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Abstract
The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering.
Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect
the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow
simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough
fracture over a range of flow regimes, thus evaluating the critical Reynolds number above
which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a
computed microtomography image of a fractured Berea sandstone. The fracture aperture is
muchmore variable than any of the previous numerical or experimental work involving shear-
thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity
fields and propose a new correlation for shift factor (parameter relating in situ porousmedium
viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated
either based only on fracture image or on detailed velocity field, if available) as well as a
fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same
shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent
on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid
rheology properties. However, both the inertial coefficient and critical Reynolds number are
functions of the fracture geometry only, which is consistent with a recent experimental study.

Keywords Shear-thinning fluid · Computational fluid dynamics · Realistic rough fracture ·
Forchheimer’s law · Shift factor

1 Introduction

The scientific problem of shear-thinning fluid flow in the rough fracture is encountered in
numerous industrial applications such as the hydraulic fracturing fluids (slick water, poly-
mer gels or foams; often carrying proppants) flow in rough hydraulic and natural fractures
(Osiptsov 2017; Liu and Sharma 2005; Liu 2006; Huang et al. 2017b; Raimbay et al. 2016;
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Huang et al. 2017a), polymer gel extrusion through rough fractures to reduce excessive water
production in naturally fractured reservoirs (Wang et al. 2017; Seright 2001, 1999, 2003),
CO2 sequestration and potential leakage through rough fractures (Huo and Gong 2010;
Shukla et al. 2010; Hawkes et al. 2004), drilling fluids infiltration into fractures intersecting
the wellbore (Feng and Gray 2017a, b; Feng et al. 2016), and foam applications (mainly
as a mobility-control fluid) in environmental remediation and other subsurface engineer-
ing (Kovscek et al. 1995). However, due to the complexities of both the porous medium
geometry and non-Newtonian fluid behavior, the flow characteristics, including both the pre-
diction of macroscopic pressure drop and the underlying physical nature, of these complex
shear-thinning fluids in the rough fractures remain poorly understood.

For Newtonian fluids (of constant viscosity μ), the shear stress τ is directly proportional
to the shear rate γ̇ , τ = μγ̇ . All those fluids for which the above proportionality is vio-
lated are said to be non-Newtonian (Sochi 2010). Some, but not all, flow characteristics of
non-Newtonian fluids include strain- and time-dependent viscosity, yield-stress and stress
relaxation (Sochi 2010). In engineering practice, we are primarily interested in the viscosity
behavior of non-Newtonian fluids, and thus the generalized Newtonian models with dynam-
ically upscaled viscosity have been widely used by engineers. Therefore, a large number
of rheological models have been proposed in the literature, such as power-law, Ellis, Car-
reau, Cross, Herschel–Bulkley. Table 1 in Sochi (2010) gives a few prominent examples of
non-Newtonian rheological models.

Numerous studies on shear-thinning fluids (whose viscosity decreases as the shear rate
increases) flow in porous matrix have been conducted since 1980s, including the experi-
mental (Chauveteau 1982; Comba et al. 2011; Perrin et al. 2006; Rodríguez de Castro and
Radilla 2017b), theoretical (Hayes et al. 1996; Liu and Masliyah 1999) and numerical stud-
ies. Specifically, for the numerical studies, most work was based on pore network models
(Pearson and Tardy 2002; Sorbie et al. 1989; Lopez et al. 2003; Perrin et al. 2006; Bal-
hoff et al. 2012) due to their high computational efficiency. There is also some work on
direct simulation of non-Newtonian fluids flow in 2D porous medium (Tosco et al. 2013).
However, the flow of shear-thinning fluids through rough fractures has only been addressed
recently.

Rodríguez de Castro and Radilla (2016) conducted inertial/non-Darcian flow experiments
of shear-thinning fluids described as Carreau fluids through two rough-walled rock fractures
(a granite fracture and a Vosges sandstone fracture). Their findings show that the non-Darcian
flow law could be extended to the shear-thinning fluids flow through rough-walled rock frac-
tures and the inertial coefficients could be obtained by the non-Darcian Newtonian flow
experiments, which means that the inertial coefficients are not dependent on the fluid rhe-
ology properties. Then, they obtained the shift factor α for each porous medium-fluid pair.
Specifically, α is an empirical shift factor relating in situ porous medium viscosity (μpm)
to bulk viscosity, and known to be a function of both the bulk rheology of the fluid and
the porous media (please see Sect. 2.1 for more details about the definitions and physi-
cal meanings of the above parameters). Rodríguez de Castro and Radilla (2017a) further
conducted the linear/Darcian shear-thinning fluid flow experiments through the same rough-
walled rock fractures. They derived the flow rate-dependent shift factor α expressions for
the commonly used Carreau and yield-stress fluids in parallel plate model based on the
Weissenberg–Rabinowitsch–Mooney theory (Macosko 1994; Pipe et al. 2008). Based on the
two investigated rough-walled rock fractures in their work, they concluded that the frac-
ture aperture distributions have no significant effects on the shift factor α, and only the
“hydraulic/equivalent aperture weq” is included in their α expressions.
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According to a lot of the above-mentioned research work on non-Newtonian fluids flow
in porous media, the shift factor α should be a function of both fluid rheology properties and
porous medium geometry. For rough fractures, a hydraulic (equivalent) aperture might not
be enough to take into account the complicated microscopic fracture aperture distribution
and its variations. To validate the above hypothesis, the microscopic fracture aperture distri-
butions should be quantified and then correlated with the shear-thinning fluid flow behavior.
However, this is difficult for the traditional experiments. Fortunately, the direct microscale
flow simulations provide an alternative, and we pursue it in this work.

From the viewpoint of direct numerical simulation, the flow of shear-thinning fluids in
rough fractures involves two critical issues: one is the complex geometry of realistic rough
fractures (Noiriel et al. 2013, 2007; Crandall et al. 2010; Briggs et al. 2017; Zou et al.
2015) (which could result in some discretization issues) and the other is the fluid rheology
of shear-thinning fluids (Sochi 2010). Fluid flow in a rough-walled rock fracture represents a
multi-scale problem: the fracture aperture is orders of magnitude smaller than the other two
in-plane dimensions (Lavrov 2013a; Cardenas et al. 2009). Therefore, the fully 3D resolution
of the flowfield can be very computationally expensive and even computationally prohibitive.

