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Abstract
Asymptotic multiple scale homogenisation allows to determine the effective behaviour of
a porous medium by starting from the pore-scale description, when there is a large separa-
tion between the pore-scale and the macroscopic scale. When the scale ratio is “small but
not too small”, the standard approach based on first-order homogenisation may break down
since additional terms need to be taken into account in order to obtain an accurate picture of
the overall response of the medium. The effect of low scale separation can be obtained by
exploiting higher-order equations in the asymptotic homogenisation procedure. The aim of
the present study is to investigate higher-order terms up to the third order of the advective–
diffusive model to describe advection–diffusion in a macroscopically homogeneous porous
medium at low scale separation. The main result of the study is that the low separation of
scales induces dispersion effects. In particular, the second-order model is similar to the most
currently used phenomenological model of dispersion: it is characterised by a dispersion ten-
sor which can be decomposed into a purely diffusive component and a mechanical dispersion
part, whilst this property is not verified in the homogenised dispersion model (obtained at
higher Péclet number). The third-order description contains second and third concentration
gradient terms, with a fourth-order tensor of diffusion andwith a third-order and an additional
second-order tensors of dispersion. The analysis of the macroscopic fluxes shows that the
second- and the third-order macroscopic fluxes are distinct from the volume averages of the
corresponding local fluxes and allows to determine expressions of the non-local effects.
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1 Introduction

Most studies in the theory of flow and transport in porous media are based on the exploitation
of the continuum theory implying that the original heterogeneous medium behaves like a
homogeneous one characterised by macroscopic fluid flow and transport equations with
certain effective properties. Such an approach requires that the condition of separation of
scales be fulfilled: the microscopic size l of heterogeneities must be essentially smaller than
the macroscopic characteristic length L : l � L . In this definition, length L represents either
the size of the whole sample, or a macroscopic characteristic length of the phenomenon,
which means that the condition of separation of scales must be fulfilled geometrically and
also and with respect to loading conditions.

The multiple-scale asymptotic homogenisation method which can be traced to Sanchez-
Palencia (1980), Bensoussan et al. (1978), and Bakhvalov and Panasenko (1989) can be
used as a systematic tool of averaging so as to derive such continuum models: first-order
models obtained by asymptotic homogenisation are thus accurate for media with large scale
separation between the pore scale and the macroscale. But when the ratio l/L is “small but
not too small”, microstructural scale effects may occur which result in specific non-local
phenomena. Then, the “local action” assumption of classical continuum mechanics, which
postulates that the current state of themediumat a given point is only affected by its immediate
neighbours and that there are no physical mechanisms that produce action at a distance, is
no longer satisfied. Consequently, additional terms need to be taken into account in order to
obtain an accurate picture of the overall response of the medium, which cannot be predicted
in the frame of first-order homogenisation theory. Thus, the study of so-called higher-order
or non-local effects in the overall behaviour of heterogeneous media is motivated by the need
to account for the scale effects observed in the behaviour of multiple-scale heterogeneous
media where the scales are separated widely but not “too widely”, and these scale effects
can be systematically analysed by considering higher-order correctors in the asymptotic
homogenisation method.

Mathematical aspects of higher-order homogenisation have beendeveloped inSmyshlyaev
andCherednichenko (2000) andCherednichenko and Smyshlyaev (2004). The role of higher-
order terms has been investigated for heat conduction in heterogeneous materials in Boutin
(1995) and for elastic composite materials subjected to static loading in Gambin and Kroner
(1989) and Boutin (1996). In these studies, it is shown that the heterogeneity of the medium
causes non-local effects on a macrolevel: instead of the homogenised equilibrium equations
of continuum mechanics, new equilibrium equations are obtained that involve higher-order
spatial derivatives and thus represent the influence of the microstructural heterogeneity on
the macroscopic behaviour of the material. In dynamic problems, application of higher-order
homogenisation provides a long-wave approach valid in the low-frequency range (Boutin
and Auriault 1993; Fish and Chen 2001; Bakhvalov and Eglit 2005; Chen and Fish 2001;
Andrianov et al. 2008). In Boutin and Auriault (1993), it is demonstrated that higher-order
terms successively introduce effects of polarisation, dispersion and attenuation.

Transport in porous media with low scale separation has thus far received relatively little
attention. However, two important works on fluid flow have been performed. In Goyeau et al.
(1997, 1999), the authors investigate the permeability in a dendritic mushy zone, which is
generally a non-homogeneous porous structure. They make use of the volume averaging
method to obtain corrector terms to Darcy’s law. In Auriault et al. (2005), the validity of
Darcy’s law is investigated by higher-order asymptotic homogenisation up to the third order.
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The focus of the present study is on solute transport by advection–diffusion in porous
media with low scale separation, which can occur in the two following situations (Auriault
et al. 2005): (i) when large gradients of concentration are applied to macroscopically homo-
geneous porous media; (ii) when the porous medium is macroscopically heterogeneous and
the macroscopic characteristic length L associated with the macroscopic heterogeneities is
not “very” large compared to the characteristic length l of the pores. The scope of the present
work is to derive higher-order homogenised models of advection–diffusion in macroscopi-
cally homogeneous porous media and is therefore aimed at describing the situations where
large concentration gradients are applied. This may for example happen during soil-column
experiments, where soil samples are necessarily limited in size and are subjected to large
concentration gradients, especially at early stages of the tests. In these situations, the macro-
scopic characteristic length L ≈ C/ | ∇C | associated with this gradient of concentration
is not “very” large compared to l (Auriault and Lewandowska 1997). Homogenisation of
convection-diffusion equations on the pore scale leads to three macroscopic transport mod-
els, accordingly to the order of magnitude of the Péclet number (Auriault and Adler 1995):
(i) a diffusion model; (ii) an advection–diffusion model; (iii) an advection–dispersion model.
Whilst the first two models are first-order models, the dispersive model requires to account
for the first corrector. The purpose of the present work is to derive the second- and third-order
homogenised models in the case where the model of advection diffusion is obtained at the
first order.

The paper is organised as follows. Section 2 presents the existing phenomenological
and homogenised macromodels and their properties for describing solute transport in rigid
porous media. The input transport problem is formulated in Sect. 3: the medium geometry
is described in Sect. 3.1, and the pore-scale governing equations for fluid flow and solute
transport are then presented and non-dimensionalised in Sect. 3.2. The results from Auriault
et al. (2005) for higher-order homogenisation up to the third order of the fluid flow equa-
tions, and which are required for the developments that follow, are briefly summarised in
Sect. 4. Section 5 is devoted to higher-order homogenisation up to the third order of solute
transport equations in the advective–diffusive macroregime. The physical meaning of the
volume averages of local fluxes which arise with the homogenisation procedure is analysed
in Sect. 6, and the writing of the second- and third-order homogenised models in terms of the
macroscopic fluxes provides expressions of the non-local effects. Finally, Sect. 7 presents
a summary of the main theoretical results contained in this work and highlights conclusive
remarks.

2 About Phenomenological and HomogenisedModels of Solute
Transport in Porous Media

2.1 Phenomenological Macromodels

Let consider a rigid porous medium saturated by an incompressible Newtonian fluid. When
the fluid is at rest, transient solute transport within the medium is described by the model of
diffusion:

φ
∂C

∂t
− −→∇ · ( ¯̄Deff−→∇ C) = 0, (2.1)
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in which φ denotes the porosity, C represents the concentration, and ¯̄Deff

is the tensor of
effective diffusive. When the fluid is in motion, solute transport may either be described by
the model of advection–diffusion

φ
∂C

∂t
− −→∇ · ( ¯̄Deff−→∇ C − C

−→
V ) = 0, (2.2)

or by the model of advection–dispersion

φ
∂C

∂t
− −→∇ · ( ¯̄Ddisp−→∇ C − C

−→
V ) = 0. (2.3)

In both models,
−→
V denotes the macroscopic fluid velocity and verifies:

−→
V = −

¯̄K
μ

−→∇ P, (Darcy’s law) (2.4)

−→∇ · −→
V = 0, (2.5)

where ¯̄K denotes the tensor of permeability, μ is the fluid viscosity, and P represents the

fluid pressure. For the sake of simplicity, gravity is neglected in Eq. (2.4). Tensor ¯̄Ddisp

in
model Eq. (2.3) is the tensor of hydrodynamic dispersion: it depends on the fluid velocity.
In the most currently used model of dispersion (Bear 1972; Bear and Bachmat 1990), the
tensor of dispersion is decomposed into the sum of a diffusive term and a term of mechanical
dispersion which depends on the fluid velocity:

¯̄Ddisp = ¯̄Deff + ¯̄Dmech disp

. (2.6)

Whilst the regime of advection–diffusion is rarelymentioned in the geosciences literature, it is
of particular relevance for modelling electro-chemo-mechanical coupling in swelling porous
media (Moyne and Murad 2006). Advection–diffusion is furthermore the usual transport
regime observed in biological tissues (Becker and Kuznetsov 2013; Ambard and Swider
2006; Swider et al. 2010; Lemaire and Naili 2013).

2.2 HomogenisedModels

Homogenisation of the convection–diffusion equations on the pore scale allows to find the
three above-mentioned transport regimes (Auriault and Adler 1995) and to give their res-
pective range of validity by means of the order of magnitude of the Péclet number

Pe = vcL

Dc
, (2.7)

where L denotes the characteristicmacroscopic length and vc and Dc are characteristic values
of the local fluid velocity and of the coefficient of molecular diffusion. The results of Auriault
and Adler (1995) are the following:

⎧
⎪⎪⎨

⎪⎪⎩

Pe ≤ O(ε) : Regime of diffusion
Pe = O(ε0) Regime of advection–diffusion
Pe = O(ε−1) Regime of advection–dispersion
Pe ≥ O(ε−2) No continuum macromodel,

where ε = l/L , with l being the pore-scale characteristic length, is the small parameter of the
asymptotic homogenisation method and a parameter P is said to be of order ε p , P = O(ε p),
when
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ε p+1 � P � ε p−1. (2.8)

The homogenised models of diffusion and of advection–diffusion are first-order models
and are rigorously identical to models Eqs. (2.1)–(2.2). On the other hand, however, the
homogenisedmodel of advection–dispersion is different from the classical phenomenological
model Eq. (2.3). It is a second-order model, which in particular implies that Darcy’s law is no
longer valid (Auriault et al. 2005). Furthermore, the homogenised tensor of dispersion does
not verify relationship Eq. (2.6) and is not symmetric (Auriault and Adler 1995; Auriault
et al. 2010). At high Péclet number, Pe ≥ O(ε−2), the problem becomes dependent upon the
macroscopic boundary conditions. Consequently, there exists no continuum macromodel to
describe solute transport within this regime.

3 Problem Statement for Homogenisation of Solute Transport Within
the Advective–Diffusive Regime

3.1 Geometry

Consider a rigid porous medium with connected pores. We assume it to be periodic with
period �̂. The fluid occupies the pores �̂p, and �̂ represents the surface of the solid matrix
�̂s. We denote as l̂ and L̂ the characteristic length of the pores and the macroscopic length
(Fig. 1). We assume the scales to be separated, and we define

ε = l̂

L̂
� 1. (3.1)

Using the two characteristic lengths, l̂ and L̂ , two dimensionless space variables are
defined

−→y =
−→̂
X

l̂
which describes variations on the microscopic scale, (3.2)

−→x =
−→̂
X

L̂
which describes variations on the macroscopic scale, (3.3)

(b)(a)

Fig. 1 Periodic porous medium : a macroscopic sample; b periodic cell �̂
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where
−→̂
X is the physical spatial variable. Invoking the differentiation rule of multiple var-

iables, the gradient operator with respect to
−→̂
X is written as

−→∇ X̂ = 1

l

−→∇ y + 1

L

−→∇ x , (3.4)

where
−→∇ y and

−→∇ x are the gradient operators with respect to −→y and −→x , respectively.

