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Abstract
The objective of this work is to study the applicability of variousmachine learning algorithms
for the prediction of some rock properties which geoscientists usually define due to special
laboratory analysis.We demonstrate that these special properties can be predicted only basing
on routine core analysis (RCA) data. To validate the approach, core samples from the reservoir
with soluble rockmatrix components (salts) were tested within 100+ laboratory experiments.
The challenge of the experiments was to characterize the rate of salts in cores and alteration of
porosity and permeability after reservoir desalination due to drilling mud or water injection.
For these three measured characteristics, we developed the relevant predictive models, which
were based on the results of RCA and data on coring depth and top and bottom depths of
productive horizons. To select the most accurate machine learning algorithm, a comparative
analysis has been performed. It was shown that different algorithms work better in different
models. However, two-hidden-layer neural network has demonstrated the best predictive
ability and generalizability for all three rock characteristics jointly. The other algorithms,
such as support vector machine and linear regression, also worked well on the dataset, but
in particular cases. Overall, the applied approach allows predicting the alteration of porosity
and permeability during desalination in porous rocks and also evaluating salt concentration
without directmeasurements in a laboratory. This work also shows that developed approaches
could be applied for the prediction of other rock properties (residual brine and oil saturations,
relative permeability, capillary pressure, and others), of which laboratory measurements are
time-consuming and expensive.

Keywords Machine learning · Routine and special core analysis · Reservoir properties ·
Salted formations · Porosity and permeability alteration

1 Introduction

Laboratory study of reservoir rock samples of a geologic formation (core analysis) is the direct
way to determine reservoir properties and to provide accurate input data for geologicalmodels
(Andersen et al. 2013). Geoscientists have developed a variety of approaches for measuring
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properties of reservoir rocks, such as porosity, permeability, residual oil saturation, and many
others. The information obtained from core analysis aids in formation evaluation, reservoir
development, and reservoir engineering (McPhee et al. 2015; Mahzari et al. 2018). It can be
used to calibrate log and seismic measurements and to help with well placement, completion
design, and other aspects of reservoir production.

Common applications of core analysis include (Gaafar et al. 2015):

– definitions of porosity and permeability, residual fluid saturations, lithology and predic-
tion of possible production of gas, condensate, oil, or water;

– definition of spatial distributions of porosity, permeability, and lithology to characterize
a reservoir in macroscale;

– definition of fluids distribution in a reservoir (estimation of fluids contacts, transition
zones);

– performing special core analysis tests to define the most effective field development plan
to maximize oil recovery and profitability.

Unfortunately, core analysis is expensive and tedious. Laboratory study requires care-
ful planning to obtain data with minimum uncertainties (Ottesen and Hjelmeland 2008).
Proper results of basic laboratory tests provide the reservoir management team with a vital
information for further development and production strategy.

Core analysis is generally categorized into two groups: conventional or routine core anal-
ysis (RCA) and special core analysis (SCAL) (Dandekar 2006). RCA generally refers to the
measurements for defining porosity, grain density, absolute permeability, fluid saturations,
and a lithologic description of the core. Samples for conventional core analysis are usually
collected three to four times per meter (Monicard 1980). Fine stratification features and
spatial variations in lithology may require more frequent sampling.

Probably, the most prominent SCAL tests are two-phase or three-phase fluid flow exper-
iments in the rock samples for defining relative permeability, wettability, and capillary
pressure. In addition, SCAL testsmay also includemeasurements of electrical andmechanical
properties, petrographic studies, and formation damage tests (Orlov et al. 2018). Petrographic
andmineralogical studies include imaging of the formation rock samples through thin-section
analysis, X-ray diffraction, scanning electronmicroscopy (SEM), and computed tomography
(CT) scanning in order to obtain better visualization of the pore space (Dandekar 2006; Liu
et al. 2017; Soulaine and Tchelepi 2016). SCAL is a detailed study of rock characteristics,
but it is time-consuming and expensive. As a result, the number of SCAL measurements is
much less than the number of RCAmeasurements (5–30% of RCA tests). In this way, SCAL
data space requires correct expansion or extrapolation to the data space covered by RCA. To
provide the expansion, core samples set used in SCAL tests should be highly representative
and contain all the rock types and cover a wide range of permeability and porosity (Stewart
2011). Even then, sometimes it is difficult to estimate correlations between conventional and
special core analysis results and expand SCAL data to the available RCA dataset. There are
few common approaches on stretching the SCAL data to RCA data space:

– typification (defining rock types with typical SCAL characteristics in certain ranges of
RCA parameters);

– petrophysical models (SCAL characteristics included as parameters in functional depen-
dencies between RCA characteristics);

– predictionmodels based onmachine learning (RCAparameters used as features to predict
SCAL characteristics).

The first approach leads to a significant simplification of reservoir characterization and
is based on subjective conclusions. Petrophysical models allow predicting only a few of
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SCAL characteristics (basically capillary curves and residual saturations). The last approach
looks more promising as it accounts for all the available features (measurements) and
builds implicit correlations among the features (Meshalkin et al. 2018; Tahmasebi et al.
2018).

The purpose of this research is to demonstrate the performance of machine learning (ML)
at maximizing the effect of RCA and SCAL data treatment. Machine learning is a subarea
of artificial intelligence based on the idea that an intelligent algorithm can learn from data,
identify patterns, and make decisions with minimal human intervention (Kotsiantis et al.
2007).

Commonly spread feature of fields in Eastern Siberia is salts (the ionic compound that can
be formed by the neutralization reaction of an acid and a base) presented in the pore volume
of the deposits. Salts distribution in the reservoirs depends on a complex of sedimentation
processes. Thus, the key challenge of this work is to develop prediction models, which can
characterize the quantity of soluble rockmatrix components (sodium chloride and other ionic
compounds) and an increase in porosity and permeability after reservoir desalination due to
drilling mud or water injection (ablation).