A popular way to reduce the computational cost of 3D simulation of Navier–Stokes equa-
tions in rough fractures is the lubrication theory approximation (Zimmerman et al. 1991;
Zimmerman and Bodvarsson 1996; Ge 1997; Xiao et al. 2013; Brush and Thomson 2003;
Konzuk and Kueper 2004; Wang et al. 2015; Renshaw 1995). Lubrication theory approxima-
tion converts the 3D problem into a quasi 3D problem through averaging the velocity field
across the fracture aperture, which will eliminate the dimension along the fracture aperture.
For the Newtonian fluids flow in rough fractures, a lot of research work has been done and the
conditions under which the lubrication theory approximation is valid have been well estab-
lished (Zimmerman et al. 1991; Zimmerman and Bodvarsson 1996). Because of its much less
computational costs, the lubrication theory approximation has been widely used to simulate
non-Newtonian fluids flow in rough fractures (Di Federico 1998, 2001; Lavrov 2013b, c,
2014, 2015; Felisa et al. 2017; Talon et al. 2014). Although some preliminary experimental
work has been conducted to validate the applicability of lubrication theory to power-law
fluids (Ciriello et al. 2016) and Herschel–Bulkley fluids (Di Federico et al. 2017), due to the
extreme complexity of this problem, it is still unclear whether the lubrication theory approx-
imation or a similar approach applies for non-Newtonian fluids and under what conditions
(Lavrov 2013a).

In addition, some researchers studied the direct simulation of non-Newtonian fluids flow
in rough-walled fractures with computational fluid dynamics (CFD) (Roustaei et al. 2016) or
Lattice Boltzmannmethod (LBM) (Yan and Koplik 2008; Dharmawan et al. 2016). However,
these are 2D simulations. To our best knowledge, solving the Navier–Stokes equations com-
bined with the shear-thinning fluid rheology model with fully 3D flow field in the realistic
rough fracture has not been done to date.

In this paper, for the first time, a 3Dmicroscale flow simulation of Cross power-law shear-
thinning fluids in a realistic rough fracture is conducted. The main contribution of this work
is to propose a new shift factor α correlation for the case of shear-thinning fluids flow in a
rough fracture. In the remaining sections of the paper, a detailed description of the governing
equations for shear-thinning fluids flow in the rough fracture is given in Sect. 2. In addition,
the microscale flow simulation and its validation will also be introduced in Sect. 2. In Sect. 3,
both themacroscopic results andmicroscopic flowpatterns are analyzed. Our newly proposed
shift factor α correlation is discussed in Sect. 4. Finally, Sect. 5 summarizes our work and
gives recommendations for future work.
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2 Methodology

2.1 Non-Darcian Flow of Shear-Thinning Fluids in a Rough Fracture

For the laminar flow of Newtonian fluids in porous media, Darcy’s law is used to describe
the linear relationship between pressure drop and flow rate:

− ΔP

L
= μ

K

Q

A
(1)

where P is the fluid pressure [ML−1T−2], L is the porous medium sample length [L], μ is
the (constant) viscosity of Newtonian fluid [ML−1T−1], K is the intrinsic permeability [L2],
Q is the flow rate [L3T−1], and A is the cross-sectional area [L2] of the porous medium
sample.

The linear Darcy’s law becomes invalid with the increase in Reynolds number, when the
inertial forces can no longer be ignored compared with the viscous forces. Forchheimer’s
equation (Forchheimer 1901) has been widely used to describe the nonlinear relationship
between pressure drop and flow rate in the strong inertial regime (Rodríguez de Castro and
Radilla 2016):

− ΔP

L
= μ

K

Q

A
+ βρ

(Q

A

)2
(2)

where β is the inertial coefficient [L−1] and ρ is the (constant) fluid density [ML−3].
For non-Newtonian fluids flow in porous media, the assumption of constant viscosity

in above equations is invalid since the “bulk” viscosity of non-Newtonian fluids is a func-
tion of shear rate, μ(γ̇ ). Therefore, in order to describe the macroscopic flow behavior of
non-Newtonian fluids flow in porous media accurately and efficiently, several important
parameters are defined as follows.

The first parameter is “porous medium (in-situ) viscosity, μpm” (Bird et al. 1987) which
is used for non-Newtonian fluids in the above macroscopic relationships between pressure
drop and flow rate to replace the constant Newtonian viscosity μ:

For the laminar flow:

− ΔP

L
= μpm

K

Q

A
(3)

For the strong inertial regime:

− ΔP

L
= μpm

K

Q

A
+ βρ

(Q

A

)2
(4)

The above modified equations are based on the hypothesis that the macroscopic flow
laws for Newtonian fluids can be extended to non-Newtonian fluids, which has been verified
in the literature with microscale flow simulation in 2D porous media (Tosco et al. 2013)
and experimental results (Rodríguez de Castro and Radilla 2016, 2017b, a). Specifically,
the shear-thinning fluid models investigated in Tosco et al. (2013) include Cross, Ellis and
Carreau, and Rodríguez de Castro and Radilla (2017b) conducted the experiments of Carreau
fluids through packed beads. The experiments of Rodríguez de Castro and Radilla (2016)
and Rodríguez de Castro and Radilla (2017a) have been introduced in detail in Sect. 1. One
objective of this work is to validate this assumption using 3D microscale flow simulations in
a realistic rough fracture geometry.
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Instead of the simple power-law fluid constitutive rheologymodel which cannot character-
ize the real fluids at both low and high shear rates (Felisa et al. 2017), we mainly focus on the
four-parameter Cross power-law shear-thinning model with asymptotic values of viscosity
at both upper and lower limits:

μ = μ∞ + μ0 − μ∞
[1 + mn(γ̇ )n] (5)

where μ0 and μ∞ are the upper and lower Newtonian plateaus [ML−1T−1], respectively, m
is the time constant [T], n is the power-law index, γ̇ is shear rate [T−1].

μpm can be calculated based on the “porous medium shear rate, γ̇pm”:

μpm = μ∞ + μ0 − μ∞
[1 + mn(γ̇pm)n] (6)

For practical field applications of non-Newtonian fluids flow in porous media, extensive
work has been done to relate the “bulk” viscometric behavior of non-Newtonian fluids (Eq.
(5)) to its “observed/apparent” behavior in the porous medium (Eq. (6)) (Christopher and
Middleman 1965; James and McLaren 1975; Chauveteau 1982; Sorbie et al. 1989). In order
to calculate μpm based on the “bulk” viscosity formula (Eq. (5)), the second parameter,
the effective shear rate with the porous medium γ̇pm, should be defined. According to the
dimensional analysis, there should be a characteristic length [L] to relate shear rate [T−1] and
Darcy velocity [LT−1], and one approximation of this characteristic length is

√
Kφ (Lopez

et al. 2003), where φ is the porous medium porosity. Therefore, the initial/intuitive definition
of porous medium shear rate is γ̇pm = |v|/√Kφ, where |v| is the Darcy velocity [LT−1].
However, when this definition is substituted into Eq. (6), there is a shift between the true
porousmedium viscosity and the calculated value versusmeasured/average shear rate curves.
Therefore, the third parameter “shift factor α” (Sorbie et al. 1989) was introduced into this
definition:

γ̇pm = α
|v|√
Kφ

= α

√
12Q

w2
eqW

(7)

where weq is the hydraulic/equivalent aperture of a rough fracture obtained from Newtonian
Darcian flow simulations [L], W is the fracture width [L], K is the permeability of a rough

fracture, K = w2
eq
12 , and φ is assumed to be 1 for fracture geometry.