3.2 Governing Equations on the Pore Scale and Estimates

The pores are saturated with a viscous, incompressible and Newtonian fluid containing a low
concentration of solute ĉ. The fluid is in slow steady-state isothermal flow, so that the solute
is transported by diffusion and convection.

3.2.1 Fluid Flow

The equations governing velocity
−→̂
v and pressure p̂ of an incompressible viscous fluid of

viscosity μ̂ in slow steady-state flow within the pores are the following:

– Stokes equation

μ̂ΔX
−→̂
v − −→∇ X̂ p̂ = −→

0 within Ω̂p, (3.5)

– the conservation of mass −→∇ X̂ · −→̂
v = 0 within �̂p, (3.6)

– the no-slip condition −→̂
v = −→

0 over �̂. (3.7)

3.2.2 Solute Transport

The transport of solute by diffusion–convection in the pore domain is described by conser-
vation of mass

∂ ĉ

∂ t̂
− −→∇ X̂ · (D̂0

−→∇ X̂ ĉ − ĉ
−→̂
v ) = 0 within �̂p, (3.8)

and the no-flux boundary condition

(D̂0
−→∇ X̂ ĉ − ĉ

−→̂
v ) · −→n = (D̂0

−→∇ X̂ ĉ) · −→n = 0 over �̂, (3.9)

where ĉ is the solute concentration (mass of solute per unit volume of fluid), t is the time, D̂0

denotes the coefficient of molecular diffusion, and −→n is the unit vector giving the normal to
�̂ exterior to �̂p.

3.2.3 Non-dimensionalisation and Estimates

Introducing into Eqs. (3.5)–(3.9)
−→∇ X̂ = 1/L

−→∇ , ΔX̂ = 1/L2 Δ,

t̂ = tc t, ∂/∂ t̂ = 1/tc ∂/∂t,−→̂
v = vc

−→v , p̂ = pc p, ĉ = cc c,
μ̂ = μc μ, D̂0 = Dc D0,
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where quantities with subscript c denote characteristic quantities, we can write the micro-
scopic description in dimensionless form as

F μΔ−→v − −→∇ p = −→
0 within Ωp, (3.10)

−→∇ · −→v = 0 within Ωp, (3.11)

N
∂c

∂t
− −→∇ · (D0

−→∇ c − Pe c−→v ) = 0 within Ωp, (3.12)

−→v = −→
0 over Γ , (3.13)

(D0
−→∇ c) · −→n = 0 over Γ , (3.14)

with

F = μcvc

Lpc
; N = L2

tcDc
; Pe = vcL

Dc
.

In the above writing, the dimensionless counterpart of any dimensional quantity Ψ̂ is Ψ =
Ψ̂ /Ψc. In particular, the characteristic time tc is the time over which we intend to describe the
solute transport: it is the characteristic time of the observation. We have arbitrarily chosen
the macroscopic length L̂ as the reference length for normalising the gradient operator.
Consequently, according to Eq. (3.4), the corresponding dimensionless gradient operator
reads −→∇ = L

−→∇ X̂ = ε−1−→∇ y + −→∇ x . (3.15)

We may now estimate the three dimensionless parameters, F, N and the Péclet number Pe,
with respect to powers of the small parameter ε and for this purpose we shall apply the rule
defined by Eq. (2.8). ParameterF, which arises from Stokes equation Eq. (3.10), is the ratio of
the viscous term to the pressure gradient. We shall consider the case where homogenisation
of Stokes equations leads to Darcy’s law on the sample scale. As shown in Auriault (1991),
this happens when the local flow is balanced by a macroscopic pressure gradient, which in
an order-of-magnitude sense reads

μcvc

l2
= O

( pc
L

)
, (3.16)

and yields

F = μcvc

Lpc
= O(ε2). (3.17)

The order of magnitude of the Péclet number Pe characterises the regime of solute transport.
Indeed, it is the ratio of characteristic times of diffusion and convection

Pe = tdiff

t conv
, (3.18)

where

t diff = L2

Dc
(macroscopic characteristic time of diffusion), (3.19)

t conv = L

vc
(macroscopic characteristic time of convection). (3.20)

We consider

Pe = vcL

Dc
= O(ε0), (3.21)
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which leads to the homogenised advective–diffusive model at the first order (Cf. Sect. 2.2).
The dimensionless number N is such that:

N = tdiffL

tc
. (3.22)

Since Pe = O(ε0) means that t diff = t conv , we take tc = t diff = t conv, which yields

N = O(ε0). (3.23)

Note that taking tc = t diff = t conv ensures a macroscopic transient regime, while tc > tdiff

would lead to a macroscopic steady-state regime and that when tc < t diff , the transport mech-
anism is not sufficiently developed for its evolution be described by means of a continuum
model.

4 Higher-Order Homogenisation of Fluid Flow

Homogenisation of the fluid flow equations has been performed up to the third order in
Auriault et al. (2005). Equations (3.10)–(3.13) are considered with Eq. (3.17), which leads
to the following set of flow equations

ε2μΔ−→v − −→∇ p = −→
0 within Ωp, (4.1)

−→∇ · −→v = 0 within Ωp, (4.2)
−→v = −→

0 over Γ , (4.3)

where −→∇ = ε−1−→∇ y + −→∇ x . (4.4)

The homogenisation procedure consists in looking for the pressure and the velocity in the
form of asymptotic expansions in powers of ε (Bensoussan et al. 1978; Sanchez-Palencia
1980):

p(−→y ,
−→x ) = p0(−→y ,

−→x ) + εp1(−→y ,
−→x ) + εp2(−→y ,

−→x ) + · · ·
−→v (

−→y ,
−→x ) = −→v 0(

−→y ,
−→x ) + ε−→v 1(

−→y ,
−→x ) + ε2−→v 2(

−→y ,
−→x ) + · · ·

For a macroscopically homogeneous medium, the results can be summarised as follows

∂

∂xi
(〈vni 〉) = 0 (n = 0, 1, 2), (4.5)

with

〈v0i 〉 = − Ki j

μ

∂ p0

∂x j
, (4.6)

〈v1i 〉 = − Ni jk

μ

∂2 p0

∂x j∂xk
− Ki j

μ

∂ p̄1

∂x j
, (4.7)

〈v2i 〉 = − Pi jkl
μ

∂3P0

∂x j∂xk∂xl
− Ni jk

μ

∂2 p̄1

∂x j∂xk
− Ki j

μ

∂ p̄2

∂x j
, (4.8)

where 〈.〉 denotes the volume average and is defined by

〈.〉 = 1

| Ω |
∫

Ωp

. dΩ. (4.9)
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The third-order tensor Ni jk is symmetricwith respect to its last two indices and antisymmetric
with respect to its first two indices. Then, since Ni jk is symmetrical with respect to its last
two indices, it is equal to zero when the medium is isotropic.
Functions p0, p1 and p2 are such that

p0 = p0(−→x ), (4.10)

p1 = − a j (
−→y )

∂ p0

∂x j
+ p̄1(−→x ), (4.11)

p2 = − d jk(
−→y )

∂2 p0

∂x j∂xk
− a j (

−→y )
∂ p̄1

∂x j
+ p̄2(−→x ). (4.12)

Note that functions p̄1 and p̄2, which appear in Eqs. (4.7) and (4.8), are particular solutions
involved in the definitions of p1 and p2, Eqs. (4.11) and (4.12), respectively. Combining
Eq. (4.5) with the averaged velocities, the second-gradient terms vanish as a result of the
antisymmetry of Ni jk . Thus, the following flow descriptions are obtained

(First order)
∂

∂xi

(

Ki j
∂ p0

∂x j

)

= 0, (4.13)

(Second order)
∂

∂xi

(

Ki j
∂ p̄1

∂x j

)

= 0, (4.14)

(Third order)
∂

∂xi

(

Pi jkl
∂3 p0

∂x j∂xk∂xl
+ Ki j

∂ p̄2

∂x j

)

= 0. (4.15)

5 Higher-Order Homogenisation of Solute Transport in the
Advective–diffusive Regime

5.1 Local Dimensionless Description

We consider Eq. (3.12) with estimates Eqs. (3.21) and (3.23) and boundary conditions
Eqs. (3.13)–(3.14). This leads to the following set of equations:

∂c

∂t
− −→∇ · (D0

−→∇ c − c−→v ) = 0 within Ωp, (5.1)

−→v = −→
0 over Γ , (5.2)

(D0
−→∇ c) · −→n = 0 over Γ . (5.3)

We look for solutions to the unknowns c and −→v of the form:

c(−→y ,
−→x ) = c0(−→y ,

−→x ) + εc1(−→y ,
−→x ) + ε2c2(−→y ,

−→x ) + ·
−→v (

−→y ,
−→x ) = −→v 0(

−→y ,
−→x ) + ε−→v 1(

−→y ,
−→x ) + ε2−→v 2(

−→y ,
−→x ) + ·

where functions cn(−→y ,
−→x ) and −→v n(

−→y ,
−→x ) are Ω-periodic in −→y . Furthermore, because of

the two spatial variables −→x and −→y = ε−1−→x , the spatial derivation takes the form Eq. (4.4).
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The homogenisation technique involves the introduction of these expansions into the dimen-
sionless equations Eqs. (5.1)–(5.3) and the identification of the powers of ε.

5.2 First-Order Homogenisation

5.2.1 Boundary Value Problem for c0

At the first order, the boundary value problem Eqs. (5.1)–(5.3) lead to:

∂

∂ yi

(

D0
∂c0

∂ yi

)

= 0 in Ωp, (5.4)

D0
∂c0

∂ yi
ni = 0 over Γ , (5.5)

c0 : periodic in −→y , (5.6)

from which it is clear that the concentration c0 is constant over the period

c0 = c0(−→x , t). (5.7)

5.2.2 Boundary Value Problem for c1

We now consider the second order of Eqs. (5.1)–(5.3). Then, noticing that (see Eq. (4.2))

∂v0i

∂ yi
= 0, (5.8)

we obtain the following boundary value problem for c1:

∂

∂ yi

[

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)]

= 0 within Ωp, (5.9)

[

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)]

ni = 0 over Γ , (5.10)

c1 : periodic in −→y . (5.11)

By virtue of linearity, the solution reads:

c1 = χ j (
−→y )

∂c0

∂x j
+ c̄1(−→x , t), (5.12)

where c̄1(−→x , t) is an arbitrary function. The exact definition of the vector −→χ is reported in
“Appendix A.1”. Note that, to render the solution unique, we impose that −→χ is average to
zero (Bensoussan et al. 1978; Sanchez-Palencia 1980; Mei and Vernescu 2010):

〈−→χ 〉 = 1

| Ω |
∫

Ωp

−→χ dΩ = −→
0 . (5.13)

Note further that, since we are considering a macroscopically homogeneous medium, −→χ
doesn’t depend on variable −→x : −→χ = −→χ (

−→y ).