One of the main challenges for geoscientists is forecasting salts distribution in productive
horizons together with porosity and permeability alteration due to the salts ablation. It is very
important for:

– estimations of original porosity and permeability in wells as water-based drilling mud
can change pore structure during wellbore drilling and coring,

– RCA and SCAL data validation and correction due to pore structure alteration during
core sample preparation and consequent measurements,

– reservoir engineering (IOR&EOR based on water injection).

In this work, salts content measurements and alteration of porosity and permeability mea-
surements after desalination could be considered as a SCAL experiments because they are
expensive and time-consuming. The procedure of alteration estimation includes porosity
and permeability measurements before and after water injection in core samples and its
desalinization during long-term one-phase water filtration. Porosity and permeability before
desalination, sample density, and lithology and texture description are the RCA input data
for our predictive models.

The significant benefit of ML predictive models is that one may not have to perform
SCAL measurements for all the core samples, but can conduct prediction of the results
(Unsal et al. 2005). Once a predictive model of any SCAL results is trained, it could be
effectively used for future forecasting. There are a lot of ML algorithms to build a predictive
model (Hastie et al. 2001). In our work, we used the following algorithms: linear regression
(with and without regularization) (Boyd and Vandenberghe 2004; Freedman 2009), decision
tree (Quinlan 1986), random forest (Ho 1995), gradient boosting (Friedman 2001), neural
network (Haykin 1998), and support vector machines (Cortes and Vapnik 1995). The choice
of algorithm strongly depends on the considered problem, data quality, and size of the dataset.
For example, it would be unnecessary to build convolutional or recursive NN in our problem
due to the small dataset size and its structure. However, more simple algorithms (mentioned
above) could be adopted for discussed cases.

Accordingly, we have two goals in our research. First is to develop a predictive model of
salts concentration using information of RCA and some additional data about coring depth
and top and bottom depths of productive horizons. Second is to develop relevant predictive
models of porosity and permeability.
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The main innovation elements of the research are:

– Special experimental investigations of porosity and permeability increasing in corewater-
flooding tests;

– Validation of predictive algorithms to define the best predictive model;
– Accounting ten features of core samples to predict porosity and permeability after rock

desalination and nine features to predict salts content;
– The high quality of models for the prediction of porosity and permeability after rock

desalination and rather good quality of model for the evaluation of rock salinity.

2 Materials andMethods

2.1 Hydrocarbon Reservoir Characterization

The Chayandinskoye oil and gas condensate field is located in the Lensk District of Sakha
(Yakutia) Republic in Russia and hosted toward the south of the Siberian platform within
the Nepa arch. The field belongs to the Nepa-Botuobinsky oil and gas area, which contains
rich hydrocarbons reserves. The main gas and oil resources are associated with the Vendian
terrigenous deposits (Talakh, Khamakin, and Botuobinsky horizons) which are overlapped
by a thick series of the salt-bearing sediments.

Chayandinskoye field is characterized by a complex geological structure and special
thermobaric formation conditions (reservoir pressure of 36–38MPa, overburden stress of
50MPa, and temperature of 11–17 ◦C). TheVendian deposits consist predominantly of quartz
sandstones and aleurolits with a low level of cementation and development of indentation
and incorporation of grains. Another essential feature of the field is salts presented in the
pore volume of the deposits. Salts distribution in the reservoir is exceptionally irregular due
to various sedimentation processes: change in thermobaric condition during regional uplifts
and erosional destruction of deposits, paleoclimate cooling, and glaciation, in addition to
filtration of brines through rock faults and fractured zones (Ryzhov et al. 2014). Usually, the
most common salt in rock matrix is sodium chloride (NaCl), but many other salts occur in
varying smaller quantities. The same conclusion based on TDS analysis (measurement of
the total ionic concentration of dissolved minerals in water) is correct for brine composition.
Rocks analysis demonstrates that highly salinized formations are coarse-grain poorly sorted
rocks with mass salts concentration—ranging from 4 to 30%. The porosity of the salted rocks
is 1–8% (seldom ≥ 10%). After core desalination, permeability could be increased up to 60
times and porosity—up to 2.5 times.

2.2 Dataset

We included the following features to the dataset for our prediction models:

– measurements of salts mass concentrations for core samples with various values of initial
porosity and permeability, lithology, depth, horizons’ ID, and wells’ ID;

– measurements of porosity and absolute permeability before and after desalination.

All tests are performed on 102 cylindrical core samples with 30mm radius and 30mm
length. Sample preparation included delicate extraction in the alcohol–benzene mixture at
room temperature (to avoid premature desalination) and drying up to constant weight. Abso-

123



Prediction of Porosity and Permeability Alteration Based on… 681

Fig. 1 Dataset. a Permeability distribution, b porosity distribution, c salts concentration distribution

lute permeability was measured at ambient conditions in the steady-state regime of nitrogen
flow. Porosity was determined by a gas volumetric method based on Boyle’s Law (API 1998).

For salts ablation, we injected in each core sample more than ten pore volumes of brine
with low salinity (30mg/cc). To enhance ablation, we also performed additional extraction in
the alcohol–benzene mixture to remove oil films preventing salts dissolution. After that, the
samples were dried up to a constant weight to measure porosity and permeability after desali-
nation. Results of porosity and permeability measurements (before and after salts ablation)
are presented in Fig. 1a, b.

Measurements of salts mass concentrations for core samples were based on the data of
sample weighting before and after desalination. The resulting expression for salts concen-
tration could be defined as:

Csalt = Δm

m0
, (1)

whereΔm is the sample mass difference before and after ablation (g);m0 is the sample mass
before desalination (g). All the measurements were made on oven-dry samples. Results of
salts mass concentration measurements are presented in Fig. 1c.