Based on the definitions of μpm and γ̇pm and also the basic assumption of steady-state
laminar flow (the only assumption of steady-state laminar flow is needed for the simple tube
and narrow slit model; while for porous medium, more assumptions would be needed), the
expressions of shift factor α could be derived for very simple fluid rheology model and very
simple geometries. Table 1 gives the expressions of shift factor α for several very simple
cases. Please refer to Appendix A for the derivation of the shift factor α in the cases of
simple power-law fluid flow in a tube and a narrow slit. From Table 1, we can clearly see
that the shift factor α is a function of both the fluid rheology (since the α expressions involve
the power-law index n) and the geometry (since for different geometries the α expressions
are different). However, there have not been any satisfying correlations of α for the non-
Newtonian fluids flow in complex geometries in the literature, and the range reported is
approximately 1 − 15 (Lopez et al. 2003). In this work, based on a large number of 3D
microscale flow simulations, a correlation for shift factor α is obtained for shear-thinning
fluids flow in a rough fracture.
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Table 1 Shift factor α for several very simple cases

Model Formulation of α∗ Reference

Simple power-law fluid flow in a tube
√
2
( 3n+1

4n
) n
n−1 This work

Simple power-law fluid flow in a slit
√
3
( 2n+1

3n
) n
n−1 This work

Simple power-law fluid flow in a sphere pack 12√
150

( 3n+1
4n

) n
n−1 Hirasaki and Pope (1974)

12√
150

( 3n+1
4n

)
Christopher and Middleman (1965)

3n+1√
8n

Sorbie et al. (1989)

∗n is the power-law index of the simple power-law fluid rheology model (μ = K ′(γ̇ )n−1, where K ′ is the
consistency index of power-law fluid [ML−1T n−2])

For convenience, we define “average shear rate” for non-Newtonian fluids flow in a rough
fracture as follows (Rodríguez de Castro and Radilla 2016, 2017a) (same as Eq. (7), φ is
assumed to be 1 for fracture geometry):

γ̇ = |v|√
Kφ

=
√
12Q

w2
eqW

(8)

Here, “average shear rate” is an effective property for porous medium (the rough fracture
in our case) that will be used to report a number of results later on (specifically, Figs. 5, 7,
9, 13).

The fourth parameter called “equivalent viscosity, μeq” would be used in the following
analysis. The equivalent viscosity is defined as the quantity that must replace the viscosity in
Darcy’s law to result in the same pressure drop actually obtained from the microscale flow
simulations (Rodríguez de Castro and Radilla 2016; Tosco et al. 2013). Therefore, both the
shear-thinning and inertial effects are encompassed in μeq. In the case of a rough fracture,
μeq is expressed as:

μeq = −ΔP/L

Q
K A = w3

eqWΔP

12LQ
(9)

where ΔP/L and Q are the pressure gradient and flow rate from the microscale flow simu-
lations, respectively.

Comparison of Eqs. (4) and (9) results in the following definition for the equivalent
viscosity of non-Darcian non-Newtonian fluids flow:

μeq = μpm(γ̇pm) + βρK
Q

A
(10)

The above μeq vs. flow rate expression includes two terms. The first one is the linear term
describing the shear-thinning effect and dominates at low flow rate (low Re). The second
term is the inertial term representing the “pseudo”-increase in equivalent viscosity due to the
inertial forces and dominates at high flow rate (high Re).

The last parameter that should be introduced for the non-Newtonian fluids flow in a rough
fracture is the Reynolds number (Zhou et al. 2015):

Re = ρweq|v|
μpm

= ρQ

μpmW
(11)

123



3D Microscale Flow Simulation of Shear-Thinning Fluids in… 249

Fig. 1 Berea sandstone fracture aperture field distribution. Asperities (contact points) are where the aperture
field is black, and wide parts are where the aperture data are white/light gray. The spacial resolutions are 3040
and 800 in x- and y-direction, respectively, which is the final resolution used in the following microscale
numerical simulations. The red dashed line indicates the selected slice (or cross-section) at x=1012, which is
the 1012th layer of cells/voxels along the x-direction and its physical position is x=32.89 mm

Here, μpm is used instead of μeq since μpm only accounts for the viscous forces (or called
rheology effects), which is consistent with the definition of Reynolds number as the ratio
of inertial to viscous forces (Rodríguez de Castro and Radilla 2016). In addition, a critical
value of Reynolds number, Rec, that delineates the linear and inertial regimes is often used in
practical applications. In this work, we adopt the definition of Rec from Rodríguez de Castro

and Radilla (2016), which is a Re value for which ΔPinertial = βρ
(
Q
A

)2
L is approximately

5% of ΔPtotal = μpm
K

Q
A L + βρ

(
Q
A

)2
L . Based on the definitions for both Reynolds number

(Eq. (11)) and critical Reynolds number, the following formula for critical Reynolds number
Rec could be obtained:

Rec = 12

19βweq
(12)

2.2 Microscale Flow Simulations

The flow domain was extracted from a computed microtomography (micro-CT) image of
a fractured Berea sandstone and the fracture aperture field is shown in Fig. 1 enhanced by
the orthogonal view as shown in Fig. 2. The image dimensions are 389 × 116 × 25 voxels,
and it has been resampled from the original image that is now publicly available on Digital
Rocks Portal (Karpyn et al. 2016). Given that the voxel sizes are 0.26 mm in the longer
direction (x-direction) and 0.219 mm in the other two directions (y- and z-direction), the
overall size of the fracture is 101 × 25 × 5.5 mm3. A voxel-based Cartesian grid was used
for the flow domain discretization and the detailed routine for converting a digital image to a
voxel-based Gmshmesh file can be found inMirabolghasemi (2017). During this conversion,
the initial image was cut and modified and the finial fracture dimension used in this work
is 98.8 × 21.9 × 5.5 mm3. In a voxel-based grid, each CFD grid cell is a hexahedron with
dimensions 0.260× 0.219× 0.219 mm3, the same as the voxel size of the initial image. The
initial discretization shown in Fig. 3 was further refined through dividing one hexahedron
into 512 (8 in each direction) identical smaller ones and the final number of grid blocks was
47,338,496. This should be ample resolution based on both our sensitivity analysis and that
of Crandall et al. (2010) done for Newtonian fluids.