123



Advection–Diffusion in Porous Media with Low Scale… 521

5.2.3 Derivation of the First-Order Macroscopic Description

Let consider the boundary value problem Eqs. (5.1)–(5.3) at the third order:

∂c0

∂t
− ∂

∂ yi

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)

− c0v1i − c1v0i

]

− ∂

∂xi

[

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)

− c0v0i

]

= 0 within Ωp, (5.14)

v0i = v1i = 0 over Γ , (5.15)
[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)]

ni = 0 over Γ . (5.16)

The homogenisation procedure consists now in integrating Eq. (5.14) over Ωp. This leads
to the so-called compatibility condition, which is a necessary and sufficient condition for
the existence of solutions. Furthermore, it represents the first-order macroscopic description.
Invoking Gauss’ theorem, the integration yields:

1

| Ω |
∫

Ωp

∂c0

∂t
dΩ − 1

| Ω |
∫

δΩp

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)

− c0v1i − c1v0i

]

ni dS

− 1

| Ω |
∫

Ωp

∂

∂xi

[

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)

− c0v0i

]

dΩ = 0,

(5.17)

where δΩp = Γ ∪ (δΩ ∩ δΩp) denotes the bounding surface of Ωp. The second term of
Eq. (5.17) is thus the sum of two surface integrals, and it actually cancels out: the integral
over the surface Γ vanishes because of boundary conditions Eqs. (5.15)–(5.16), while the
integral over the cell boundary, δΩ ∩δΩp, vanishes by periodicity. Hence, Eq. (5.17) reduces
to

φ
∂c0

∂t
− ∂

∂xi

〈

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)

− c0v0i

〉

= 0, (5.18)

where

φ = | Ωp |
| Ω | (5.19)

denotes the porosity. Using Eq. (5.12), we can write:

∂c1

∂ yi
+ ∂c0

∂xi
= γ 0

i j
∂c0

∂x j
, (5.20)

where

γ 0
i j = ∂χ j

∂ yi
+ δi j . (5.21)

Taking Eq. (4.5) into account, Eq. (5.18) can be rewritten as follows:

φ
∂c0

∂t
− ∂

∂xi

(

Di j
∂c0

∂x j

)

+ 〈v0i 〉
∂c0

∂xi
= 0, (5.22)

where

Di j = 1

| Ω |
∫

Ωp

D0

(
∂χ j

∂ yi
+ δi j

)

dΩ = 1

| Ω |
∫

Ωp

D0γ
0
i j dΩ (5.23)
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is the tensor of effective diffusion. It can be shown that the second-order tensor Di j is positive
and symmetric (Cf. “Appendix A.2”).
Defining the first-order macroscopic concentration and average fluid velocity by

〈c〉 = 〈c0〉 + O(ε〈c〉), (5.24)

〈−→v 〉 = 〈−→v 0〉 + O(ε〈−→v 〉), (5.25)

the first-order macroscopic description thus reads

φ
∂〈c〉
∂t

− ∂

∂xi

(

Di j
∂〈c〉
∂x j

)

+ 〈vi 〉∂〈c〉
∂xi

= O

(

εφ
∂〈c〉
∂t

)

. (5.26)

In dimensional variables, it becomes

φ
∂〈ĉ〉
∂ t̂

− ∂

∂ X̂i

(

D̂diff
i j

∂〈ĉ〉
∂ X̂ j

)

+ 〈v̂i 〉∂〈ĉ〉
∂ X̂i

= O

(

εφ
∂〈ĉ〉
∂ t̂

)

, (5.27)

where
D̂diff
i j = Dc Di j (5.28)

is the tensor of effective diffusion. The fluid velocity verifies (Cf. Sect. 4):

〈v̂i 〉 = − K̂ eff
i j

μ̂

∂〈 p̂〉
∂ X̂ j

+ O(ε〈v̂i 〉), (5.29)

∂〈v̂i 〉
∂ X̂i

= O

(

ε
∂〈v̂i 〉
∂ X̂i

)

. (5.30)

The first-order behaviour is thus described by the classical advection–diffusion transport
equation, in which the fluid velocity verifies Darcy’s law.

5.3 Second-Order Homogenisation

5.3.1 Boundary Value Problem for c2

The third-order boundary value given by Eqs. (5.14)–(5.16) can be transformed (Cf.
“Appendix B.1”) so as to obtain the following boundary value problem for c2:

∂

∂ yi

[

D0

(
∂c2

∂ yi
+ χ j

∂2c0

∂xi∂x j
+ ∂ c̄1

∂xi

)]

=
(
1

φ
Di j − D0γ

0
i j

)
∂2c0

∂xi∂x j
+

(

v0i γ
0
i j − 1

φ
〈v0j 〉

)
∂c0

∂x j
within Ωp, (5.31)

[

D0

(
∂c2

∂ yi
+ χ j

∂2c0

∂xi∂x j
+ ∂ c̄1

∂xi

)]

ni = 0 over Γ . (5.32)

We observe that the solution must depend on three forcing terms, which are associated with
∂2c0/∂x j∂xk , ∂c0/∂x j and ∂ c̄1/∂x j , respectively. By virtue of linearity, the solution is a
linear combination of particular solutions associated with each of the three forcing terms.
Note that the problem linked to ∂ c̄1/∂x j is identical to that observed at the first order for
∂c0/∂x j in the boundary value problem which defines c1 (Eqs. (5.9)–(5.10)). Therefore, the
solution reads
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c2 = η jk(
−→y )

∂2c0

∂x j∂xk
+ π j (

−→y )
∂c0

∂x j
+ χ j (

−→y )
∂ c̄1

∂x j
+ c̄2(−→x , t), (5.33)

where c̄2(−→x , t) is an arbitrary function and

〈η jk〉 = 0, (5.34)

〈π j 〉 = 0. (5.35)

The detailed definitions of η jk and π j are reported in “Appendix B.2”.

5.3.2 Derivation of the First Corrector

At the fourth order, the boundary value problem made of Eqs. (5.1)–(5.3) yields:

∂c1

∂t
− ∂

∂ yi

[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)

− c0v2i − c1v1i − c2v0i

]

− ∂

∂xi

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)

− c0v1i − c1v0i

]

= 0 within Ωp, (5.36)

v0i = v1i = v2i = 0 over Γ , (5.37)
[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)]

ni = 0 over Γ . (5.38)

The first corrector of the macroscopic description is obtained by integrating Eq. (5.36) over
Ωp. This leads to

φ
∂ c̄1

∂t
− ∂

∂xi

〈

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)〉

+ ∂

∂xi
〈c0v1i + c1v0i 〉 = 0. (5.39)

Using the expressions obtained for c1 and c2, Eqs. (5.12) and (5.33), we get

∂c2

∂ yi
+ ∂c1

∂xi
= γ 1

i jk
∂2c0

∂x j∂xk
+ ∂π j

∂ yi

∂c0

∂x j
+ γ 0

i j
∂ c̄1

∂x j
, (5.40)

with

γ 1
i jk = ∂η jk

∂ yi
+ χiδ jk . (5.41)

Then, noticing that

∂

∂xi
〈c0v1i + c1v0i 〉 = 〈v1i 〉

∂c0

∂xi
+ ∂

∂xi

[

〈v0i χ j 〉 ∂c0

∂x j

]

+ 〈v0i 〉
∂ c̄1

∂xi
, (5.42)

Equation (5.39) becomes:

φ
∂ c̄1

∂t
− ∂

∂xi

(

Ei jk
∂2c0

∂x j∂xk
+ D′

i j
∂c0

∂x j
+ Di j

∂ c̄1

∂x j

)

+ 〈v1i 〉
∂c0

∂xi
+ 〈v0i 〉

∂ c̄1

∂xi
= 0, (5.43)

where

Ei jk =
〈

D0

(
∂η jk

∂ yi
+ χiδ jk

)〉

= 〈D0γ
1
i jk〉, (5.44)

D′
i j =

〈

D0
∂π j

∂ yi
− v0i χ j

〉

. (5.45)
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The third-order tensor Ei jk is symmetric with respect to its last two indices and antisymmetric
with respect to its first two indices (Cf. “Appendix B.3”). Note further that Ei jk can be
determined from vector χi , without determining tensor η jk (Cf. “Appendix B.3”). As a result
of the antisymmetry property of Ei jk , the second-order gradient term of Eq. (5.43) vanishes.
Thus, the first corrector finally reads:

φ
∂ c̄1

∂t
− ∂

∂xi

(

D′
i j

∂c0

∂x j
+ Di j

∂ c̄1

∂x j

)

+ 〈v1i 〉
∂c0

∂xi
+ 〈v0i 〉

∂ c̄1

∂xi
= 0. (5.46)

From its definition Eq. (5.45), we see that the second-order tensor D′
i j contains a convective

term: it is therefore a dispersion tensor. It is a non-symmetric tensorwhich can be decomposed
into a symmetric and an antisymmetric parts (Cf. “Appendix B.4”). Furthermore, it can be
determined from vectors v0i and χ j , without solving boundary value problem Eqs. (5.36)–
(5.38) (Cf. “Appendix B.4”).

5.3.3 Second-Order Macroscopic Description

Let add Eqs. (5.22)–(5.46) multiplied by ε. We get:

φ
∂

∂t
(c0 + εc̄1) − ∂

∂xi

[

Di j
∂

∂x j
(c0 + εc̄1) + εD′

i j
∂c0

∂x j

]

+ (〈v0i 〉 + ε〈v1i 〉)
∂c0

∂xi
+ ε〈v0i 〉

∂ c̄1

∂xi
= 0. (5.47)

Defining the second-order macroscopic concentration and average fluid velocity by

〈c〉 = 〈c0〉 + ε c̄1 + O(ε2〈c〉), (5.48)

〈−→v 〉 = 〈−→v 0〉 + ε〈−→v 1〉 + O(ε2〈−→v 〉), (5.49)

the second-order macroscopic description is written as follows

φ
∂〈c〉
∂t

− ∂

∂xi

[

(Di j + εD′
i j )

∂〈c〉
∂x j

]

+ 〈vi 〉∂〈c〉
∂xi

= O

(

ε2φ
∂〈c〉
∂t

)

. (5.50)

When cast in dimensional variables, Eq. (5.50) becomes

φ
∂〈ĉ〉
∂ t̂

− ∂

∂Xi

[

(D̂diff
i j + D̂′eff

i j )
∂〈ĉ〉
∂X j

]

+ 〈v̂i 〉∂〈ĉ〉
∂Xi

= O

(

ε2φ
∂〈ĉ〉
∂ t̂

)

, (5.51)

where
D̂′eff

i j = DcεD
′
i j . (5.52)

The second-order fluid velocity is such that (Cf. Sect. 4):

〈v̂i 〉 = − N̂ eff
i jk

μ̂

∂2〈 p̂〉
∂ X̂ j∂ X̂k

− K̂ eff
i j

μ̂

∂〈 p̂〉
∂ X̂ j

+ O(ε2〈v̂i 〉), (5.53)

∂〈v̂i 〉
∂ X̂i

= O

(

ε2
∂〈v̂i 〉
∂ X̂i

)

. (5.54)
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Note that combining both above equations leads to:

∂

∂ X̂i

(
K̂ eff
i j

μ̂

∂〈 p̂〉
∂ X̂ j

)

= O

(

ε2
∂〈v̂i 〉
∂ X̂i

)

. (5.55)

Therefore, the second-order macroscopic transport description is a model of advection–
dispersion, in which the tensor of dispersion is non-symmetric (Cf. “Appendix B.4”) and
follows property Eq. (2.6) of the phenomenological model of dispersion. The fluid velocity
verifies a second-order law Eq. (5.53), which reduces to Darcy’s law in case of an isotropic
medium. In other words, the second-order macroscopic transport model is similar to the
phenomenological dispersion transport equation (2.3).