For salts concentration predictive model, we have used nine features: formation top depth,
formation bottom depth, initial (before desalination) porosity and permeability, sample depth
adjusted to log depth, sample density (before desalination), average grain size (by lithology
and texture description), sample color, and horizon ID. Average grain size was quantified
from textual lithology description in the following way:
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Table 1 All features used in
predictive models

No. Feature Unit

1 Salts concentration g/g

2 Formation top depth m

3 Formation bottom depth m

4 Porosity before desalination %

5 Absolute permeability before desalination mD

6 Sample depth m

7 Sample density g/cc

8 Average grain size mm

9 Color –a

10 Depth horizon –a

aDimensionless

Gravel—1mm;
Coarse sand—0.5mm;
Medium sand—0.25mm;
Fine sand—0.1mm;
Coarse silt—0.05mm;
Fine silt—0.01mm;
Clay—0.005mm.

For sample color and horizon type, we have used the classification scheme containing six
color types and three horizon types. If the sample has any of the six colors and any of the
three horizons, we mark “1”, otherwise, we mark “0”.

For porosity and permeability predictive models, we have used nine previously described
features plus salts concentration. All ten features accounting in machine learning algorithms
are presented in Table 1.

2.3 PredictionModels

We have used nine models: linear regression (simple, with L1 and L2 regularization), deci-
sion tree, random forest, gradient boosting (two different implementations with and without
regularization), neural network, and support vector machines to compare their predictive
power.

2.3.1 Linear Regression (Hastie et al. 2001; Freedman 2009)

Simple linear regression expresses predicting value as linear combination of the features:

y = w0x0 + w1x1 + · · · + wpxp + b, (2)

where y is the predicting parameter; x is a matrix of features; andw is a matrix of optimizing
coefficients.

The optimization problem for regression is given by the expression:

min
w,b

F(w, b) = 1

m

m∑

i=1

(wxi + b − yi )
2. (3)
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Coefficients w and b are defined from a training set of data (yi is the actual value of the
predicting parameter; m is the size of the training set). Further, the linear regression model
with predefined coefficients could be effectively applied to fit new data. This algorithm is
implemented in LinearRegression() method of Python scikit-learn library (Pedregosa et al.
2012).

Sometimes, regression with regularization works better than simple regression. In a case
when we have many features, linear regression procedure leads to overfitting: enormous
weightsw that fit the training data very well, but poorly predict future data. “Regularization”
means modifying the optimization problem to prefer small weights. To avoid the numerical
instability of the least squares procedure regression with L2 and L1 regularizations is often
applied (Hastie et al. 2001).

2.3.2 Linear Regression with L2 Regularization (Ridge) (Boyd and Vandenberghe 2004)

This approach is based on Tikhonov regularization, which addresses the numerical instability
of the matrix inversion and subsequently produces lower variance models:

min
w,b

F(w, b) = 1

m

m∑

i=1

(wxi + b − yi )
2 + λ||w||22. (4)

All variables have the same meanings as in linear regression case. Optimal regularization
parameter λ is chosen in a way to get the best model fitting while weights w are small. This
algorithm is implemented in Ridge() method of Python scikit-learn library (Pedregosa et al.
2012).

2.3.3 Linear Regression with L1 Regularization (Lasso) (Boyd and Vandenberghe 2004)

While L2 regularization is an effective approach of achieving numerical stability and increas-
ing predictive performance, it does not address another problem with least squares estimates,
parsimony of the model, and interpretability of the coefficient values (Tibshirani 1996).
Another trend has been to replace the L2-norm with an L1-norm:

min
w,b

F(w, b) = 1

m

m∑

i=1

(wxi + b − yi )
2 + λ||w||1. (5)

This L1 regularization has many of the beneficial properties of L2 regularization, but
yields sparse models that are more easily interpreted (Hastie et al. 2001). L1 regularization
algorithm is implemented in Lasso() method of Python scikit-learn library (Pedregosa et al.
2012).

2.3.4 Decision Tree (Quinlan 1986)

Decision tree is a tree representation of a partition of feature space. There are numbers
of different types of tree algorithms, but here we will consider only CART (classification
and regression trees) (Breiman 2017) approach. A classification tree is a decision tree which
returns a categorical answer (class, text, color, and other), while a regression tree is a decision
tree which responses with an exact number. Figure 2a demonstrates a simple example of the
decision tree in a case of two-dimensional space based on two features X1 and X2.
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Fig. 2 Examples of prediction algorithms. aDecision tree example, b scheme of artificial neural network with
two hidden layers

A decision tree consists of sets of leaves and nodes. One may built very detailed deep
tree with many nodes; however, such tree will suffer from overfitting. Usually, the maximum
depth of the tree is restricted. To build a tree, the recursive partition is applied until a sufficient
size of a tree would be obtained. The criteria for tree splitting are often given by Gini index
or information gain criteria in classification case and mean squared error or mean absolute
error in the regression case. These functions are used to measure the quality of a split and
choose the optimal point of partition. Tree construction could involve not all input variables,
so tree managed to demonstrate which variables are relatively important, but it could not
rank the input variables. Decision tree algorithm exploited in this work is implemented in
DecisionTreeRegressor() method of Python scikit-learn library (Pedregosa et al. 2012).

2.3.5 Random Forest (Ho 1995; Breiman 2001)

The main idea of this method is to build many independent decision trees (ensemble of
trees), train them on data subset, and receive predictions. The algorithm uses bootstrap re-
sampling to prevent overfitting. Bootstrapping is a re-sampling with replacement: bootstrap
sets are built on initial data, where several samples are replaced with other repeating samples.
Each tree is built on individual bootstrap set (so, for N tree estimators, we need N different
bootstrap representations). Consequently, all trees are different as they are built on different
datasets and hold different predictions. Then, all trees are aggregated together after training
and the final prediction is obtained by averaging (in the case of regression) predictions of each
tree. One useful feature of random forest algorithms is that it could rank input features. It is
implemented in RandomForestRegressor() method of Python scikit-learn library (Pedregosa
et al. 2012).