Microscale flow simulations for both Newtonian and shear-thinning fluids in the described
rough fracture were conducted by solving continuity equation (Eq. (13)) and steady-state
Navier–Stokes equation (Eq. (14)) with the simpleFoam solver in OpenFOAM (https://
openfoam.org/) in 3D.
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Fig. 2 Orthogonal view of Berea sandstone fracture from Fiji (https://fiji.sc/) (white represents the frac-
ture/pore space and black the solid space), which is essentially three cross-sections along x-, y- and z-direction.
The dimension/resolution of this volumetric dataset is 3040×800×128. The large image in the middle shows
the XY view of the 65th layer along z-direction. The image on the right is the YZ view showing segmented
geometry of the selected slice x=1012 and the upper part indicated with a red ellipse is where the analysis in
Sect. 3 will focus on. The image at the bottom is the XZ view of the 748th layer along y-direction. Yellow
lines across the views identify locations of the cross-section

Fig. 3 The initial space discretization (92,458 grid blocks) converted from the digital image (Mirabolghasemi
2017)

∇ · −→
U = 0 (13)

ρ∇ · (−→
U

−→
U

) = −∇P + ∇ · (
μ∇−→

U
)

(14)

where
−→
U is the velocity vector [LT−1].

In total, we conducted two sets of simulations of Newtonian fluids and four sets of shear-
thinning fluids. The viscosities of Newtonian fluid #1 and #2 are 3.52 Pa · s and 0.001 Pa · s,
respectively. Table 2 gives the values of parameters in Cross power-law fluid rheology model
for the four sets of shear-thinning fluids, and the corresponding viscosity curves are shown
in Fig. 4.

For all the simulated fluids, a density of 1000 kg/m3 was used. The following boundary
conditions were applied in this work which are very popular in similar studies: (1) fixed-
pressure boundary conditions in x-direction (the inlet and outlet of the fracture geometry);
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Table 2 Values of parameters in Cross power-law fluid rheology model for shear-thinning fluids

Shear-thinning fluids cases μ0(Pa · s) μ∞(Pa · s) m(1/s) n

#1 3.52 0.001 10.1 0.62

#2 3.52 0.001 10.1 0.4

#3 3.52 0.1 10.1 0.62

#4 3.52 0.001 1 0.62

Fig. 4 Model curves for the shear
viscosity μ as a function of shear
rate γ̇ for four shear-thinning
fluids used in the microscale flow
simulations
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(2) symmetry boundary conditions in y-direction (the lateral sides of the fracture geometry);
(3) no-slip boundary conditions in z-direction (the fracture walls).

OpenFOAMv4.1 was used in this work, which was compiled at Lonestar 5 (LS5)machine
at Texas Advanced Computing Center (TACC) (https://www.tacc.utexas.edu/). At the time
of this work, each computing node of LS5 has two Intel E5-2690 v3 12-core (Haswell)
processors (24 cores/node) and 64 GB of DDR4 memory (https://portal.tacc.utexas.edu/
user-guides/lonestar5). To give the reader an idea about the complexity of the simulations
done in this work, we note that each data point for the rough fracture geometry required 16
processors (1 node) for about 1 hour to 140 hours, which mainly depends on the applied
pressure gradient. When the pressure gradient is small, the simulation is fast and when the
pressure gradient is very large, then the simulation time is long. Overall, we have run on the
order of 200 simulations for this manuscript and used up to around 15,000 SUs (LS5 SUs
(Node hours) = number of nodes × wallclock time).

2.3 Model Validation: Flow of Shear-Thinning Fluids in a Narrow Slit

To validate the simulation results of shear-thinning fluids flow in a rough fracture, we com-
pare the semi-analytical solutions and our simulation results for Cross power-law fluids flow
in a narrow slit. The detailed derivation of the semi-analytical flow rate solution at a specific
pressure gradient can be found in Sochi (2015), and this derivation is based on the applica-
tion of Weissenberg–Rabinowitsch–Mooney–Schofield method. Here, only the procedure to
calculate the semi-analytical flow rate solution is given. Firstly, the rate of shear strain at the
slit wall, γ̇w , is evaluated numerically based on Eq. (15):

(
μ∞ + μ0 − μ∞

1 + mn(γ̇w)n

)
γ̇w = BΔP

L
(15)
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Fig. 5 Comparison of equivalent
viscosity of our simulation results
with the analytical solution
(Sochi 2015)
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where B is the half slit aperture [L]. Then, the flow rate is obtained from:

Q = 2WB2 I

τw
2 (16)

where I is an integral equation,

I =
∫ γ̇w

0
γ̇ 2

(
μ∞ + μ0 − μ∞

1 + mn γ̇ n

)(
μ∞ + μ0 − μ∞

1 + mn γ̇ n
− n(μ0 − μ∞)mn γ̇ n

(1 + mn γ̇ n)2

)
dγ̇ (17)

and τw(= BΔP
L ) is the wall shear stress. Once the flow rate at a specific pressure gradient is

obtained, according to Eqs. (8) and (9), the average shear rate and equivalent viscosity can
be calculated, respectively. The comparison of analytical solution and simulation results is
shown in Fig. 5, and the largest Reynolds number in our simulations is approximately 1000.
It is worth noting that our numerical results consider the inertial terms in Navier–Stokes
equations, while the analytical solution does not. The reason why our numerical results
match very well with the analytical solution is as follows.

For the analytical solution ofCross power-lawfluid flow in a narrow slit and the x-direction
is the fluid flow direction, the assumptions are vy = vz = 0 and ∂vx

∂x = 0. Therefore, the iner-
tial terms are equal to zero. It means that the analytical solution does not consider the inertial
forces/terms. For our numerical results implemented with OpenFOAM, the inertial terms are
considered. In a narrow slit, when Re < 1000, the flow is laminar and the streamlines are
almost straight and then the inertial terms are approximately zero since vy ≈ 0, vz ≈ 0 and
∂vx
∂x = 0. Therefore, our numerical results considering inertial forces could match very well
with the analytical solution. However, for the laminar flow in a rough fracture, the stream-
line will deform/bend because of the rough surfaces and then the inertial terms will not be
zero (even though it is laminar flow). In addition, with the increase in pressure gradient, the
velocity will increase and then the inertial forces will also increase. Therefore, our numerical
model could be used to investigate the non-Darcian flow behavior of both Newtonian and
shear-thinning fluids in the rough fracture.

3 Results

For the practical field applications, we first study the macroscopic flow behavior of both
Newtonian and shear-thinning fluids flow in a rough fracture, including the pressure drop-
flow rate relationships and the equivalent viscosity versus average shear rate curves. Then,
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taking advantage of the direct pore-scale flow simulations, we quantify tortuosity based
on the microscopic flow patterns and provide a new correlation that models the observed
macroscopic flow behavior.