5.4 Third-Order Homogenisation

5.4.1 Boundary Value Problem for c3

The fourth-order boundary value problem, Eqs. (5.36)–(5.38), can be transformed into the
following boundary value problem for c3 (Cf. “Appendix C.1”):

∂

∂ yi

[

D0

(
∂c3

∂ yi
+ η jk

∂3c0

∂xi∂x j∂xk
+ π j

∂2c0

∂xi∂x j
+ χ j

∂2c̄1

∂xi∂x j
+ ∂ c̄2

∂xi

)]

=
(
1

φ
χi D jk − D0γ

1
i jk

)
∂3c0

∂xi∂x j∂xk

+
(

v0i γ
1
i jk − D0

∂πk

∂ y j
+ 1

φ
D′

jk − 1

φ
χ j 〈v0k 〉

)
∂2c0

∂x j∂xk

+
(
1

φ
Di j − D0γ

0
i j

)
∂2c̄1

∂xi∂x j

+
(

v0i
∂π j

∂ yi
+ v1i γ

0
i j − 1

φ
χi

∂〈v0j 〉
∂xi

− 1

φ
〈v1j 〉

)
∂c0

∂x j

+
(

v0i γ
0
i j − 1

φ
〈v0j 〉

)
∂ c̄1

∂x j
in Ωp, (5.56)

[

D0

(
∂c3

∂ yi
+ η jk

∂3c0

∂xi∂x j∂xk
+ π j

∂2c0

∂xi∂x j
+ χ j

∂2c̄1

∂xi∂x j
+ ∂ c̄2

∂xi

)]

ni = 0

on Γ . (5.57)

From the above boundary value problem and its variational formulation (Cf. “AppendixC.2”),
it can be seen that the solution must depend on the following forcing terms: ∂3c0/∂x j∂xk∂xl ,
∂2c0/∂xk∂xl , ∂2c̄1/∂xk∂xl , ∂c0/∂x j , ∂ c̄1/∂x j and ∂ c̄2/∂x j . We note that the problem linked
to ∂ c̄2/∂x j is identical to that associated with ∂c0/∂x j in the boundary value problem for
c1 Eqs. (5.9)–(5.10). Furthermore, the problem associated with ∂ c̄1/∂x j is identical to that
linked to ∂c0/∂x j in the boundary value problem for c2, Eqs. (5.31)–(5.32), and the problem
linked to ∂2c̄1/∂xk∂xl is identical to that obtained for ∂2c0/∂xk∂xl in the boundary value
problem for c2. Consequently, the solution reads:
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c3 = ξ jkl(
−→y )

∂3c0

∂x j∂xk∂xl
+ τkl(

−→y )
∂2c0

∂xk∂xl
+ ηkl(

−→y )
∂2c̄1

∂xk∂xl

+ θ j (
−→y )

∂c0

∂x j
+ π j (

−→y )
∂ c̄1

∂x j
+ χ j (

−→y )
∂ c̄2

∂x j
+ c̄3(−→x , t),

(5.58)

where c̄3(−→x , t) is an arbitrary function and

〈ξ jkl〉 = 0, (5.59)

〈τkl〉 = 0, (5.60)

〈θ j 〉 = 0. (5.61)

The exact definitions of ξ jkl , τkl and θ j are reported in “Appendices C.3, C.4 and C.5”,
respectively. Let us recall that χ j is related to the definition of c1 Eq. (5.12), while η jk and
π j have been introduced in the definition of c2 Eq. (5.33). Note that in expression Eq. (5.58),
ξ jkl , η jk , χ j are only related to the diffusion mechanism, while τkl , θ j and π j contain both
diffusive and convective terms.

5.4.2 Derivation of the Second Corrector

Let now consider the boundary value problem Eqs. (5.1)–(5.3) at the fifth order:

∂c2

∂t
− ∂

∂ yi

[

D0

(
∂c4

∂ yi
+ ∂c3

∂xi

)

− c0v3i − c1v2i − c2v1i − c3v0i

]

− ∂

∂xi

[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)

− c0v2i − c1v1i − c2v0i

]

= 0 within Ωp, (5.62)

[

D0

(
∂c4

∂ yi
+ ∂c3

∂xi

)]

ni = 0 over Γ . (5.63)

Integrating Eq. (5.62) over Ωp, we get:

φ
∂ c̄2

∂t
− ∂

∂xi

〈

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)〉

+ ∂

∂xi
〈c0v2i + c1v1i + c2v0i 〉 = 0. (5.64)

Using Eqs. (5.33) and (5.58), we deduce that

∂c3

∂ yi
+∂c2

∂xi
= γ 2

i jkl
∂3c0

∂x j∂xk∂xl

+
(

∂τ jk

∂ yi
+ πiδ jk

)
∂2c0

∂x j∂xk
+ γ 1

i jk
∂2c̄1

∂x j∂xk
(5.65)

+ ∂θ j

∂ yi

∂c0

∂x j
+ ∂π j

∂ yi

∂ c̄1

∂x j
+ γ 0

i j
∂ c̄2

∂x j
,

where

γ 2
i jkl = ∂ξ jkl

∂ yi
+ ηi jδkl. (5.66)

Then, noticing that:

∂

∂xi
〈c0v2i + c1v1i + c2v0i 〉
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= ∂

∂xi

[

〈v0i η jk〉 ∂2c0

∂x j∂xk
+ 〈v1i χ j + v0i π j 〉 ∂c0

∂x j
+ 〈v0i χ j 〉 ∂ c̄1

∂x j

]

(5.67)

+〈v2i 〉
∂c0

∂xi
+ 〈v1i 〉

∂ c̄1

∂xi
+ 〈v0i 〉

∂ c̄2

∂xi
,

Equation (5.64) becomes:

φ
∂ c̄2

∂t
− ∂

∂xi

[

Fi jkl
∂3c0

∂x j∂xk∂xl
+ E ′

i jk
∂2c0

∂x j∂xk
+ Ei jk

∂2c̄1

∂x j∂xk

+ D′′
i j

∂c0

∂x j
+ D′

i j
∂ c̄1

∂x j
+ Di j

∂ c̄2

∂x j

]

(5.68)

+〈v2i 〉
∂c0

∂xi
+ 〈v1i 〉

∂ c̄1

∂xi
+ 〈v0i 〉

∂ c̄2

∂xi
= 0,

where

Fi jkl =
〈

D0
∂ξ jkl

∂ yi
+ ηi jδkl

〉

, (5.69)

E ′
i jk =

〈

D0
∂τ jk

∂ yi
− v0i η jk

〉

, (5.70)

D′′
i j =

〈

D0
∂θ j

∂ yi
− v1i χ j − v0i π j

〉

. (5.71)

Tensor Fi jkl is a fourth-order tensor of diffusion. It can be calculated fromvector−→χ and tensor
¯̄η, without solving the boundary value problem Eqs. (5.56)–(5.57) (Cf. “Appendix C.8”). The
third-order tensor E ′

i jk and the second-order tensor D′′
i j are tensors of dispersion. They can

also be determined without solving the boundary value problem Eqs. (5.56)–(5.57) (Cf.
“Appendices C.6, C.7”). Finally, we conclude that the second corrector can be determined
from ¯̄η, −→χ , −→π , −→v 0 and −→v 1.

5.4.3 Third-Order Macroscopic Description

Let add Eqs. (5.47)–(5.68) multiplied by ε2:

φ
∂

∂t
(c0 + εc̄1 + ε2c̄2)

− ∂

∂xi

[

Di j
∂

∂x j
(c0 + εc̄1 + ε2c̄2) + εD′

i j
∂

∂x j
(c0 + εc̄1) + ε2D′′

i j
∂c0

∂x j

+ ε2E ′
i jk

∂2c0

∂x j∂xk
+ ε2Fi jkl

∂3c0

∂x j∂xk∂xl

]

(5.72)

+ (〈v0i 〉 + ε〈v1i 〉 + ε2〈v2i 〉)
∂c0

∂xi

+ ε(〈v0i 〉 + ε〈v1i 〉)
∂ c̄1

∂xi
+ ε2〈v0i 〉

∂ c̄2

∂xi
= 0.

Defining the third-order macroscopic concentration and fluid velocity by

〈c〉 = 〈c0〉 + εc̄1 + ε2c̄2 + O(ε3〈c〉), (5.73)

〈v〉 = 〈v0〉 + ε〈v1〉 + ε2〈v2〉 + O(ε3〈v〉), (5.74)
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the third-order macroscopic description is written as follows

φ
∂〈c〉
∂t

− ∂

∂xi

[

(Di j + εD′
i j + ε2D′′

i j )
∂〈c〉
∂x j

]

− ∂

∂xi

[

ε2E ′
i jk

∂2〈c〉
∂x j∂xk

+ ε2Fi jkl
∂3〈c〉

∂x j∂xk∂xl

]

(5.75)

+〈vi 〉∂〈c〉
∂xi

= O

(

ε3φ
∂〈c〉
∂t

)

.

In dimensional variables, we get:

φ
∂〈ĉ〉
∂ t̂

− ∂

∂Xi

[

(D̂diff
i j + D̂

′disp
i j + D̂

′′disp
i j )

∂〈ĉ〉
∂X j

]

− ∂

∂Xi

[

Ê
′disp
i jk

∂2〈ĉ〉
∂X j∂Xk

+ F̂ diff
i jkl

∂3〈ĉ〉
∂X j∂Xk∂Xl

]

(5.76)

+〈v̂i 〉∂〈ĉ〉
∂Xi

= O

(

ε3φ
∂〈ĉ〉
∂ t̂

)

,

where

D̂
′′disp
i j = Dcε

2D′′
i j , (5.77)

Ê
′disp
i jk = εlDcE

′
i jk, (5.78)

F̂ diff
i jkl = l2DcFi jkl . (5.79)

The third-order fluid velocity verifies (Cf. Sect. 4):

〈v̂i 〉 = − P̂ eff
i jkl

μ̂

∂2〈 p̂〉
∂ X̂ j∂ X̂k∂ X̂l

− N̂ eff
i jk

μ̂

∂2〈 p̂〉
∂ X̂ j∂ X̂k

− K̂ eff
i j

μ̂

∂〈 p̂〉
∂ X̂ j

+ O(ε3〈v̂i 〉), (5.80)

∂〈v̂i 〉
∂ X̂i

= O

(

ε3
∂〈v̂i 〉
∂ X̂i

)

. (5.81)

Note that when combining both above equations, the second-gradient term vanishes, due to
the antisymmetry property of tensor N̂ eff

i jk .
The third-order transport model Eq. (5.76) introduces a fourth-order tensor of diffusion, and
a third-order and an additional second-order tensors of dispersion.

6 Macroscopic Fluxes

6.1 VolumeVersus Surface Averages

With the homogenisation averaging procedure, macroscopic descriptions are expressed in
terms of variables which are systematically defined as volume averages. Specifying the
meaning of the macroscopic variables, i.e. determining whether the use of volume averages
is appropriate or not is thus an important issue (Hassanizadeh and Gray 1979; Costanzo et al.
2005; Hill 1972). In the particular context of solute transport in porous media, since a solute
flux is physically defined over a specific area, macroscopic fluxes should thus be defined as
surface averages.
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6.2 Writing of Local and Homogenised Equations in Terms of Fluxes

In order to address the above described issue, we may rewrite the local and the homogenised
equations in terms of fluxes. We shall thus rewrite Eq. (5.1) as follows

∂c

∂t
+ −→∇ · −→q = 0 within Ωp, (6.1)

where the local flux −→q is defined by

−→q = − D0
−→∇ c + c−→v . (6.2)

The no-flux boundary condition now reads

−→q · −→n = 0 over Γ . (6.3)

Flux −→q is looked for in the form of the following asymptotic expansion in powers of ε

−→q = −→q 0(
−→y ,

−→x ) + ε
−→q 1(

−→y ,
−→x ) + ε2

−→q 2(
−→y ,

−→x ) + · (6.4)

This leads to the following perturbations equations for Eqs. (6.1)–(6.2) at the successive
orders of powers of ε:

−→q 0 = − D0(
−→∇ yc

1 + −→∇ x c
0) + c0−→v 0 (6.5)

−→q 1 = − D0(
−→∇ yc

2 + −→∇ x c
1) + c0−→v 1 + c1−→v 0 (6.6)

−→q 2 = − D0(
−→∇ yc

3 + −→∇ x c
2) + c0−→v 2 + c1−→v 1 + c2−→v 0 (6.7)

and
−→∇ y · −→q 0 = 0 (6.8)

∂c0

∂t
+ −→∇ y · −→q 1 + −→∇ x · −→q 0 = 0 (6.9)

∂c1

∂t
+ −→∇ y · −→q 2 + −→∇ x · −→q 1 = 0 (6.10)

As for the homogenised equations at the first three orders, Eqs. (5.18), (5.46) and (5.68), they
are re-expressed as follows
First-order

φ
∂c0

∂t
+ ∂〈q0i 〉

∂xi
= 0 (6.11)

〈q0i 〉 = − Di j
∂c0

∂x j
+ c0〈v0i 〉 (6.12)