2.3.6 Gradient Boosting (Friedman 2001)

Thismethod uses “boosting” of the ensemble ofweak learners (often decision trees). Boosting
algorithm combines trees sequentially in such a way that the next estimator (tree) learns from
the error of previous one: this method is iterative, and each next tree is built as a regression on
pseudo-remainders. Similar to any other ML algorithm, gradient boosting uses loss function
to minimize. Also, gradient descent is applied to minimize error (loss function) associated
with adding a new estimator. The final model is obtained by combining the initial estimation
with all subsequent estimations with appropriate weights. Gradient boosting method used in
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this study is implemented in the scikit-learn library in GradientBoostingRegressor() method
(Pedregosa et al. 2012). Also, XGBoost library (Chen and Guestrin 2016) was considered
because it allows adding regularization to the model.

2.3.7 Support Vector Machine (SVM) (Cortes and Vapnik 1995)

The idea of support vector machine (in case of regression) is to find a function that approxi-
mates data in the best possible way. This function has at most ε deviation out from real train
values yi and as flat as possible. Such linear function f (X) could be expressed as:

f (X) = wX + b. (6)

The optimization problem could be formulated in the following form:

min
W

1

2
||w||2

subject to :
{
yi − wX − b ≤ ε

wX − b − yi ≤ ε
.

(7)

Often, some errors beyond ε are allowed, which requires introducing of slack variables
ξi , ξ

∗
i into the problem:

min
W

1

2
||w||2 + C

m∑

i=1

(ξi + ξ∗
i )

subject to :

⎧
⎪⎨

⎪⎩

yi − wX − b ≤ ε + ξi

wX − b − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

.

(8)

The solution of SVR problem is usually given in a dual form (Hsieh et al. 2008), which
includes calculation of Lagrange multipliers αi , α

′
i . In this formulation solution looks as

follows:

f (x) =
m∑

i=1

(α′
i − αi )K (xi , x) + b, (9)

where K (xi , x) is a kernel (Crammer and Singer 2001).
In this work, the standard Gaussian kernel has been applied:

K (x, x ′) = exp

(
−||x − x ′||2

2σ 2

)
(10)

SVMalgorithm is implemented in SVR()method of Python scikit-learn library (Pedregosa
et al. 2012).

2.3.8 Neural Network (Haykin 1998; Schmidhuber 2015)

Artificial neural network (ANN) is amathematical representationof biological neural network
(Fig. 2b). It consists of several layers with units that are connected by links (McCulloch and
Pitts 1943). Each link has associated weight and activation level. Each node has an input
value, an activation function, and an output. In ANN, information propagates (forward pass)
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from first (not hidden) layer with inputs to next hidden layer and then to further hidden
layers until the output layer would be achieved. The value of each node of the first hidden
layer is obtained after the calculation of activation function for the dot product of inputs and
weights. Next hidden layer receives the output of the previous one and puts its dot product
with weights to the activation and so on. Initially, all weights for all nodes are assigned
randomly. ANN calculates first output with random weights, then compares it with real
value, calculates the error, and adopts weights to obtain smaller error on the next iteration
via backpropagation (ANN training algorithm). After training, all weights are tuned, and one
may make a prediction for a new data by passing them into an ANN which will calculate
output via forward propagation through all activations (Rumelhart et al. 1986). Scikit-learn
library provides ANN representation in MLPRegressor() method (Pedregosa et al. 2012).
This implementation allows to indicate the number of hidden layers, number of nodes in
each layer, activation function, learning rate, and some other parameters.

2.4 Methodology of UsingMachine Learning Algorithms

2.4.1 Metrics

To evaluate the accuracy of applied methods and compare them between each other, the
following metrics have been exploited.

The coefficient of determinationR2 is the proportion of the total (corrected) sumof squares
of the dependent variable “explained” by the independent variables in the model. R2 score
is a part of dispersion of dependent variable that is predictable by independent variables:

R2 = 1 −
∑

i (yi − ŷi )2∑
i (yi − ȳ)2

, (11)

where yi are real values, ŷi are predicted values, and ȳ is a mean value.
Mean squared error corresponds to quadratic errors:

MSE(y, ŷ) = 1

nsamples

nsamples−1∑

i=0

(yi − ŷi )
2. (12)

Mean absolute error corresponds to absolute errors:

MAE(y, ŷ) = 1

nsamples

nsamples−1∑

i=0

|yi − ŷi |. (13)

2.4.2 Cross-Validation

Since this study is limited in the amount of data, cross-validation (CV) has been applied.
There are several cross-validation techniques. For example, when we split whole data into k
parts, i.e., k-fold, we use first part for testing the performance of ML model after training it
on the other k − 1 parts. Next, we could take the second part for testing and the rest parts for
training and so on k times. In the end, we will have k different values of metrics—R2, MAE,
MSE [Eqs. (11)–(13)] calculated for each fold. So, via cross-validation, we could obtain
mean values of metrics and their standard deviation. Another cross-validation technique
called random permutation supposes random division of data into train and test set, then data
shuffle, and we can obtain new division on test and train set. This process repeats n times
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and each time metrics are calculated. Similarly, in the end, we can evaluate the mean values
of metrics and standard deviations. So, cross-validation not only allows to calculate R2 (or
MAE andMSE) for the test set but also does it several times by independent data splitting into
test and train sets. Since in our task we are restricted in the amount of data, cross-validation
was used several times (for hyperparameters tuning, model’s performance estimation, and
making predictions to plot predicted results versus real data). Models building and estimation
was done in three steps:

1. Hyperparameters tuning was done with the help of exhaustive grid search (Bergstra and
Bengio 2012). This process allows to search through given ranges of each hyperparam-
eter and define optimal values which led to the best R2 (or MAE, MSE, etc.) scores.
This process is implemented in scikit-learn Python library (Pedregosa et al. 2012) in
method GridSearchCV(). The method simply calculates CV score for each combination
of hyperparameters in a given range. Random permutation approach with ten repeats was
chosen as CV iterator. GridSearchCV() allows not only to find the best hyperparameters,
but also calculate metrics in the optimal point. However, just ten repeats are not enough
for very accurate final estimation of mean value and deviation; while takingmore repeats,
more computational time is required. So, final estimation with known hyperparameters
would be done next.