3.1 Macroscopic Results

The non-Darcian Forchheimer’s law can be extended to the shear-thinning fluids flow in
porous media, including 2D porous media (Tosco et al. 2013), packed beads (Rodríguez
de Castro and Radilla 2017b) and rough fractures (Rodríguez de Castro and Radilla 2016,
2017a), and the inertial coefficients are only the function of porous medium geometry. Since
we simulate a 3D microscale flow of shear-thinning fluids in a realistic rough fracture for the
first time, we fit the inertial coefficients of both Newtonian fluids and shear-thinning fluids
flow in a rough fracture separately and compare in order to validate the above conclusion
from the literature.

3.1.1 Non-Darcian Flow of Newtonian Fluids: Obtaining Hydraulic/Equivalent Aperture
weq and Inertial Coefficientˇ

The simulation results of pressure gradient versus flow rate for two sets of Newtonian fluids
flow in the rough fracture are shown in Fig. 6. To obtain a better fit for the hydraulic aperture
and inertial coefficients, a two-step procedure is adopted (Rodríguez de Castro and Radilla
2016).

Step 1: Use the slope of the linear part of pressure gradient versus flow rate curve to obtain
the hydraulic aperture. For this fitting, only the (Q,ΔP/L) data within the strict linear
relationship are used and the R-square values are larger than 0.9999. According to Eq. (1),
we obtain:

kslope = μ

K A
= μ

w2
eq
12 weqW

= 12μ

w3
eqW

(18)

Then, the hydraulic aperture is expressed as:

weq =
(

12μ

Wkslope

)1/3

(19)

Step 2: Once the permeability K = w2
eq
12 is obtained, all the (Q,ΔP/L) data (including both

the linear part and nonlinear part) are fitted to Eq. (2) using least square method to obtain the
inertial coefficient β. After both weq and β are obtained, the critical Reynolds number Rec
can be calculated with Eq. (12). All the fitting parameters are given in Table 3.

3.1.2 Non-Darcian Flow of Shear-Thinning Fluids: Obtaining Shift Factor˛ and Inertial
Coefficientˇ

For shear-thinning fluids, the above two-step procedure is successively used to fit the shift
factor α and inertial coefficient β.

Step 1: Fit the porous medium viscosity μpm(γ̇pm) versus average shear rate γ̇ to the equiv-
alent viscosity μeq versus average shear rate γ̇ curves to obtain the shift factor α with the
least square method. Based on Eq. (10), for linear flow,μeq will be equal toμpm(γ̇pm), where
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Fig. 6 Pressure gradient versus flow rate for Newtonian fluids flow in the rough fracture. a Newtonian fluid
#1 (μ = 3.52 Pa · s), b Newtonian fluid #2 (μ = 0.001 Pa · s). Symbols represent microscale simulation
results. Solid line is the fitted Forchheimer’s equation. Dot-dashed and dashed lines are the inertial term and
Darcy term in Forchheimer’s equation, respectively. The growing discrepancy between “Simulation results”
(matching very well with the fitted “Forchheimer’s law”) and “Darcy term” shows that the inertial pressure
losses are becoming dominating with the increase in flow rate

Table 3 Parameters calculated frommicroscale flow simulation results for both Newtonian and shear-thinning
fluids in both rough fracture and narrow slit model

Parameter Newtonian fluid #1 #2 Shear-thinning fluid #1 #2 #3 #4

weq(m) 3.35 × 10−4 3.35 × 10−4 – – – –

β(m−1) 9.27 × 102 8.89 × 102 9.10 × 102 8.97 × 102 9.12 × 102 8.81 × 102

α(−) – – 1.68 1.70 1.65 1.70

αslit
(
f (n)

)
(−) – – 1.46 1.32 1.37 1.44

α
αslit

(−) – – 1.15 1.295 1.20 1.18

Rec(−) 2.03 2.12 2.07 2.10 2.07 2.14

μeq is calculated from the microscale simulation results (Q,ΔP/L) based on Eq. (9) and
μpm(γ̇pm) is evaluated by Eq. (6). Figure 7 shows that a very good overlay is obtained for all
four sets of shear-thinning fluids simulations and the fitted shift factor α are given in Table 3.

Step 2: Once the shift factor α is obtained, all the (γ̇ , μeq) data are fitted to Eq. (10) using
the least square method and the fitted inertial coefficient β are given in Table 3. After β is
obtained, the critical Reynolds number Rec can be calculated using Eq. (12) whereweq is the
fitted parameter from Newtonian fluid flow simulations (Sect. 3.1.1). In addition, with the
fitted shift factor α and inertial coefficient β, the pressure gradient versus flow rate curves
for four sets of shear-thinning fluids flow in the rough fracture are given in Fig. 8.

3.1.3 Comparison of Flow Behavior Between Newtonian and Shear-Thinning Fluids

The comparison of equivalent viscosity curves between Newtonian fluids and shear-thinning
fluids is shown in Fig. 9. Based on Eqs. (10) and (8), the inertial term in Eq. (10) has the
following expression:

123



3D Microscale Flow Simulation of Shear-Thinning Fluids in… 255

10-2 100 102 104

Average shear rate (1/s)

10-2

10-1

100

V
is

co
si

ty
 (

P
a 

s)

Equivalent viscosity 
eq

Porous medium viscosity 
pm

(a)

10-2 100 102 104

Average shear rate (1/s)

10-2

10-1

100

V
is

co
si

ty
 (

P
a 

s)

Equivalent viscosity 
eq

Porous medium viscosity 
pm

(b)

100 105

Average shear rate (1/s)

100

V
is

co
si

ty
 (

P
a 

s)

Equivalent viscosity 
eq

Porous medium viscosity 
pm

(c)

10-2 100 102 104

Average shear rate (1/s)

10-2

10-1

100

V
is

co
si

ty
 (

P
a 

s)

Equivalent viscosity 
eq

Porous medium viscosity 
pm

(d)

Fig. 7 μeq and μpm versus γ̇ curves. a Shear-thinning fluid #1, b Shear-thinning fluid #2, c Shear-thinning
fluid #3, d Shear-thinning fluid #4

βρK
Q

A
= βρK 3/2 Q/A√

K
= βρK 3/2 |v|√

Kφ
= βρK 3/2γ̇ (20)

