head loss due to different fluid, media and field conditions; 
predicting the value of m by appropriately accounting for the effects of so many parameters 

Fig. 7  Variation of Izbash coefficient m with hydraulic radius (r) for a 5 mm, b 10 mm, c 20 mm, d 30 mm, 
e 40 mm, f 50 mm media
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is very difficult. The coefficients of the Izbash equation can be related to the coefficients of 
the Forchheimer equation with the following formula reported by Cheng et al. (2008)

The applicability of Eq. (25) is tested in the present study. Obtained values of m from 
the model are presented with the calculated values of m in Fig.  8. Excellent correlation 
between the model outputs and the results from Eq. (25) may be observed from Fig. 8.

The coefficients of the Wilkins equation are calculated after obtaining the coefficients of 
Izbash equation (m and j). As mentioned earlier, the Wilkins equation is a modified form of 
Izbash equation or the traditional power law equation. Therefore, after comparing Eqs. (2) 
and (4), following relation can be concluded

Further,

Finally, the left-hand side of Eq. (27) i.e. � log
(

1

m

)
 is plotted against log r and a linear 

equation is fitted to the data (Fig. 9a–f). The slope of the straight line represents the value of 
coefficient � and the intercept represents the value of logw . Obtained values of the coeffi-
cients w and β for different flow regimes are presented in Table 2. The coefficient β represents 
a constant value for all media sizes and porosities for a given flow regime. However, its val-
ues are largely affected by the flow regime (values of � ). The values of coefficient β represent 
an increasing trend as the flow shifts towards the laminar regime ( � = 1). Maximum and mini-
mum values of β are found to be 1.38 and 0.69 when the flow is in the laminar and turbulent 
regime, respectively. Furthermore, values of the coefficient w are observed to be a function of 
the media size and the flow regime. From Table 2, it can be reported that the coefficient w 
represents a decreasing trend towards the turbulent regime and with an increase in the media 

(25)m =
b

j − 1

(
a

b

j − 1

j − 2

)2−j

(26)
(
1

m

)�

= wr�

(27)� log
(
1

m

)
= logw + � log r

Fig. 8  Comparison of the m 
value calculated from Cheng 
et al. (2008) with the m value 
obtained from the present model
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size. However, at the laminar regime ( � = 1 ); numerical values of w and β are observed to be 
constant (Table 2). Therefore, the coefficient wr� behaves as a parameter only dependent on 
the media size and porosity; similar to the hydraulic conductivity (K). Therefore it can be 
concluded that in the laminar regime ( � = 1) the model outputs are in continuity with Darcy’s 
linear equation validating its applicability in the laminar regime.

Towards the turbulent regime, the effect of media size and porosity becomes predomi-
nant over the Wilkins coefficients w. The reason for such behaviour may be attributed to 

Fig. 9  Variation of � log
(
1∕m

)
 with log(r) for a 5 mm, b 10 mm, c 20 mm, d 30 mm, e 40 mm, f 50 mm 

media packed with 30–50% porosity in different flow regimes
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the fact that towards the turbulent regime the inertia effects become more predominant 
and set up unbalanced forces on account of separation, vortex formation and circulation 
around the media. The resultant pressure fluctuation and the transverse thrust together with 
the vortices offers a quite significant resistance to the flow. Towards the turbulent regime, 
the effect of media size and porosity becomes more predominant on such phenomena and 
thereby, on the numerical values of coefficient w.

5  Summary and Conclusions

A mathematical model is developed in the present study which can be used to predict 
velocities corresponding to the specific hydraulic gradients for predefined media sizes and 
porosities. The obtained velocities from the model are compared and validated with the 
experimental results reported in the literature. The model can be beneficial to understand 
the velocity and hydraulic gradient relationship over the complete zone of transition from 
the laminar regime to the turbulent regime. Behaviour and variation pattern of the coef-
ficients of binomial and power law-type equations with different flow regimes are inves-
tigated using theoretically obtained hydraulic gradients and velocities for 5 mm, 10 mm, 
20 mm, 30 mm, 40 mm, 50 mm media sizes each packed with 30%, 35%, 40%, 45% and 
50% porosities, respectively. The observations from the study may be broadly presented as 
follows

The coefficient m of the traditional power law-type equation or Izbash equation is a 
function of media size, porosity as well as the flow regime ( � ). Alteration of value in any of 
the parameters can result in a significant variation in the coefficient m. Therefore, it is very 
difficult to predict the value of coefficient m for a given set of condition.