Second-order corrector

φ
∂ c̄1

∂t
+ ∂〈q1i 〉

∂xi
= 0 (6.13)

〈q1i 〉 = − Ei jk
∂2c0

∂x j∂xk
− D′

i j
∂c0

∂x j
− Di j

∂ c̄1

∂x j
+ c0〈v1i 〉 + c̄1〈v0i 〉 (6.14)

Third-order corrector

φ
∂ c̄2

∂t
+ ∂〈q2i 〉

∂xi
= 0 (6.15)
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Fig. 2 Two-dimensional periodic
cell Ω

�n

l2

l1

y1

Σp1
Σ0

p1

y2

Σ2

Ωs

ΩpΓ

〈q2i 〉 = − Fi jkl
∂3c0

∂x j∂xk∂xl
− E ′

i jk
∂2c0

∂x j∂xk
− Ei jk

∂2c̄1

∂x j∂xk

− D′′
i j

∂c0

∂x j
− D′

i j
∂ c̄1

∂x j
− Di j

∂ c̄2

∂x j
+ c0〈v2i 〉 + c1〈v1i 〉 + c2〈v0i 〉 (6.16)

To analyse whether volume averages of local fluxes have the properties of macroscopic
fluxes, we consider the following identity to transform volume averages into surface averages
(Auriault et al. 2005)

∂

∂ yi
(y jqi ) ≡ y j

∂qi
∂ yi

+ q j . (6.17)

6.3 First-Order Macroscopic Flux

Let take qi = q0i in Eq. (6.17) and then integrate overΩp . Since by Eq. (6.8) q0i is solenoidal
according to −→y , it reduces to

1

| Ω |
∫

Ωp

∂

∂ yi
(y jq

0
i ) dΩ = 〈q0j 〉. (6.18)

Applying the divergence theorem and the no-flux boundary condition Eq. (6.3) of order ε0

leads to:
1

| Ω |
∫

δΩp∩δΩ

y jq
0
i ni dS = 〈q0j 〉. (6.19)

Let li be the dimensionless length of the period along the yi axis. We denote by Σ0
i and

Σi the cross-sections of the period at y = 0 and yi = li ei , respectively. Σ0
pi and Σpi are the

fluid parts of Σ0
i and Σi , respectively (Cf. Fig. 2). We firstly note that y jq0i is Ω-periodic

in the yk(k �= j) direction. Consequently, only integrals over boundaries Σ0
j and Σ j (where

the normal unit vectors are ±e j ) remain; the others cancel out. Furthermore, y jq0i = 0 for
y j = 0. Therefore, the integral over Σ0

j is zero. We are left with

1

| Ω |
∫

δΩp∩δΩ

y jq
0
i ni dS = 1

| Ω |
∫

Σp j

l j q
0
i dS = 1

| Σ j |
∫

Σp j

q0j dS, (6.20)
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(without summation over j), and we define

〈q0j 〉Σi = 1

| Σ j |
∫

Σp j

q0j dS. (6.21)

Hence, we have
〈q0j 〉 = 〈q0j 〉Σ j , (6.22)

which means that the volume average of q0j is equal to a surface average. Therefore, 〈q0j 〉
has the properties of a macroscopic flux. As a consequence, from the expression of −→q 0,
Eq. (6.5), we deduce that

〈v0j 〉 = 〈v0j 〉Σ j , (6.23)

whichmeans that the volume average of−→v 0 has the properties of aDarcy’s velocity. Note that
the equalities between volume averages and surface averages of q0j and v0j are consequences

of the solenoidal character of −→q 0 and −→v 0, according to variable −→y .
Therefore, Eqs. (6.11)–(6.12) can be rewritten as

φ
∂c0

∂t
+ ∂〈q0i 〉Σpi

∂xi
= 0, (6.24)

〈q0i 〉Σpi
= − Di j

∂c0

∂x j
+ c0〈v0i 〉Σpi

, (6.25)

and the first-order macroscopic description Eq. (5.26) can be expressed as

φ
∂〈c〉
∂t

+ ∂〈qi 〉Σpi

∂xi
= O

(

εφ
∂〈c〉
∂t

)

, (6.26)

〈qi 〉Σpi
= − Di j

∂〈c〉
∂x j

+ 〈c〉〈vi 〉Σpi
+ O(ε〈qi 〉Σpi

), (6.27)

where the first-order macroscopic solute flux and fluid velocity are defined by

〈qi 〉Σpi
= 〈q0i 〉Σpi

+ O(ε〈qi 〉Σpi
), (6.28)

〈vi 〉Σpi
= 〈v0i 〉Σpi

+ O(ε〈vi 〉Σpi
). (6.29)

Finally, in dimensional variables the first-order transport model reads

φ
∂〈ĉ〉
∂ t̂

+
∂〈q̂i 〉Σ̂pi

∂ X̂i
= O

(

εφ
∂〈ĉ〉
∂ t̂

)

, (6.30)

〈q̂i 〉Σ̂pi
= − D̂diff

i j
∂〈ĉ〉
∂ X̂ j

+ 〈ĉ〉〈v̂i 〉Σ̂pi
+ O(ε〈q̂i 〉Σ̂pi

). (6.31)

6.4 Second-Order Macroscopic Flux

To analyse the volume average of −→q 1, let consider identity Eq. (6.17) with qi = q1i and
integrate over Ωp. This yields

〈q1i 〉Σpi
=

〈

yi
∂q1j
∂ y j

〉

+ 〈q1i 〉. (6.32)
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Now, by Eq. (6.9), we get that −→q 1 is non-solenoidal

∂q1j
∂ y j

= − ∂q0j
∂x j

− ∂c0

∂t
. (6.33)

Consequently, the volume average of −→q 1 is not equal to its surface average

〈q1i 〉Σpi
�= 〈q1i 〉, (6.34)

which means that 〈−→q 1〉 is not a macroscopic flux.
By starting from Eq. (6.32) and then using Eq. (6.33) to get the term 〈yi∂q1j /∂ y j 〉, we obtain
the following expression for 〈−→q 1〉Σpi

(Cf. “Appendix D.1”):

〈q1i 〉Σpi
= − (Ei jk − EΣ

i jk)
∂2c0

∂x j∂xk

− (D′
i j − D′Σ

i j )
∂c0

∂x j
− Di j

∂ c̄1

∂x j
(6.35)

+ c0〈v1i 〉Σpi
+ c̄1〈v0i 〉Σpi

,

where

EΣ
i jk =

〈

D0yiγ
0
jk − 1

φ
yi D jk

〉

, (6.36)

D′Σ
i j =

〈

yi

(
1

φ
〈v0j 〉 − v0j

)〉

. (6.37)

UsingEq. (6.32), thefirst corrector of themacroscopic description,Eq. (6.13), canbe rewritten
in terms of the second-order macroscopic flux as follows:

φ
∂ c̄1

∂t
+ ∂

∂xi
(〈q1i 〉Σpi

) = ∂

∂xi

(〈

yi
∂q1j
∂ y j

〉)

. (6.38)

Then, using Eqs. (D.4), (D.9), (6.36) and (6.37), it becomes

φ
∂ c̄1

∂t
+ ∂

∂xi
(〈q1i 〉Σpi

)

= ∂

∂xi

[

EΣ
i jk

∂2c0

∂x j∂xk
+ D

′Σ
i j

∂c0

∂x j
− c0(〈v1i 〉 − 〈v1i 〉Σpi

)

]

. (6.39)

Now, in order to obtain the corresponding second-order macroscopic description, let firstly
add Eqs. (6.24)–(6.39) multiplied by ε. We get

φ
∂〈c〉
∂t

+ ∂〈qi 〉Σpi

∂xi

= ∂

∂xi

[

εEΣ
i jk

∂2〈c〉
∂x j∂xk

+ εD
′Σ
i j

∂〈c〉
∂x j

− 〈c〉(〈vi 〉 − 〈vi 〉Σpi
)

]

(6.40)

+O

(

ε2φ
∂〈c〉
∂t

)

.
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Next, we add Eqs. (6.25)–(6.35) multiplied ε, and we obtain

〈qi 〉Σpi
= − ε(Ei jk − EΣ

i jk)
∂2〈c〉
∂x j xk

− (Di j + εD′
i j − εD

′Σ
i j )

∂〈c〉
∂x j

(6.41)

+〈c〉〈vi 〉Σpi
+ O(ε2〈qi 〉Σpi

).

In the above equations, the second-ordermacroscopic solute flux andfluid velocity are defined
by

〈qi 〉Σpi
= 〈q0i 〉Σpi

+ ε〈q1i 〉Σpi
+ O(ε2〈qi 〉Σpi

), (6.42)

〈vi 〉Σpi
= 〈v0i 〉Σpi

+ ε〈v1i 〉Σpi
+ O(ε2〈vi 〉Σpi

), (6.43)

respectively. In dimensional variables, Eqs. (6.40) and (6.41) read

φ
∂〈ĉ〉
∂ t̂

+
∂〈q̂i 〉Σ̂pi

∂ X̂i

= ∂

∂ X̂i

[

ÊΣ
i jk

∂2〈ĉ〉
∂̂X j∂Xk

+ D̂
′Σ
i j

∂〈ĉ〉
∂ X̂ j

− 〈ĉ〉(〈v̂i 〉 − 〈v̂i 〉Σ̂pi

]

+O

(

ε2φ
∂〈ĉ〉
∂ t̂

)

, (6.44)

〈q̂i 〉Σpi

= − (Ê diff
i jk − ÊΣ

i jk)
∂2〈ĉ〉

∂X j Xk
− (D̂diff

i j + D̂
′disp
i j − D̂

′Σ
i j )

∂〈ĉ〉
∂X j

+〈ĉ〉〈v̂i 〉Σpi
+ O(ε2〈q̂i 〉Σpi

), (6.45)

where

Ê diff
i jk = lDcEi jk, (6.46)

ÊΣ
i jk = lDcE

Σ
i jk, (6.47)

D̂
′Σ
i j = εDcD

′Σ
i j . (6.48)

6.5 Third-Order Macroscopic Flux

Proceeding in the same manner as in Sect. 6.4, we also conclude that

〈−→q 2〉 �= 〈−→q 2〉Σpi
, (6.49)

andwe show that in dimensional variables, the third-order transport model expressed in terms
of the macroscopic flux reads (Cf. “Appendix D.2”):

φ
∂〈ĉ〉
∂ t̂

+ ∂

∂Xi
(〈qi 〉Σpi

)

= ∂

∂Xi

[

F̂Σ
i jkl

∂3〈c〉
∂X j∂Xk∂Xl

+ (ÊΣ
i jk + Ê

′Σ
i jk)

∂2〈c〉
∂X j∂Xk
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+ (D̂
′Σ
i j + D̂

′′Σ
i j )

∂〈c〉
∂X j

+ 〈c〉(〈vi 〉 − 〈vi 〉Σpi
)

]

+O

(

ε3φ
∂〈ĉ〉
∂ t̂

)

. (6.50)

〈q̂i 〉Σpi
= − (F̂ diff

i jkl − F̂Σ
i jk)

∂3〈c〉
∂X j∂Xk∂Xl

− (Ê diff
i jk − ÊΣ

i jk + Ê ′
i jk − Ê

′Σ
i jk)

∂2〈c〉
∂X j∂Xk

− (D̂i j + D̂′
i j − D̂

′Σ
i j + D̂

′′
i j − D̂

′′Σ
i j )

∂〈c〉
∂X j

+〈ĉ〉〈v̂i 〉Σpi
+ O(ε3〈q̂i 〉Σpi

)

(6.51)

where (Cf. “Appendix D.2”)

F̂Σ
i jkl = l2DcF

Σ
i jkl , (6.52)

Ê
′Σ
i jk = εlDcE

′Σ
i jk, (6.53)

D̂
′′Σ
i j = ε2DcD

′′Σ
i j . (6.54)

Since 〈q̂i 〉Σpi
has the properties of a macroscopic flux, the right-hand sides of the mass-

balance equations, Eqs. (6.44) and (6.50), represent source terms, which are actually
expressions of the second-order and third-order non-local effects, respectively.