Therefore, at very high flow rate, the inertial term dominates in Eq. (10) and the μeq versus
γ̇ curves should become a straight line and its slope is βρK 3/2. Indeed, in Fig. 9a, all the
curves including both Newtonian fluids and shear-thinning fluids collapse onto the same red
dashed straight line, which agrees very well with literature finding that the inertial coefficient
β is only dependent on the porous medium geometry. The slope of the red dashed straight
line in Fig. 9a is βρK 3/2, and the value of β is the average value of six fitted β values in
Table 3. As shown in Fig. 9b, for Newtonian fluids flow in the rough fracture, when the
average shear rate is small (or the flow rate is low), the dimensionless equivalent viscosity
μeq/μ0 is equal to one since the flow is linear and the equivalent viscosity equals to the
constant Newtonian viscosity. When the average shear rate is high, the inertial force can no
longer be ignored compared with the viscous force and then the dimensionless equivalent
viscosity will increase and could be as high as 10. For shear-thinning fluids, at low flow
rate, the dimensionless equivalent viscosity decreases as the average shear rate increases
only due to the shear-thinning effect of the fluid rheology. At the strong inertial regime, the
dimensionless equivalent viscosity will increase mainly due to the inertial forces. However,
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Fig. 8 Pressure gradient versus flow rate curves for shear-thinning fluids flow in the rough fracture. a Shear-
thinning fluid #1, b Shear-thinning fluid #2, c Shear-thinning fluid #3, d Shear-thinning fluid #4. Symbols
represent microscale simulation results. Solid line is the fitted Forchheimer’s equation. Dot-dashed and dashed
lines are the inertial term and Darcy term in Forchheimer’s equation, respectively. The growing discrepancy
between “Simulation results” (matching very well with the fitted “Forchheimer’s law”) and “Darcy term”
shows that the inertial pressure losses are becoming dominating with the increase in flow rate

in our simulations (the largest Reynolds number could approach about 1000), the equivalent
viscosity of the shear-thinning fluid could not increase to the initial upperNewtonian viscosity
plateau and the dimensionless equivalent viscosity is always smaller than one as shown in
Fig. 9b.

At low flow rate (low Re), ΔPshear is dominant and the linear Darcy’s law is applicable.
When the flow rate is very high (high Re), ΔPinertial can no longer be ignored compared to
ΔPshear and the linear Darcy’s law is inadequate. Based on the definition of Rec in Sect. 2.1
(Eq. (12)), the calculated Rec for six sets of simulations is given in Table 3. The results
show that six Rec values are approximately the same (the standard deviation of these six
Rec values is 0.036), which means that the critical Reynolds number Rec is only a func-
tion of porous medium geometry and in our case has no obvious dependence on the fluid
properties.
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Fig. 9 Comparison of equivalent viscosity between the two Newtonian fluids and four shear-thinning fluids.
μeq is calculated from the microscale flow simulation results based on Eq. (9). a μeq versus γ̇ curves, b
μeq/μ0 (dimensionless equivalent viscosity) versus γ̇ curves. For shear-thinning fluids, μ0 represents the
initial viscosity or upper Newtonian plateau. For Newtonian fluids, μ0 represents the constant Newtonian
viscosity and the “pseudo”-increase in μeq is because of the inertial effects. The slope of the red dashed
straight line in a is βρK 3/2, and the value of β is the mean value of six fitted β values in Table 3. Specifically,
the mean for fitted β is 903 and the standard deviation value is 15.39

3.2 Microscopic Flow Patterns

In Sect. 3.1, a number of macroscopic relationships have been studied, including the pressure
drop-flow rate curves, equivalent/apparent viscosity curves and critical Reynolds number. In
this section,wemainly focus on the quantificationofflowdetails of themicroscale simulations
and to give insight of the underlying physical nature for the observed macroscopic flow
behavior.

Orthogonal views in Fig. 2 show the tortuosity of the fracture space that is impossible
to gauge from aperture field, but is obviously affecting flow patterns seen in an individual
cross-section (Fig. 10). As shown in Fig. 2, YZ cross-section shows a connected fracture
space; however, the fracture space in the XYmid-plane is not connected and XZ plane shows
that it meanders both above and below the XY mid-plane. Thus even though a portion of the
space might appear relatively wide in YZ cross-section, just before it there might have been
solid space that is blocking the flow.

One specific advantage of microscale flow simulation is that it could provide the detailed
flow information in the porous media. Figure 10 shows the dimensionless velocity magnitude
fields for both shear-thinning fluid #1 andNewtonian fluid #1 across the slice x = 1012 under
different Reynolds numbers. We can see that, although the open fracture runs through the
whole slice x = 1012 (as shown in the YZ view of Fig. 2), the fluid mainly flows through a
certain part of the fracture. As shown in Fig. 10, the fluids do not access the left open fracture
part (upper part of the YZ view in Fig. 2 indicated with a red ellipse) at all except for the
cases where Reynolds number are very large (Fig. 10k, l). This is because the flow field is
determined by the overall aperture field distributions. Specifically, as shown in the aperture
field (Fig. 1), just before the slice x=1012, in the upper part, there are some darker areas
where the aperture is very small (even with zero aperture). In addition, we can also see the
isolated fracture space around slice x=1012 from the XZ view of Fig. 2. Therefore, the fluid
can hardly access the left open fracture part of slice x=1012 even though its aperture is very
large (as shown in the YZ view of Fig. 2 indicated with a red ellipse).
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(a) Re=1.4995e-7, τ=1.1749,
|−→U|max=4.2661e-6 m/s

(b)Re=2.5598e-8, τ=1.1871,
|−→U|max=1.0697e-6 m/s

(c) Re=3.5684e-2, τ=1.1317, |−→U|max=0.0169
m/s

(d)Re=2.5598e-4, τ=1.1871, |−→U|max=0.0107
m/s

(e) Re=2.2175, τ=1.1347, |−→U|max=0.2475
m/s

(f)Re=2.2673, τ=1.1848, |−→U|max=101.5072
m/s

(g) Re=31.7378, τ=1.1496, |−→U|max=2.0199
m/s

(h)Re=19.2985, τ=1.1714,
|−→U|max=840.1419 m/s

(i) Re=44.8355, τ=1.1585, |−→U|max=2.6686
m/s

(j) Re=50.1044, τ=1.1885, |−→U|max=2.7668e3
m/s

(k)Re=722.7768, τ=1.4399,
|−→U|max=26.4084 m/s

(l) Re=280.2849, τ=1.3215,
|−→U|max=1.7174e4 m/s

Fig. 10 Dimensionless velocity magnitude fields across the slice x=1012 (whose geometry is shown in the
YZ view of Fig. 2) for both shear-thinning fluid #1 (left column) and Newtonian fluid #1 (right column)

To quantify the velocity distribution in the whole fracture, tortuosity is used in the fol-
lowing analysis. There are many different definitions of tortuosity (Ghanbarian et al. 2013),
and here we adopt the following definition from (Duda et al. 2011; Zhao et al. 2018):

τ = |U|
Ux

=
√
U 2
x +U 2

y +U 2
z

Ux
(21)

where |U| and Ux are the average values of velocity magnitude and x-component velocity,
respectively. These information can be obtained from the microscale velocity distributions.
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Fig. 11 Comparison of tortuosity curves between Newtonian fluids and shear-thinning fluids in the rough
fracture. a Tortuosity versus flow rate curves. b Tortuosity versus Reynolds number curves