2. Evaluation of the ML model with optimal hyperparameters (defined on the first step)
was also done via CV with random permutation approach. However, here, we take 100
repeats, and it is enough for a fair result.

3. To plot predictions versus real values, we applied k-fold CV. In our particular case, we
took k that equals the number of samples. So, first of all, we train our model on all data
without one point and then predict at this point (testing) by trained model. Next, we take
the second point, remove it from the dataset and train model from scratch, and then obtain
prediction in point. This process was made for all data points (102 times). It allows to
obtain predictions for all points and compare them with initial data visually.

Some researchers (Choubineh et al. 2019) suggest the other way to validate the quality
of ML models. The data records of the dataset are divided into training, validation, and
testing subsets, respectively, where validation set is used for hyperparametres tuning while
training set is used for training the model and test set is used for final model evaluation.
However, unfortunately, a single random partition of the data on subsets could not be enough
for correct model estimation due to non-uniformity of the dataset. Another random partition
will give another value of metrics (R2, MAE, MSE, and others). Single partition of the data
is reasonable only in case of the big size of the dataset.

2.4.3 Normalization of Data

Some machine learning methods require normalized data to proceed correctly (SVM and
neural network), so in these cases, the data have been normalized by using the mean and
standard deviation of the training set:

Xscaledi = Xi − X̄

σX
, (14)

where Xi is the feature vector, X̄ is the mean value of the feature vector, and σX is a variance.
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3 Results and Discussion

In this section, results of porosity, permeability, and salts concentration predictions are pre-
sented, analyzed, and compared. We made predictions of these reservoir properties on the
basis of features described in Sect. 2.2 by algorithms described in Sect. 2.3. However, only
linear regression with L1 regularization was taken into account out of three linear regression
algorithms (because algorithms are very similar and implemented within the same library,
results are very close, and regression with L1 regularization performs slightly better in
our task). Also, two different libraries for gradient boosting calculation were applied (they
reported separately) because XGBoost library allows regularization, while scikit-learn not.
So, we reported results for seven different algorithms. Each algorithm was adopted to the
experimental data to get the best performance due to the cross-validation procedure.

Since our dataset is not such big from big data point of view and contains different
measurements errors, it turns out that the proportion of its splitting via cross-validation
procedure is important. We found out via grid search that for our small dataset would be
optimal to left 35% of data for testing on each cross-validation pass to obtain the estimation
of algorithm performance.

3.1 Porosity Prediction

Porosity model was the first ML model we built. Actually, the material balance equation
defines specific dependence between porosity and salts concentration:

φ = φ0 + ρ0
r

ρha
Csalt, (15)

where φ is the porosity after desalinization; φ0 is the porosity before desalinization; Csalt is
the mass salts concentration; ρha is the salt density; and ρ0

r is the core sample density before
desalinization. Equation 15 allows to estimate performance of ML models. In this case,
data-driven algorithms should find hidden correlations within parameters and demonstrate
appropriate predictive abilities. The appearance of the physical model gives an opportunity
widely to test ML instruments.

For predictive models of porosity, we took into account influence of all ten character-
istics of rock samples (Table 1). Almost all surveyed methods (except decision tree) have
demonstrated promising results and high values of determination coefficient in the case of
porosity prediction. Table 2 demonstrates results of models evaluation via cross-validation
process: mean value and standard deviation. Here and further, we reported linear regres-
sion only with L1 regularization, because other implementations (without regularization and
with L2 regularization) show very close results. However, this algorithm works slightly bet-
ter. In general, the highest value of R2-metric corresponds to the lowest values of MSE
and MAE metrics. In porosity case, SVM, neural network, gradient boosting, and linear
regressions have the best scores. The best two models are support vector machines with
R2 = 0.86 ± 0.14, MAE = 0.82 ± 0.19, MSE = 1.63 ± 1.47 and neural network with
R2 = 0.84 ± 0.1, MAE = 0.94 ± 0.16, MSE = 1.79 ± 0.94.

Grid search calculated optimal regularization value of L1 linear regression which equals
0.001. In a similar search process, optimal depth of decision tree was obtained—7—and
the optimal number of estimators (trees) for random forest—150—along with the maximum
depth of each tree—8. For gradient boosting model, the following parameters were selected:
16,000 estimators (trees), maximum depth of each tree—2, subsample—0.7 (it means that
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Table 2 Results for porosity prediction

No. Model R2 σR2 MAE σMAE MSE σMSE

1 Linear regression with L1 regularization 0.792 0.116 1.035 0.178 2.361 1.110

2 Decision tree 0.490 0.226 1.749 0.322 5.882 2.244

3 Random forest 0.675 0.090 1.427 0.213 3.815 1.073

4 Gradient boosting 0.763 0.078 1.173 0.192 2.791 0.943

5 Gradient boosting (XGBoost) 0.782 0.081 1.112 0.186 2.526 0.840

6 Support vector machines 0.855 0.144 0.816 0.194 1.634 1.472

7 Neural network 0.841 0.098 0.935 0.164 1.793 0.935

Fig. 3 Comparison of actual and predicted porosity. a For SVR algorithm, b for neural network algorithm

each tree takes only 70% of initial data to fit, the next tree takes another 70% randomly, etc.;
this idea helps to prevent overfitting), max-features—0.9 (the concept is similar to subsample;
the only difference is that instead of using part of the samples, algorithm takes part of features
to fit each tree), and regularization—0.001.Neural network architecturewas also definedwith
the help of grid search since we have the small dataset and can calculate several architectures
fast. It has two hidden layers with two and four nodes in each layer. SVM was built with
Gaussian kernel which has two parameters to tune: C and gamma. The exhaustive search
showed optimal gamma—0.0001—and optimal C—40,000.