7 Conclusions

In the present paper, higher-order asymptotic homogenisation up to the third order of solute
transport in the advective–diffusive regime is performed. The main result of the study is that
low scale separation induces dispersion effects. At the second order, the transport model
is similar to the classical model of dispersion: the dispersion tensor is the sum of the dif-
fusion tensor and a mechanical dispersion tensor, while this property is not verified in the
homogenised dispersion model obtained at higher Péclet number. The velocity is governed
by a second-order law which reduces to Darcy’s law in case of isotropy. Thus, the second-
order model of advection–diffusion is similar to the phenomenological model of dispersion.
The third-order description contains second and third concentration gradient terms, with a
fourth-order tensor of diffusion and with a third-order and an additional second-order tensors
of dispersion. Hence, these results show that when employing the first-order model while ε is
not “very” small would, for example, lead to a wrong estimate of the tensor of effective dif-
fusion from experimental data. We generally admit that a first-order model, whose degree of
precision is O(ε), is valid for a value of ε up to ε ≈ 0.1. Consequently, we may estimate that
the p-order model is required when ε p ≈ 0.1. The analysis of the macroscopic fluxes shows
that the second- and the third-order macroscopic fluxes are distinct from the volume averages
of the corresponding local fluxes. From the writing of the second- and third-order models in
terms of the macroscopic fluxes arise expressions of the non-local effects. All theses results
are valid for macroscopically homogeneous media, and macroscopic heterogeneity would
lead to stronger non-local effects.
The results at Péclet number O(ε) can quite easily be deduced from the above analysis.
This leads to the model of diffusion at the first order and the model of advection–diffusion
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at the second order, and dispersion effects appear at the third order. Eventually, we may
conclude that scale separation is a crucial issue whenever the fluid is in motion, since low
scale separation induces a modification of the apparent transport regime (Royer 2018).
An important property of higher-order homogenised models is that edge effects are induced:
the boundary layer created by the heterogeneity may affect the homogenised solution inside
the domain in higher orders with respect to ε. Numerical simulations of the above-derived
effective higher-order equations thus require a specific treatment of these edge effects
(Smyshlyaev and Cherednichenko 2000; Buannic and Cartraud 2001; Dumontet 1990). A
discussion on that topic is complex and beyond the scope of this paper.
Since the advection–diffusion equation is a Fokker-Planck type equation, the higher-order
transport homogenised equations may appear to be similar to a generalised Fokker-Planck
equation (Risken 1989). Such equation which describes the time evolution of a proba-
bility density function is obtained by a Kramers–Moyal expansion which transforms an
integro-differential master equation. Pawula (1967) has proved that finite truncations of the
generalised Fokker–Planck equation at any order greater than the second leads to a logical
inconsistency, as the function must then have negative values at least for sufficiently small
times and in isolated regions. This argument may be used to put into question the validity
of higher-order homogenised transport models (Mauri 1991). In this regard, the work of van
Kampen (1981) provides the framework for the introduction of a small parameter which
allows for the construction of a modified Kramers–Moyal expansion. Then, one can approx-
imate the expansion by a finite number of terms which involves derivatives of order higher
than two, using an appropriate perturbation technique. In this case, the contribution from
higher-order terms diminishes, because of their order in the small parameter. Such an expan-
sion is admittedly questionable in view of Pawula’s theorem, but can be controlled when
manipulated with care (Popescu and Lipan 2015). Thus, the theorem of Pawula does not
necessarily restrict the truncation of higher-order terms, when we can formally obtain high-
order perturbative equations (Kanazawa 2017) and nonvanishing higher-order coefficients
have been observed in various systems (Anvari et al. 2016; Friedrich et al. 2011; Prusseit and
Lehnertz 2007; Tutkun and Mydlarski 2004; Lim et al. 2008; Petelczyc et al. 2009, 2015).
Therefore, though higher-order perturbative models might, in some cases, have negative val-
ues at some isolated times and positions, this does not invalidate the models derived in the
study, which are valid only in zones where large concentration gradients are applied.

Appendices

A First-Order Homogenisation

A.1 Definition of Vector �j

Let multiply the local problem defined by Eqs. (5.9)–(5.10) by a test function α satisfying
the condition of having zero average, and then, let integrate overΩp. We obtain the following
variational formulation

∫

Ωp

D0
∂α

∂ yi

∂c1

∂ yi
dΩ = −

∫

Ωp

D0
∂α

∂ yi
dΩ

∂c0

∂xi
. (A.1)
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Vector χ j is the solution for c1 when ∂c0/∂xi = δi j . Therefore, the variational formulation
associated with χ j is

∫

Ωp

D0
∂α

∂ yi

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂α

∂ y j
dΩ, (A.2)

and χ j must satisfy
∂

∂ yi

[

D0

(
∂χ j

∂ yi
+ δi j

)]

= 0 in Ωp,

[

D0

(
∂χ j

∂ yi
+ δi j

)]

ni = 0 on Γ ,

〈χ j 〉 = 0,
−→χ : periodic in −→y .

(A.3)

A.2 Symmetry of Tensor Dij

To demonstrate the symmetry of Di j , we firstly take

α = χq ,

c1 = χp,
∂c0

∂xi
= δi p,

(A.4)

into Eq. (A.1). This leads to:

∫

Ωp

D0
∂χq

∂ yi

∂χp

∂ yi
dΩ = −

∫

Ωp

D0
∂χq

∂ yp
dΩ. (A.5)

Next, we consider
α = χp,

c1 = χq ,
∂c0

∂xi
= δiq ,

(A.6)

into Eq. (A.1), which leads to:

∫

Ωp

D0
∂χp

∂ yi

∂χq

∂ yi
dΩ = −

∫

Ωp

D0
∂χp

∂ yq
dΩ. (A.7)

By Eqs. (A.5) and (A.7), we deduce that:

∫

Ωp

∂χq

∂ yp
dΩ =

∫

Ωp

∂χp

∂ yq
dΩ. (A.8)

Consequently, we have:
Dqp = Dpq , (A.9)

which proves the symmetry of ¯̄D.
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B Second-Order Homogenisation

B.1 Boundary Value Problem for c2

The third-order boundary value given by Eqs. (5.14) and (5.16) can be written as follows:

∂

∂ yi

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)]

− ∂

∂ yi
(c0v1i ) − ∂

∂ yi
(c1v0i )

= ∂c0

∂t
− ∂

∂xi

[

D0

(
∂c1

∂ yi
+ ∂c0

∂xi

)]

+ ∂

∂xi
(c0v0i ) within Ωp, (B.1)

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)]

ni = 0 over Γ . (B.2)

Now, using Eq. (5.8), and the second order of Eq. (4.2)

∂v1i

∂ yi
+ ∂v0i

∂xi
= 0, (B.3)

while bearing in mind Eq. (5.7), the second and the third terms of the left-hand side of
Eq. (B.1) can be transformed as follows:

∂

∂ yi
(c0v1i ) = − c0

∂v0i

∂xi
, (B.4)

∂

∂ yi
(c1v0i ) = v0i

∂c1

∂ yi
. (B.5)

Next, using Eq. (5.22) we get

∂c0

∂t
= 1

φ
Di j

∂2c0

∂xi∂x j
− 1

φ
〈v0i 〉

∂c0

∂xi
, (B.6)

and from Eq. (5.12), we obtain

∂c1

∂xi
= χ j

∂2c0

∂xi∂x j
+ ∂ c̄1

∂xi
. (B.7)

Substituting Eqs. (B.4)–(B.7) into Eqs. (B.1)–(B.2), and then using the expression Eq. (5.20),
we get the boundary value problem Eqs. (5.31)–(5.32).

B.2 Definitions of Tensor�jk andVector�j

Bymultiplying the local problem Eqs. (5.31)–(5.32) by a test function α of zero average, and
then integrating over Ωp, we obtain its variational formulation:

∫

Ωp

∂α

∂ yi

[

D0

(
∂c2

∂ yi
+ χ j

∂2c0

∂xi∂x j
+ ∂ c̄1

∂xi

)]

dΩ

=
∫

Ωp

αD0 γ 0
i j

∂2c0

∂xi∂x j
dΩ −

∫

Ωp

αv0i γ
0
i j

∂c0

∂x j
dΩ.

(B.8)
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nlm is the particular solution for c2 when

∂2c0

∂xi∂x j
= δilδ jm,

∂c0

∂xi
= ∂ c̄1

∂xi
= 0.

Therefore, the variational formulation associated with n jk reads

∫

Ωp

∂α

∂ yi
D0

(
∂nlm
∂ yi

+ χm δil

)

dΩ =
∫

Ωp

αD0 γ 0
lm dΩ, (B.9)

and n jk must satisfy

∂

∂ yi

(

D0

(
∂ηlm

∂ yi
+ χmδil

))

= 1

φ
Dlm − D0γ

0
lm within Ωp,

(

D0

(
∂ηlm

∂ yi
+ χmδil

))

ni = 0 over Γ ,

〈ηlm〉 = 0,

ηlm : Ω-periodic in variable −→y .

(B.10)

From its definition, we see that ηlm is a parameter related to the diffusion mechanism.
πk is the solution for c2 when

∂c0

∂x j
= δ jk,

∂ c̄1

∂xi
= ∂2c0

∂xi∂x j
= 0.

The variational formulation associated with πk is thus

∫

Ωp

∂α

∂ yi
D0

∂πk

∂ yi
dΩ = −

∫

Ωp

αv0i γ
0
ik dΩ, (B.11)

and πk must satisfy

∂

∂ yi

(

D0
∂πk

∂ yi

)

= γ 0
ikv

0
i − 1

φ
〈v0k 〉 within Ωp,

(

D0
∂πk

∂ yi

)

ni = 0 over Γ ,

〈πk〉 = 0,

πk : Ω-periodic in variable −→y .

(B.12)

From the above definition, it is clear that vector −→π depends on both the diffusive and the
convective phenomena, which characterises the presence of dispersive effects.
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B.3 Properties of the Third-Order Tensor Eijk

B.3.1 Symmetry by Construction of a Third-Order Tensor with Respect to Its Last Two
Indices

By construction, Ei jk is symmetric with respect its last two indices:

Ei jk
∂2c0

∂x j∂xk
= Ei jk

∂2c0

∂xk∂x j
= Eik j

∂2c0

∂xk∂x j
= Eik j

∂2c0

∂x j∂xk
. (B.13)

Consequently:
Ei jk = Eik j . (B.14)

In case of isotropy, third-order tensors are scalar multiples of the permutation tensor

Ei jk = E εi jk εi jk : permutation tensor. (B.15)

Since εi jk = − εik j , Eq. (B.14) induces that: E = 0. Thus, any third-order tensor which is
symmetric with respect to its last two indices is equal to zero in case of isotropy.

B.3.2 Antisymmetry with Respect to the First Two Indices

Let take α = ηlm in the variational formulation associated with functions χ j Eq. (A.2). We
obtain ∫

Ωp

D0
∂ηlm

∂ yi

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂ηlm

∂ y j
dΩ. (B.16)

Let now take α = χ j in the variational formulation associated with ηlm Eq. (B.9). We get
∫

Ωp

D0
∂ηlm

∂ yi

∂χ j

∂ yi
dΩ

= −
∫

Ωp

D0χm
∂χ j

∂ yl
dΩ +

∫

Ωp

D0χ j
∂χm

∂ yl
dΩ.