The variation of tortuosity curves for bothNewtonian and shear-thinning fluids is shown in
Fig. 11. With the increase in flow rate (Fig. 11a) or Reynolds number (Fig. 11b), for both two
Newtonian fluids, the tortuosity remains constant (1.187) at first, then at somepoint decreases,
and finally increases. Similar phenomenon has been observed in previous studies (Agnaou
et al. 2017; Sivanesapillai et al. 2014). Agnaou et al. (2017) did a thorough microscopic
Newtonian fluid flow analysis on two dimensional model structures to investigate the origin
of the inertial deviation from Darcy’s law. For all the six different configurations, they found
that the tortuosity remains constant in the linear flow regime and weak inertial regime, and
then a well-defined decrease in tortuosity can be observed at the beginning of the transition
from weak inertial to the strong inertial (also called Forchheimer) regime. Since the Berea
fracture, which could be viewed as a very complex heterogeneous assembly of the simplified
model structures, is much more complicated than 2D model structures, the transitions from
linear flow regime to weak inertial regime and from weak to strong inertial regime, and also
beyond the strong inertial regime can not be identified very clearly from Fig. 11. In addition,
if the special fluid rheology of shear-thinning fluids comes into play, the behind physical
mechanisms and induced microscopic flow behaviors would be more complicated further.
Therefore, in this work, firstly, a brief analysis of the above tortuosity trend for Newtonian
fluids will be discussed and for more details the reader could refer to Agnaou et al. (2017) and
Sivanesapillai et al. (2014). After that, combined with the dimensionless velocity magnitude
fields shown in Fig. 10 and the comparison with Newtonian fluids, a detailed microscopic
analysis of the Shear-thinning fluids flow behavior will be discussed.

To discuss the reasons why the tortuosity of Newtonian fluids decreases first and then
increases, the comparison between tortuosity curves and dimensionless equivalent viscosity
curves of two Newtonian fluids is shown in Fig. 12. From Fig. 12, we can see that when
Reynolds number is smaller than about 0.28, the equivalent viscosity remains constant and is
equal to the constant Newtonian viscosity (since the dimensionless equivalent viscosity keeps
to be 1), and the tortuosity also remains to be the constantNewtonian tortuosity (1.187). In this
condition, the fluid flow is dominated by the viscous force and is in the creeping flow regime
or weak initial regime. The streamlines remain constant and therefore the dimensionless
velocity magnitude distributions remain almost the same, as shown in Fig. 10b, d. Then,
with the increase in flow rate or Reynolds number, the effect of inertial forces increases and
the fluid flow becomes more channelized because of both the pore geometry and the shape
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Fig. 12 Comparison of tortuosity
curves and dimensionless
equivalent viscosity curves of two
sets of Newtonian fluids
simulations
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change of the eddies, which can be reflected from both Fig. 10f, h, whose red areas indicate
higher velocity increase compared with Fig. 10b, d. Accordingly, the tortuosity decreases,
which indicates the beginning of the transition from weak inertial to the Forchheimer regime
according to Agnaou et al. (2017) and Sivanesapillai et al. (2014). With further increase in
flow rate or Reynolds number, the inertial forces would dominate the flow and the streamlines
becomemore andmore unstable even turbulent, as shown in Fig. 10j, l. This will cause a sharp
increase in both the tortuosity and the fluid flow resistances. As a result, the dimensionless
equivalent viscosity increases sharply as shown in Fig. 12.

For shear-thinning fluids, we take the shear-thinning fluid #1 as an example to analyze the
detailed flow behavior. When the flow rate is very low (Re is very small), the dimensionless
velocity magnitude distribution of the shear-thinning fluid is similar to that of Newtonian
fluid, as shown in Fig. 10a, b. However, even in the linear flow regime (at low flow rate) the
tortuosity of shear-thinning fluids decreases with the increase in flow rate. This is because
the so-called channelization phenomenon is more pronounced for shear-thinning fluids. For
Newtonian fluids, the fluid velocity is usually larger in the positionwith a larger local aperture
and vice versa, which is the so-called fluid channelization phenomenon. This will induce a
larger shear rate, and in case of a shear-thinning fluid a smaller viscosity, in larger apertures.
Therefore, the shear-thinning fluids will have smaller viscosities in larger apertures compared
with those in smaller apertures, which in turn increases the velocity in larger apertures further.
As a result, the shear-thinning fluids would have a more pronounced channelization effect
and the tortuosity is smaller than that of Newtonian fluids under the same order of Re as
shown in Fig. 10e, f (or c, d), where (e) has a larger and darker red area than (f) since (e) has
a more pronounced channelization effect, and therefore the shear-thinning fluid has a smaller
tortuosity. In addition, with the increase in flow rate or Reynolds number, the channelization
of shear-thinning fluid becomes more significant. As shown in Fig. 10c, the red areas with
high velocity increase compared with those in Fig. 10a. Therefore, as shown in Fig. 11, in
the initial period, the tortuosity of shear-thinning fluids decreases with the increase in flow
rate (or Reynolds number).

For shear-thinning fluids, the increase in tortuosity could be caused by two effects: the
lower Newtonian viscosity plateau and the inertial forces coming into play at high flow rate
and becoming dominant at very high flow rate. Under the influences of shear-thinning effect,
the lowerNewtonian viscosity plateau, inertial forces, and especially the complicated fracture
geometry, the dimensionless velocity distribution under Re = 2.2175 is similar to that under
Re = 3.5684e − 2, as shown in Fig. 10c, e. Therefore, the tortuosity of Shear-thinning fluid
#1 shown in Fig. 11b has no obvious change from Re = 1e − 2 to Re ≈3. Thereafter, with
further increase in flow rate or Reynolds number, the effect of inertial forces increases, and
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the complicated fracture rough surfaces come into play, then the flow field becomes unstable
even turbulent as shown in Fig. 10g,i, k, causing an obvious increase in the tortuosity, which
is the same trend as the Newtonian fluids.

Specifically, for shear-thinning fluids, the increase in tortuosity caused by the lower New-
tonian viscosity plateau could be shown very clearly by the tortuosity curve of Shear-thinning
fluid #3 in Fig. 11. Compared with the Newtonian fluids, its tortuosity will first decrease due
to the shear-thinning effect. According to Table 2, the lower Newtonian viscosity plateau of
Shear-thinning fluid #3 is larger than the other three cases and it means its viscosity would
decrease to this lower limit value earlier than the other three shear-thinning fluids. After
approaching the lower Newtonian viscosity plateau, it will behave like a Newtonian fluid and
therefore its tortuosity will increase to the constant Newtonian tortuosity value (1.187). After
that, it will have exactly the same behavior as the Newtonian fluids (as shown very clearly
in Fig. 11b).