Performance of the SVR and MLPRegressor models could be demonstrated by plotting
predicted values (via cross-validation) of porosity after ablation versus the actual values
(Fig. 3). One can see the data points located along the mean line (bisectrix).

Python’s XGBoost allows arranging features concerning a degree of their influence on
the prediction model (Friedman 2001), as shown in Fig. 4. The importance provides a score
(referred as F score) that indicates how useful each feature was in the construction of the
boosted decision trees within the model. This metric shows how many times the feature was
used to split tree on (Freedman 2009). The feature importance is then averaged across all of
the decision trees within the model.

In Fig. 4, one can see that porosity and permeability before desalination and salts con-
centration have the most significant influence on the porosity prediction results, which is
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Fig. 4 Feature selection in porosity model with XGBoost

Table 3 Results for permeability prediction

No. Model R2 σR2 MAE σMAE MSE σMSE

1 Linear regression with L1 regularization 0.852 0.074 118 20 40,864 16,434

2 Decision tree 0.677 0.196 167 42 90,988 47,737

3 Random forest 0.775 0.103 139 36 68,091 40,814

4 Gradient boosting 0.806 0.085 139 33 57,696 29,888

5 Gradient boosting (XGBoost) 0.809 0.093 137 36 57,345 36,071

6 Support vector machines 0.856 0.078 105 20 39,957 17,906

7 Neural network 0.850 0.123 108 34 40,256 32,030

in a good correspondence with the geometric correlation between porosity and salts con-
centration (Eq. 15). Core sample density before desalinization (ρ0

r ) is also among the five
influential features in ML algorithms (Fig. 4). These observations demonstrate that predic-
tive ML models simulate the same correlations as the physical model. A strong influence of
the permeability before desalinization (K0) on the porosity after desalinization (φ) can be
explained by a strong correlation between K0 and φ0 [as, for example, in Kozeny–Carman
equation form (Carman 1956)]. The next few features shown in Fig. 4, which also signif-
icantly influence on porosity increase, are depths of sample, formation top, and formation
bottom. This fact confirms that the salts are distributed in formation non-uniformly and the
distribution strongly depends on the geological condition of the reservoir. The color features
and the horizon types have the lowest influence on the prediction models.

3.2 Permeability Prediction

For permeability prediction, all themethods also look promising and demonstrate high values
of R2-metrics (Table 3). In this case, support vector machines, neural network, and linear
regressions show the best performance. The highest scores were obtained for SVR with
R2 = 0.86± 0.08, MAE = 105± 20, MSE = 39,957± 17,906 and linear regression with
R2 = 0.85 ± 0.07, MAE = 118 ± 20, MSE = 40,864 ± 16,434

Similar to the previous section, one may define optimal hyperparameters of algorithms for
permeability prediction via grid search (Bergstra and Bengio 2012). So, for linear regression
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Fig. 5 Comparison of real and predicted permeability. a For SVR algorithm, b for linear regression algorithm

model,wehave usedL1 regularizationwith regularization parameter equal to 10.The decision
treewas builtwithmaximumdepth—10. Twenty-five treeswith themaximumdepth of 8were
defined for random forest algorithm. In gradient boosting model, we obtained the following
optimal values: 300 estimators with a maximum depth of each tree equal to 2. Only 80%
of the samples and 90% of the features have been used for each tree to fit the model and
regularization parameter—0.1. Neural network had two hidden layers with 77 and 102 nodes
in each layer. SVM parameters included the Gaussian kernel with gamma equal to 0.0001
and C equal to 50,000.

Performance of the SVR and linear regression models is demonstrated on the mean line
plots shown in Fig. 5. Similarly, the prediction was made via cross-validation for all points.
Data points are mainly located along the bisectrix, but generally matching between observed
and predicted permeability is weaker than in porosity case.

The XGBoost method was also used to arrange features concerning their influence on the
predictive model. In Fig. 6, one can see that porosity and permeability before desalination
and salts concentration have the most influence on the permeability prediction results. It is
very similar to the results of feature selection in porosity model. We also obtained that the
next features, which significantly influence permeability increase, are connected with the
geological condition of the reservoir (sample depth, formation top, and bottom depths). The
color features and the horizon type also occurred in the lowest influencers.