(B.17)

From Eqs. (B.16) and (B.17), we deduce
∫

Ωp

D0

(
∂ηlm

∂ y j
+ χ jδlm

)

dΩ =
∫

Ωp

D0χm
∂χ j

∂ yl
dΩ −

∫

Ωp

D0χ j
∂χm

∂ yl
dΩ. (B.18)

Thus, from the definition of E jlm Eq. (5.44), we have

E jlm = 1

| Ω |
∫

Ωp

D0χm
∂χ j

∂ yl
dΩ − 1

| Ω |
∫

Ωp

D0χ j
∂χm

∂ yl
dΩ, (B.19)

and

El jm = 1

| Ω |
∫

Ωp

D0χm
∂χl

∂ y j
dΩ − 1

| Ω |
∫

Ωp

D0χl
∂χm

∂ y j
dΩ

= 1

| Ω |
∫

Ωp

D0χ j
∂χm

∂ yl
dΩ − 1

| Ω |
∫

Ωp

D0χm
∂χ j

∂ yl
dΩ.

(B.20)

Therefore
E jlm = − El jm . (B.21)
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Since themedium ismacroscopically homogeneous, Ei jk does not dependon themacroscopic
variable−→x . Consequently, the antisymmetry with respect to the two first indices implies that

∂

∂xi

(

Ei jk
∂2c0

∂x j∂xk

)

= 0. (B.22)

From Eq. (B.19), we further note that tensor E jlm can be determined from vector −→χ .

B.4 Properties of Tensor D′
ij

Let take c2 = πk and α = χl in the variational formulation of the second-order local problem
Eq. (B.8). We obtain

∫

Ωp

∂χl

∂ yi
D0

∂πk

∂ yi
dΩ = −

∫

Ωp

χl
∂χk

∂ yi
v0i dΩ −

∫

Ωp

χlv
0
k dΩ. (B.23)

Now, by taking c1 = χl and α = πk in the variational formulation of the first-order problem
Eq. (A.1), we get ∫

Ωp

∂πk

∂ yi
D0

∂χl

∂ yi
dΩ = −

∫

Ωp

D0
∂πk

∂ yl
dΩ. (B.24)

From Eqs. (B.23) and (B.24), we deduce
∫

Ωp

D0
∂πk

∂ yl
dΩ =

∫

Ωp

χl
∂χk

∂ yi
v0i dΩ +

∫

Ωp

χlv
0
k dΩ. (B.25)

Now, by considering the definition of ¯̄D′, Eq. (5.45), with the above expression, it comes

D′
lk =

〈

D0
∂πk

∂ yl
− v0l χk

〉

= 〈χlv
0
k 〉 +

〈

χl
∂χk

∂ yi
v0i

〉

− 〈χkv
0
l 〉, (B.26)

from which we deduce

D′
lk − D′

kl = 2(〈χlv
0
k 〉 − 〈χkv

0
l 〉) �= 0. (B.27)

Therefore, ¯̄D′ is not symmetric:
D′
lk �= D′

kl . (B.28)

From Eq. (B.26), tensor ¯̄D′ can be decomposed as

D′
lk = s D′

lk + aD′
lk, (B.29)

where
s D′

lk =
〈

χl
∂χk

∂ yi
v0i

〉

(B.30)

is symmetric and
aD′

lk = 〈χlv
0
k 〉 − 〈χkv

0
l 〉 (B.31)

is antisymmetric.
Furthermore, from Eq. (B.26), it can be seen that tensor D′

lk can be determined from vectors−→χ and −→v 0.
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C Third-Order Homogenisation

C.1 Boundary Value Problem for c3

From Eqs. (5.36)–(5.38), we get the following boundary value problem for c3:

∂

∂ yi

[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)]

− ∂

∂ yi
(c0v2i ) − ∂

∂ yi
(c1v1i ) − ∂

∂ yi
(c2v0i )

= ∂c1

∂t
− ∂

∂xi

[

D0

(
∂c2

∂ yi
+ ∂c1

∂xi

)]

+ ∂

∂xi
(c0v1i ) + ∂

∂xi
(c1v0i ) in Ωp, (C.1)

[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)]

ni = 0 over Γ . (C.2)

Using Eqs. (5.8), (B.3) and (4.2) at the third order

∂v2i

∂ yi
+ ∂v1i

∂xi
= 0, (C.3)

we deduce that

∂

∂ yi
(c0v2i ) = − c0

∂v1i

∂xi
, (C.4)

∂

∂ yi
(c1v1i ) = − c1

∂v0i

∂xi
+ ∂c1

∂ yi
v1i , (C.5)

∂

∂ yi
(c2v0i ) = ∂c2

∂ yi
v0i , (C.6)

∂

∂xi
(c0v1i ) = c0

∂v1i

∂xi
+ ∂c0

∂xi
v1i , (C.7)

∂

∂xi
(c1v0i ) = c1

∂v0i

∂xi
+ ∂c1

∂xi
v0i . (C.8)

Then, substituting Eqs. (C.4)–(C.8) into Eq. (C.1) while using Eqs. (5.20) and (5.40) yields

∂

∂ yi

[

D0

(
∂c3

∂ yi
+ ∂c2

∂xi

)]

= − D0γ
1
i jk

∂3c0

∂xi∂x j∂xk

+
(

v0i γ
1
i jk − D0

∂πk

∂ y j

)
∂2c0

∂x j∂xk
− D0γ

0
i j

∂2c̄1

∂xi∂x j
(C.9)

+
(

v0i
∂π j

∂ yi
+ v1i γ

0
i j

)
∂c0

∂x j
+ v0i γ

0
i j

∂ c̄1

∂x j
+ ∂c1

∂t
.

We may now determine an expression for ∂c1/∂t . From the definition of c1 (Eq. (5.12)), we
have

∂c1

∂t
= χi

∂

∂t

(
∂c0

∂xi

)

+ ∂ c̄1

∂t
= χi

∂

∂xi

(
∂c0

∂t

)

+ ∂ c̄1

∂t
. (C.10)

Now, using the expression of ∂c0/∂t (Eq. (B.6)) and deducing ∂ c̄1/∂t from Eq. (5.46), the
above equation finally becomes

∂c1

∂t
= 1

φ
χi D jk

∂3c0

∂xi∂x j∂xk
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+ 1

φ
(D′

i j − χi 〈v0j 〉)
∂2c0

∂xi∂x j
+ 1

φ
Di j

∂2c̄1

∂xi∂x j
(C.11)

− 1

φ

(

χi
∂〈v0j 〉
∂xi

+ 〈v1j 〉
)

∂c0

∂x j
− 1

φ
〈v0i 〉

∂ c̄1

∂xi
.

Then, from the expression obtained for c2, Eq. (5.33), we get

∂c2

∂xi
= η jk

∂3c0

∂xi∂x j∂xk
+ π j

∂2c0

∂xi∂x j
+ χ j

∂2c̄1

∂xi∂x j
+ ∂ c̄2

∂xi
. (C.12)

Finally, substitutingEqs. (C.11) and (C.12) into Eq. (C.9), we get Eq. (5.56), and the boundary
condition Eq. (C.2) over Γ becomes Eq. (5.57).

C.2 Variational Formulation of the Local Boundary Value Problem

The variational formulation of the local problem defined by Eqs. (5.56) and (5.57) is obtained
by multiplying both equations by a test function α of zero average and by integrating over
Ωp:

∫

Ωp

∂α

∂ yi

[

D0

(
∂c3

∂ yi
+ η jk

∂3c0

∂xi∂x j∂xk
+ π j

∂2c0

∂xi∂x j
+ χ j

∂2c̄1

∂xi∂x j
+ ∂ c̄2

∂xi

)]

dΩ

= −
∫

Ωp

α

(
1

φ
χi D jk − D0γ

1
i jk

)

dΩ
∂3c0

∂xi∂x j∂xk

−
∫

Ωp

α

(

v0i γ
1
i jk − D0

∂πk

∂ y j
− 1

φ
χ j 〈v0k 〉

)

dΩ
∂2c0

∂x j∂xk

+
∫

Ωp

αD0γ
0
i j dΩ

∂2c̄1

∂xi∂x j
(C.13)

−
∫

Ωp

α

(

v0i
∂π j

∂ yi
+ v1i γ

0
i j − 1

φ
χi

∂〈v0j 〉
∂xi

)

dΩ
∂c0

∂x j

−
∫

Ωp

αv0i γ
0
i j dΩ

∂ c̄1

∂x j
.

C.3 Definition of the Third-Order Tensor �lmp

ξlmp is the solution for c3 when

∂3c0

∂xi∂x j∂xk
= δilδ jmδkp,
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while the other forcing terms are set to zero. Thus, ξlmp must satisfy

∂

∂ yi

[

D0

(
∂ξlmp

∂ yi
+ ηmpδil

)]

= 1

φ
χl Dmp − D0γ

1
lmp within Ωp,

[

D0

(
∂ξlmp

∂ yi
+ ηmpδil

)]

ni = 0 over Γ ,

〈ξlmp〉 = 0,

¯̄̄
ξ : Ω-periodic.

(C.14)

From Eq. (C.13), we deduce the corresponding variational formulation:

∫

Ωp

∂α

∂ yi

[

D0

(
∂ξlmp

∂ yi
+ ηmpδil

)]

dΩ = −
∫

Ωp

α

(
1

φ
χl Dmp − D0γ

1
lmp

)

dΩ. (C.15)

C.4 Definition of the Second-Order Tensor �lm

τlm is the solution for c3 when

∂2c0

∂xi∂x j
= δilδ jm .

Thus, it is the solution to

∂

∂ yi

[

D0

(
∂τlm

∂ yi
+ πmδil

)]

= v0i γ
1
ilm − D0

∂πm

∂ yl
+ 1

φ
D′
lm − 1

φ
χl〈v0m〉 within Ωp,

[

D0

(
∂τlm

∂ yi
+ πmδil

)]

ni = 0 over Γ ,

〈τlm〉 = 0,

¯̄τ : Ω-periodic,

(C.16)

and the associated variational formulation reads

∫

Ωp

∂α

∂ yi

[

D0

(
∂τlm

∂ yi
+ πmδil

)]

dΩ

= −
∫

Ωp

α

(

v0i γ
1
ilm − D0

∂πm

∂ yl
− 1

φ
χl〈v0m〉

)

dΩ. (C.17)

C.5 Definition of Vector�k

θk is the solution for c3 when

∂c0

∂x j
= δ jk .
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Therefore, it must satisfy

∂

∂ yi

(

D0
∂θk

∂ yi

)

= v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

− 1

φ
〈v1k 〉 within Ωp,

(

D0
∂θk

∂ yi

)

ni = 0 over Γ ,

〈θk〉 = 0,
−→η : Ω-periodic.

(C.18)

The corresponding variational formulation is

∫

Ωp

∂α

∂ yi
D0

∂θk

∂ yi
dΩ = −

∫

Ωp

α

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)

dΩ. (C.19)

C.6 Properties of the Second-Order Tensor D′′
jk

By taking α = θk in the variational formulation associated with −→χ (Eq. (A.2)), we get:

∫

Ωp

∂θk

∂ yi
D0

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂θk

∂ y j
dΩ. (C.20)

Next, we consider α = χ j in the variational formulation associated with
−→
θ (Eq. (C.19)):

∫

Ωp

∂χ j

∂ yi
D0

∂θk

∂ yi
dΩ = −

∫

Ωp

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)

dΩ. (C.21)

Then, from Eqs. (C.20)–(C.21), we deduce that:

∫

Ωp

D0
∂θk

∂ y j
dΩ =

∫

Ωp

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)

dΩ. (C.22)

From the above relationship and from the expression of D′′
jk , Eq. (5.71), we get:

D′′
jk =

〈

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)〉

− 〈v1jχk + v0jπk〉, (C.23)

from which we see that D′′
jk can be determined from −→χ , −→π , −→v 0 and −→v 1.