Wilkins coefficients β and w are presented as constants in the referred literature for vari-
ation in media sizes and porosities. For a given flow regime, the coefficient β is constant 
for any media size and porosity. However, their values depend primarily on the flow regime 
( � ). The minimum and maximum value of β corresponding to the turbulent and laminar 
regime is 0.69 and 1.38. Values of the coefficient w are found to be constants with variation 
in porosities for a given media size and a specific flow regime. However, its value varies 
with both media size and flow regime. The influence of the media size variation over the 
values of coefficient w increases towards the turbulent regime. In the laminar regime, the 
coefficient w represents constant values for all media sizes and porosities. Therefore, it may 

Table 2  Values of Wilkins coefficients for different media sizes over the complete flow regime

γ w β

Media sizes

5 mm 10 mm 20 mm 30 mm 40 mm 50 mm

0.5 9.86 6.97 4.93 4.03 3.48 3.12 0.69
0.6 34.04 25.76 19.54 16.63 14.83 13.55 0.83
0.7 117.49 95.50 77.62 68.71 62.95 58.88 0.97
0.8 405.51 353.18 307.61 283.79 267.92 255.86 1.10
0.9 1402.81 1309.18 1218.99 1172.20 1137.63 1114.30 1.24
1 4841.72 4841.72 4841.72 4841.72 4841.72 4841.72 1.38
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be suggested that the coefficient w is a representation of the irregularities associated with 
the inertia force in the turbulent regime.

The variation pattern of the Forchheimer coefficients with media sizes and porosities are 
found to be similar to the results reported in the literature. In a specific flow regime, val-
ues of the Darcy and non-Darcy coefficients represent a decreasing trend with an increase 
in media size and porosity. Furthermore, variation in the flow regime is found to have a 
significant effect on the coefficients of the binomial equation. The Darcy coefficient is the 
dominating force near the laminar regime, whereas the influence of the non-Darcy coef-
ficient increases as the flow shifts towards the turbulent regime. However, the values of the 
Darcy and non-Darcy coefficients are predominantly functions of the total head loss. Since 
the total head loss increases towards the turbulent regime, values of the Darcy and non-
Darcy coefficients also increase. However, the variation pattern of the Darcy coefficient is 
different for smaller pore sizes (smaller size of media packed with lesser porosity). In the 
case of flow through smaller media sizes packed with lower porosities, the Darcy coeffi-
cient increases as the flow shifts towards the laminar regime. This suggests that for smaller 
pore sizes viscous resistance is the dominant force and has a significant contribution to the 
total head loss.

Finally, the study reveals that the shift in flow regime has a significant effect over the 
velocity and hydraulic gradient relationship in flow through porous media. Irrespective of 
what type of equation is being used for the modelling, the flow regime should be consid-
ered for efficient modelling of post-laminar flow through porous media. Furthermore, the 
performance of the developed model can be further improved by using specific experimen-
tal values of the hydraulic conductivity and critical Reynolds number. With the specific 
values of the two parameters, the model can be able to predict the flow through porous 
media universally and therefore may be of considerable help to the engineers and designers 
to estimate the rate of flow. This, in turn, may also help to design structures associated with 
post-laminar flow through porous media.
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Appendix

Step Wise methodology to calculate the velocity corresponding to any hydraulic gradient 
for a certain packing:

Step 1 Input values of critical Reynolds number (Re), media diameter (d), dynamic vis-
cosity (μ), fluid density (ρ)
Step 2 Calculate limiting velocity (v1) from the relation v1 =

Re×�

�×d

Step 3 Insert the hydraulic conductivity (K) of the given packing.
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Step 4 Calculate the initial hydraulic gradient (i1) from the relation i1 =
v1

K
Step 5 Input the value of hydraulic gradient (i2) for which velocity needs to be measured
Step 6 Specify the required flow regime by incorporating the value of � . It should be 
between 0.5 (fully turbulent flow)—1 (laminar flow)
Step 7 Calculate hydraulic gradient (i2) corresponding to velocity (v2) from the equation

Step 8 Repeat step 5–7 and calculate hydraulic gradient (i3) corresponding to velocity 
(v3) from the equation stated below:

Step 9 Similarly calculate hydraulic gradient (in) corresponding to velocity (vn) for from 
the equation

Step 10 Plot calculated velocities and hydraulic gradients to get the variation trend of 
velocity with hydraulic gradient in a specific flow regime for a given media size poros-
ity.
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