3.3 Salts Concentration Prediction

The last part of the research is devoted to the prediction of salts concentration. The mod-
els work worse and demonstrate rather weak performance with R2-metric hardly reaching
0.6. Only a few methods look promising and demonstrate reasonable values of R2-metrics
(Table 4). The best algorithms are neural network, gradient boosting, and random forest.
Linear regression and decision tree models are unacceptable with very small R2-metrics.
R2 for support vector regression reached almost 0.5. The best two models with the high-
est scores are neural network (from MLPRegressor model of Scikit-learn) with R2 =
0.66 ± 0.25, MAE = 0.77 ± 0.18, MSE = 1.69 ± 0.96 and gradient boosting with
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Fig. 6 Feature selection in permeability model with XGBoost

Table 4 Results for salts concentration prediction

No. Model R2 σR2 MAE σMAE MSE σMSE

1 Linear regression with L1 regularization 0.014 0.385 1.579 0.174 5.747 1.996

2 Decision tree 0.253 0.566 1.092 0.279 4.084 2.602

3 Random forest 0.528 0.287 1.021 0.177 2.610 1.213

4 Gradient boosting 0.593 0.265 0.929 0.191 2.227 1.131

5 Gradient boosting (XGBoost) 0.565 0.299 0.950 0.189 2.276 1.275

6 Support vector machines 0.484 0.411 0.951 0.1909 2.608 1.221

7 Neural network 0.664 0.251 0.774 0.175 1.686 0.959

R2 = 0.59 ± 0.27, MAE = 0.93 ± 0.19, MSE = 2.23 ± 1.13. Also, in this case, very
high standard deviation (up to 100%) in defining R2, MSE, and MAE metrics is obtained.
This could be explained by non-uniformity of the experimental data.

By analogy with porosity and permeability, we defined optimal hyperparameters of algo-
rithms via grid search process (Bergstra and Bengio 2012). Regularization parameter for L1
regression is equal to 1.0. The optimal decision tree has a depth of 9. Random forest performs
better with ten estimators of the depth of 1. Gradient boostingmodel runs with 300 estimators
of the depth of 10. 95% of samples and 50% of features have been used for training of each
tree. Regularization parameter is small and is equal to 0.00001. The neural network contains
three layers and 55, 10, and 86 nodes in each layer, respectively. SVM was performed with
gamma which is equal to 0.1 and C which is equal to 25.

Performance of the gradient boosting and neural network models is demonstrated on the
mean line plots (Fig. 7). Data points are partially located along the mean line. Accordingly,
the correlation between observed and predicted values is much weaker than in porosity and
permeability cases.

Results of XGBoost features arrangement are shown in Fig. 8. As one can see, porosity
before desalination has the most substantial influence on the salts concentration prediction
results. The next two features affecting the prediction results are sample depth and perme-
ability before desalination. Results of this feature rating differ from the results obtained for
porosity and permeability models. We can state that the prediction of porosity and perme-
ability alteration is primarily controlled by its initial values and amount of salts in the pore
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Fig. 7 Comparison of real and predicted salts concentration. a For gradient boosting algorithm, b for neural
network algorithm

Fig. 8 Feature selection in salts concentration model with XGBoost

volume. Salts concentration, in its turn, strongly depends not only on the initial porosity
and permeability but also on the formation pattern characteristics, which are linked with
post-sedimentation processes. Therefore, the prediction model attempts to learn from train-
ing dataset where and how strong these processes are developed in the certain reservoir beds
with various depth and location in the oil field (through the formation top and bottom depths).

3.4 Comparison of the Predictive Models with Traditional Approaches

All obtainedR2 scoreswith its variances for all algorithms are represented in Fig. 9. Theworst
results could be associated with decision tree method where we obtained not only the lowest
values for R2 metric but also the largest standard deviation of R2. Support vector machines
and linear regression demonstrate good results only for porosity and permeability prediction,
but these methods are inappropriate for salts concentration prediction. The best machine
learning method for the prediction of all three petrophysical characteristics is neural network
in MLPRegression implementation. This algorithm demonstrates the most significant values
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Fig. 9 R2 scores for all models

of R2 metrics and the smallest standard deviation. Gradient boosting and random forest
could also be recommended as effective methods for the prediction of salts concentration
and permeability and porosity alteration due to salts ablation.

The benefits of using machine learning models to estimate rock properties in comparison
with standard one-feature approximation are obvious. When we talk about standard one-
feature approximation, we assume the next approach. In case we do not know the law (or
physical model) controlling the correlation between core sample characteristics and the target
rock property, the simplest and the fastest way to build the petrophysicalmodel of the property
is consistent single-variable function analysis—finding consistently the target rock property
functional dependence on each variable (characteristic of rock). The best single-variable cor-
relation in this approach could be considered as a one-feature approximation model. Instead
of this expert approach, ML algorithms allow building multi-feature approximations, which
are more relevant to real rock properties correlations. Using one-feature approximation anal-
ysis, we found that porosity and permeability after ablation have the strongest correlation
with salts concentration and corresponding dependencies shown in Figs. 10 and 11. How-
ever, it does not mean that other core sample characteristics are useless. Over against, ML
algorithms accounting all ten characteristics should demonstrate better results. In our case,
the one-feature approximation is the cubic polynomial which accounts for the dependency
of porosity (permeability) alteration on salt content.

To compare MLmethods with one-feature approximation approach, predictions of poros-
ity and permeability alterations were performed in three ways:

– using one-feature approximations for porosity and permeability dependencies on salts
content (here we take into account only one feature, solid lines in Figs. 10 and 11);

– using prediction models based on neural network with all ten predetermined features
(dataset with salts concentration measurements, green dots in Figs. 10 and 11);
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Fig. 10 Dependence of real and predicted porosity alteration on salts content. Δφ = φ − φ0, where φ0 is the
porosity before salts ablation and φ is the porosity after salts ablation

Fig. 11 Dependence of real and predicted permeability alteration on salts content. ΔK = K − K0, where K0
is the permeability before salts ablation and K is the permeability after salts ablation

– using prediction models based on neural network with only nine predetermined features
(dataset without salts concentration measurements, red dots in Figs. 10 and 11).

The last approach includes a two-step procedure. First, we estimate salts concentrations
with corresponding prediction model, and second, we use this predicted values in porosity
and permeability predictions. This approach is applicable in the case when we do not have
experimental measurements of salts concentrations.