C.7 Properties of the Third-Order Tensor E′
jlm

Let us consider α = τlm in the variational formulation associated with −→χ (Eq. (A.2)):

∫

Ωp

∂τlm

∂ yi
D0

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂τlm

∂ y j
dΩ. (C.24)
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We may now take α = χ j in the variational formulation associated with ¯̄τ (Eq. (C.17)):

∫

Ωp

∂τlm

∂ yi
D0

∂χ j

∂ yi
dΩ

= −
∫

Ωp

∂χ j

∂ yi
D0πmδil dΩ

−
∫

Ωp

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)

dΩ.

(C.25)

From the above two equations, we get:

∫

Ωp

D0
∂τlm

∂ y j
dΩ =

∫

Ωp

D0
∂χl

∂ y j
πm dΩ +

∫

Ωp

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)

dΩ.

(C.26)
From the definition of E ′

jlm , Eq. (5.70), and the above relationship, we finally obtain:

E ′
jlm =

〈

D0
∂χl

∂ y j
πm

〉

+
〈

χ j

(

v0i
∂πk

∂ yi
+ v1i γ

0
ik − 1

φ
χi

∂〈v0k 〉
∂xi

)〉

− 〈v0i η jk〉. (C.27)

Therefore, tensor E ′
jlm can be determined from −→χ , −→π , ¯̄η, −→v 0 and −→v 1.

C.8 Properties of the Fourth-Order Tensor Fjlmp

Let firstly take α = ξlmp in the variational formulation associated with −→χ (Eq. (A.2)):

∫

Ωp

D0
∂ξlmp

∂ yi

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂ξlmp

∂ y j
dΩ. (C.28)

Next, by considering α = χ j in the variational formulation associated with
¯̄̄
ξ (Eq. (C.15)),

we get:

∫

Ωp

D0
∂ξlmp

yi

∂χ j

∂ yi
dΩ = −

∫

Ωp

D0
∂χ j

∂ yi
ηmpδil dΩ − 1

φ

∫

Ωp

Dmpχ jχl dΩ

+
∫

Ωp

χ jγ
1
lmp dΩ. (C.29)

From the above two relationships, and from the definition of Fjlmp (Eq. (5.69)), we deduce
that:

Fjlmp =
〈

D0ηmp
∂χl

∂ y j

〉

− 〈χ jγ
1
lmp〉 + 1

φ
〈χ jχl Dmp〉 + 〈η jlδmp〉, (C.30)

which shows that Fjlmp is determined from −→χ and ¯̄η.
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D Macroscopic Fluxes

D.1 Derivation of 〈q1i 〉6pi

To determine 〈q1i 〉Σpi
, we see fromEq. (6.32), that the term 〈yi∂q1j /∂ y j 〉must be determined.

This can be done by starting from Eq. (6.33). By Eq. (6.5), we firstly deduce that

∂q0j
∂x j

= − D0γ
0
jk

∂2c0

∂x j∂xk
+ v0j

∂c0

∂x j
+ c0

∂v0j

∂x j
, (D.1)

and then from Eq. (5.22), we get

∂c0

∂t
= 1

φ
Djk

∂2c0

∂x j∂xk
− 1

φ
〈v0j 〉

∂c0

∂x j
. (D.2)

Reporting expressions Eqs. (D.1) and (D.2) into Eq. (6.33), we get:

∂q1j
∂ y j

=
(

D0γ
0
jk − 1

φ
Djk

)
∂2c0

∂x j∂xk
−

(

v0j − 1

φ
〈v0j 〉

)
∂c0

∂x j
− c0

∂v0j

∂x j
, (D.3)

from which we deduce
〈

yi
∂q1j
∂ y j

〉

=
〈

D0yiγ
0
jk − 1

φ
yi D jk

〉
∂2c0

∂x j∂xk
−

〈

yi

(

v0j − 1

φ
〈v0j 〉

)〉
∂c0

∂x j

− c0
〈

yi
∂v0j

∂x j

〉

. (D.4)

Now, reporting the above expression together with Eq. (6.14) into Eq. (6.32), we obtain the
following expression for the surface average of q1i :

〈q1i 〉Σpi
= −

(

Ei jk −
〈

D0yiγ
0
jk − 1

φ
yi D jk

〉)
∂2c0

∂x j∂xk

−
(

D′
i j −

〈

yi

(
1

φ
〈v0j 〉 − v0j 〉

)
∂c0

∂x j
− Di j

∂ c̄1

∂x j
(D.5)

− c0
〈

yi
∂v0j

∂x j

〉

+ c0〈v1i 〉 + c̄1〈v0i 〉.

To be physically meaningful, the macroscopic fluid velocity must also be defined by a surface
average. In order to determine 〈v1i 〉Σpi

, let consider the identity

∂

∂ y j
(yiv

1
j ) = yi

∂v1j

∂ y j
+ v1j . (D.6)

Integrating over Ωp, we get

〈v1i 〉Σpi
=

〈

yi
∂v1j

∂ y j

〉

+ 〈v1i 〉. (D.7)

Now, since by Eq. (4.2) at O(ε0)

∂v1j

∂ y j
= − ∂v0j

∂x j
, (D.8)
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we deduce that

〈v1i 〉Σpi
= −

〈

yi
∂v0j

∂x j

〉

+ 〈v1i 〉. (D.9)

Substituting Eq. (D.9) into Eq. (D.5) and bearing in mind Eq. (6.23), we finally get Eq. (6.35)
with Eqs. (6.36)–(6.37).

D.2 Derivation of 〈q2i 〉6pi

Let consider Eq. (6.17) with qi = q2i and integrate over Ωp:

〈q2i 〉Σpi
=

〈

yi
∂q2j
∂ y j

〉

+ 〈q2i 〉. (D.10)

From Eq. (6.10), we get
∂q2j
∂ y j

= − ∂q1j
∂x j

− ∂c1

∂t
. (D.11)

Using the definition of −→q 1 (Eq. (6.6)), we deduce:

∂q1j
∂x j

= − D0γ
1
jkl

∂3c0

∂x j∂xk∂xl
−

(

D0
∂πk

∂ y j
− v0jχk

)
∂2c0

∂x j∂xk

− D0γ
0
jk

∂2c̄1

∂x j∂xk
+ c0

∂v1j

∂x j
+ v1j

∂c0

∂x j
+ c̄1

∂v0j

∂x j
+ v0j

∂ c̄1

∂x j
, (D.12)

and by Eq. (5.46), we get

∂ c̄1

∂t
= 1

φ
D′

jk
∂2c0

∂x j∂xk
+ 1

φ
Djk

∂2c̄1

∂x j∂xk
− 1

φ
〈v1j 〉

∂c0

∂x j
− 1

φ
〈v0j 〉

∂ c̄1

∂x j
. (D.13)

Using Eqs. (D.11)–(D.13), we deduce

〈

yi
∂q2j
∂ y j

〉

= 〈D0yiγ
1
jkl〉

∂3c0

∂x j∂xk∂xl

+
〈

D0yi
∂πk

∂ y j
− yiv

0
jχk − 1

φ
yi D

′
jk

〉
∂2c0

∂x j∂xk

+
〈

D0yiγ
0
jk − 1

φ
yi D jk

〉
∂2c̄1

∂x j∂xk

−
〈

yi

(

v1j − 1

φ
〈v1j 〉

)〉
∂c0

∂x j

−
〈

yi

(

v0j − 1

φ
〈v0j 〉

)〉
∂ c̄1

∂x j
(D.14)

− c0
〈

yi
∂v1j

∂x j

〉

− c̄1
〈

yi
∂v0j

∂x j

〉

.
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Using Eq. (6.17) successively for qi = v1i and qi = v2i , and integrating both resulting
equations over Ωp , we can easily show that

− c̄1
〈

yi
∂v0j

∂x j

〉

= c̄1(〈v1i 〉Σpi
− 〈v1i 〉), (D.15)

−c0
〈

yi
∂v1j

∂x j

〉

= c0(〈v2i 〉Σpi
− 〈v2i 〉). (D.16)

By Eqs. (D.10) and (D.14), and using both above equations, together with the expression of
〈q2i 〉, Eq. (6.16) yields

〈q2i 〉Σpi
= − (Fi jkl − FΣ

i jkl)
∂3c0

∂x j∂xk∂xl

− (E ′
i jk − E

′Σ
i jk)

∂2c0

∂x j∂xk

−(Ei jk − EΣ
i jk)

∂2c̄1

∂x j∂xk

− (D
′′
i j − D

′′Σ
i j )

∂c0

∂x j
(D.17)

− (D′
i j − D

′Σ
i j )

∂ c̄1

∂x j

−Di j
∂ c̄2

∂x j

+ c0〈v2i 〉Σpi
+ c̄1〈v1i 〉Σpi

+ c̄2〈v0i 〉Σpi
,

in which

FΣ
i jkl = 〈D0yiγ

1
jkl〉, (D.18)

E
′Σ
i jk =

〈

D0yi
∂πk

∂ y j
− yiv

0
jχk − 1

φ
yi D

′
jk

〉

, (D.19)

D
′′Σ
i j =

〈

yi

(
1

φ
〈v1j 〉 − v1j

)〉

. (D.20)

From Eqs. (5.68) and (D.10), we get the following writing for the second corrector of the
macroscopic mass-balance equation

φ
∂ c̄2

∂t
+ ∂

∂xi
〈q2i 〉Σpi

= ∂

∂xi

(〈

yi
∂q2j
∂ y j

〉)

(D.21)

Then, using the expression of 〈yi
∂q2j
∂ y j

〉, Eq. (D.14), it becomes

φ
∂ c̄2

∂t
+ ∂

∂xi
〈q2i 〉Σpi

= ∂

∂xi

[

FΣ
i jkl

∂3c0

∂x j∂xk∂xl
+ E

′Σ
i jk

∂2c0

∂x j∂xk
+ EΣ

i jk
∂2c̄1

∂x j∂xk

]
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+ ∂

∂xi

[

D
′′Σ
i j

∂c0

∂x j
+ D

′Σ
i j

∂ c̄1

∂x j

]

(D.22)

− ∂

∂xi
[c0(〈v2i 〉 − 〈v2i 〉Σpi

+ c1(〈v1i 〉 − 〈v1i 〉Σpi
).

To obtain the expression of the third-ordermacroscopic descriptionwith respect to themacro-
scopic flux, let firstly add Eqs. (6.12)–(6.39) multiplied by ε and to Eq. (D.22) multiplied by
ε2:

φ
∂〈c〉
∂t

+ ∂

∂xi
(〈qi 〉Σpi

)

= ∂

∂xi

[

ε2FΣ
i jkl

∂3〈c〉
∂x j∂xk∂xl

+ (εEΣ
i jk + ε2E

′Σ
i jk)

∂2〈c〉
∂x j∂xk

+ (εD
′Σ
i j + ε2D

′′Σ
i j )

∂〈c〉
∂x j

− 〈c〉(〈vi 〉 − 〈vi 〉Σpi
)

]

(D.23)

+O(ε3)

(

φ
∂〈c〉
∂t

)

,

and then let add Eqs. (6.12)–(6.35) multiplied by ε and Eq. (D.17) multiplied by ε2

〈qi 〉Σpi
= − ε2(Fi jkl − FΣ

i jkl)
∂3〈c〉

∂x j∂xk∂xl

−[ε(Ei jk − EΣ
i jk) + ε2(E ′

i jk − E
′Σ
i jk)]

∂2〈c〉
∂x j∂xk

−[Di j + ε(D′
i j − D

′Σ
i j ) + ε2(D

′′
i j − D

′′Σ
i j )]∂〈c〉

∂x j
(D.24)

+〈c〉〈vi 〉Σpi
+ O(ε3〈qi 〉Σpi

),

where

〈qi 〉Σpi
= 〈q0i 〉Σpi

+ ε〈q1i 〉Σpi
+ ε2〈q2i 〉Σpi

+ O(ε3〈qi 〉Σpi
), (D.25)

〈vi 〉Σpi
= 〈v0i 〉Σpi

+ ε〈v1i 〉Σpi
+ ε2〈v2i 〉Σpi

+ O(ε3〈vi 〉Σpi
). (D.26)
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