The more detailed comparison of machine learning models and standard one-feature
approximation is presented in Figs. 12 and 13. Here, the experimentally measured poros-
ity (Fig. 12) and permeability (Fig. 13) were compared with the predicted values from ML
(with and without salt content measurements) and one-feature approximation. These plots
demonstrate the difference between three applied approaches for the estimation of porosity
and permeability after desalinization. Originally, one-feature approximation was obtained
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Fig. 12 Comparison of prediction by ML model and one-feature approximation for porosity

Fig. 13 Comparison of prediction by ML model and one-feature approximation for permeability

from dependency of porosity (permeability) alteration on salt content (Figs. 10, 11). Then,
these alterations were used to obtain values of porosity and permeability after desalinization.
Blue triangles in Figs. 12 and 13 relate toMLmodel with known salt content. These points are
located near the plot diagonal (ideal case). Black points relate to one-feature approximation,
and these points are the most distant from diagonal. Yellow squares are approximation by
ML with salt content preliminary predicted by ML. These predictions were made by using
the approach described in Sect. 2.4 in cross-validation as a third step (k-fold cross-validation
with k equal to the number of samples). This method helps to compare approaches of perme-
ability evaluation between each other and depicts them on the plot. It does not evaluate the
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Table 5 Performance of the prediction models

No. Metric ML (salt is known) ML (salt is unknown) One-feature approx.

Porosity

1 R2 0.90623 0.73156 0.69427

2 MAE 0.69695 1.20640 1.41261

3 MSE 1.1197 3.20539 3.65065

Permeability

1 R2 0.87924 0.80541 −0.22504

2 MAE 95.923 140.877 188.569

3 MSE 37,042.88 59,687.87 375,778.98

performance of ML algorithms well (methods evaluation was given in Tables 2,3,4), because
we have only one value of R2 (Eq. 11) and does not have confidence intervals. From Figs. 12
and 13, one can see that machine learning models work better.

Quantitative comparison of models is presented in Table 5. Negative value of R2 for the
one-feature approximation of permeability was obtained because of several points, which
after recalculation (from normalized permeability to absolute values) lay very far from exper-
imental data and add huge error in R2 calculation (Eq. 11). One may remove these points and
obtain much better estimation, but ML models work with satisfying accuracy at these points,
so we have left results as they are to demonstrate the superiority of ML over old method.
Table 5 confirms that simple polynomial regression taking into account only one feature at
the same time works not so well as machine learning models considering many different
features. We can also see that restriction of the dataset (case without salts concentration
measurements) does not strongly affect prediction quality. However, it makes it possible to
predict porosity and permeability alterations using only formation and core sample depths,
initial porosity and permeability, rock density and lithology description. Feature ranking for
salts concentration and permeability and porosity alterations models with Python’s XGBoost
method demonstrate that sample color and horizon have a feeble influence on the predictive
models and could be excluded from feature list for further applications.

4 Conclusion

In this paper, applicability of various machine learning algorithms for the prediction of some
rock properties was tested. We demonstrated that three special properties of salted reservoirs
of Chayandinskoye field could be predicted only basing on routine core analysis data. The
target properties were:

– alteration of open porosity,
– alteration of absolute permeability,
– salts mass concentration.

After core desalination, permeability could be increased up to 60 times and porosity up to
2.5 times. Usually, these characteristics are out of RCA scope because it is time-consuming
and occasional analysis. It is very useful for reservoir development planning to have the
predictive models in case of lack of this type of data. Porosity and permeability before
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desalination, sample density, and lithology and texture description are the RCA input data
for our predictive models.

To build relevant predictive models, the dataset with results of 100+ laboratory experi-
mentswas formed.Themainnine featureswere: formation topdepth, formationbottomdepth,
initial (before desalination) porosity and permeability, sample depth adjusted to log depth,
sample density (before desalination), average grain size (by lithology and texture descrip-
tion), sample color, and horizon ID. These features were used to build the salts concentration
predictive model. For porosity and permeability alteration prediction, we additionally used
the tenth feature—the salts concentration. From a technical point of view, there is no mat-
ter these concentrations measured or predicted with other ML model. We reported seven
algorithms:

– Linear regression with L1 regularization;
– Decision tree;
– Random forest;
– Gradient boosting;
– XGBoost;
– Support vector machine;
– Artificial neural network.

The best two algorithms for porosity and permeability alteration prediction were support
vector machines and neural network. For permeability, the linear regression with regulariza-
tion also showed good results. The best models demonstrate the determination coefficient
R2 of 0.85+ for porosity and permeability. High precision of developed models looks to be
helpful in decreasing geological uncertainties in modeling of salted reservoirs. It was shown
that porosity and permeability before water intrusion along with the matrix density, sam-
ple depth, and salts content are the most influencing features on permeability and porosity
alteration.

The predictive model of salts concentration has been developed using the results of rou-
tine core analysis and data on core depth and top and bottom depths of productive horizons.
The best algorithms here were gradient boosting and neural network. The highest coeffi-
cient of determination R2 for salts concentration in rocks equals 0.66. The precision of
salts model is lower than the precision of porosity and permeability models. Nevertheless,
the developed models allow to estimate the salts content in rocks without special experi-
ments.

Combining all three models, it is also possible to make precise porosity and permeability
alterations predictions using only a minimal volume of routine core analysis data: forma-
tion and core sample depths, initial porosity and permeability, rock density and lithology
description. Accordingly, with these instruments geoscientists and reservoir engineers can
estimate the porosity and permeability alteration at waterflooding conditions having RCA
measurements only.

It was shown that different algorithms work better in different models. However, the best
machine learning method for the prediction of all three parameters was two-hidden-layer
neural network in MLPRegression implementation. This algorithm gave the highest values
of R2 metric and the smallest standard deviation. Gradient boosting and random forest could
also be recommended as alternative methods for predictions but with lower precision.

Finally, this work showed that machine learning methods could be applied for the pre-
diction of rock properties, of which laboratory measurements are time-consuming and
expensive.
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