4 Discussion: Correlation of Shift Factor for Shear-Thinning Fluids Flow
in the Rough Fracture

For practical applications, the relationship between pressure drop and flow rate for shear-
thinning fluid flow through the rough fracture is very important for higher-level hydraulic
fracturing and reservoir simulators. According to Eq. (4), to obtain the pressure drop–flow
rate relationship for shear-thinning fluid flow through a rough fracture,μpm should be known.
To calculateμpm based on Eq. (6), γ̇pm should be known. Therefore, according to Eq. (7), the
correlation of shift factor α for shear-thinning fluid flow through a rough fracture is necessary
to obtain the pressure drop-flow rate relationship. Because shift factor α is a function of both
fluid rheology property and the porous medium geometry and is influenced by a lot of
parameters, there have not been satisfying correlations for it in the literature.

According to Table 1, we can see that for simple power-law fluid flow in a narrow slit
model, the shift factorα is a function of power-law index n and there is no geometry parameter
in this shift factor α formula. However, for Cross power-law fluid flow in a narrow slit model,
even though we can obtain the semi-analytical flow rate value at a specific pressure gradient
as shown in Sect. 2.3, the analytical shift factor α formula cannot be derived due to the
more complex fluid rheology constitutive model of Cross power-law fluid compared with the
simplest power-law fluid rheology model. Since the (γ̇ , μeq) data could be obtained from
the semi-analytical solution of Cross power-law fluid flow in a narrow slit model, we could
use the same procedure described in Sect. 3.1.2 to obtain the shift factor αslit for all the four
sets of shear-thinning fluids as shown in Table 3. We also simulated several cases of Cross
power-law fluid flow in a narrow slit with different apertures for each set of fluid rheology
properties. These simulations are not shown here. Our fitting results show that αslit is only
dependent on the fluid rheology property and not influenced by the slit geometry, i.e., its
aperture.

The comparison between the shear-thinning fluid flow in a rough fracture and that in a
narrow slit model shows that the substantial difference is the fracture rough surfaces. The
rough surfaces will cause the bending of the streamlines, which can be characterized by the
fluid flow tortuosity. Therefore, we introduce tortuosity into the correlation of shift factor α.
Our proposed correlation of shift factor α for shear-thinning fluids flow in the rough fracture
is as follows:

α = αslitτ = f (n)τ (22)
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Fig. 13 μeq and correlatedμpm versus γ̇ curves. a Shear-thinning fluid #1, b Shear-thinning fluid #2, c Shear-
thinning fluid #3, d Shear-thinning fluid #4. μpm is calculated with the proposed shift factor α correlation
(Eq. (22)) based on Eq. (6)

where αslit (or f (n)) is the shift factor for the same shear-thinning fluid flow in a narrow
slit model. Specifically, for the simplest power-law fluid rheology model, we can have the
analytical formula for αslit as shown in Table 1. But for more complex fluid rheology models
such as the Cross power-law fluid rheology model used in this work, the analytical formula
for αslit could not be derived based on the classical fluid dynamic theory and αslit can be
obtained by least square method fitting to the semi-analytical (γ̇ , μeq) data. The tortuosity τ

here is the values in Sect. 3.2 directly calculated from microscale fluid flow velocity profile
based on Eq. (21).

With our correlation of shift factor α (Eq. (22)), the calculated porous medium viscosity
μpm based on Eq. (6) is compared with the equivalent viscosity μeq calculated from the
microscale simulation results based on Eq. (9) for four sets of shear-thinning fluids flow in
the rough fracture. Figure 13 shows that for all the four sets of shear-thinning fluids, our
correlation for shift factor α works very well.

We further attempt to predict shift factor α without doing anymicroscale flow simulations.
With that in mind, we propose the shift factor α correlation (Eq. (22)) in the following form:

α = αslitτgeometric = f (n)τgeometric (23)
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where τgeometric is the geometric tortuosity which could be obtained from image analysis
without doing anymicroscale flow simulations. It means that α/αslit should be approximately
the geometric tortuosity τgeometric of our rough fracture. Note that τgeometric = 〈Lg〉/Ls is
defined as the average length 〈Lg〉 of the paths through the porous medium/fracture, divided
by the length of the sample Ls . Tokan-Lawal (2015) used medial axis analysis to obtain 〈Lg〉
and found τgeometric to be 1.3 for this Berea fracture (see Fig. 6.21 in Tokan-Lawal (2015)).
Tokan-Lawal et al. (2015) performed the same analysis in other rough fractures. According
to our microscale simulations of four sets of shear-thinning fluids flow in the rough fracture,
the α/αslit values are given in Table 3, and we can see that they are roughly the geometric
tortuosity.

5 Summary and Conclusions

In this work, for the first time, a fully-3D microscale flow simulation for shear-thinning
fluids in a realistic rough fracture is conducted. The simulation details allow analysis of both
microscopic and macroscopic flow parameters. Our main findings are as follows.

1. We confirm the previous conclusion in the literature that the non-Darcian Forchheimer’s
law could be extended to the shear-thinning fluids flow in porous media.

2. Both the inertial coefficientβ in Forchheimer’s equation and the critical Reynolds number
Rec only depend on the fracture geometry and have no obvious dependence on the fluid
rheology property.

3. We propose a new correlation of shift factor α for shear-thinning fluid flow in a rough
fracture (see Eq. (22)). It is quantified by the product of f (n) (or αslit) and the tortuosity.
f (n) could be obtained from the analytical/semi-analytical solutions of the same shear-
thinning fluid flow in a smooth narrow slit model. Two approaches are provided for the
tortuosity quantification. One is based on the detailed microscale fluid velocity field and
produces a very accurate shift factor α which is changing with the pressure gradient. The
other is the geometric tortuosity τgeometric obtained by image analysis without doing any
microscale simulations, which provides an approximate value for shift factor α.

In addition, the macroscopic pressure drop-flow rate laws, including both the Darcy’s and
non-Darcian laws, incorporated with the newly proposed shift factor α correlation could be
used into the higher-level simulators to instruct the related industrial applications.

Further steps of this work include (1) the validation of the proposed shift factor α cor-
relation for other non-Newtonian fluids (such as Carreau and yield-stress fluids) and other
realistic rough fractures, (2) the investigation of shear-thinning fluid flow behavior in the
rough fracture when considering the fluid leak-off and also (3) the incorporation of par-
ticulate transport into the microscale fluid flow simulation which also has wide industrial
applications.

Finally, even though Sect. 3.2 gives some insights of the underlying physical nature of this
complicated flow characteristics for shear-thinning fluids through a realistic rough fracture,
such as the flow behavior transition from viscous force dominated flow to inertial force
dominated flow under the influence of both fluid rheology and porous medium geometry, the
complete physical origins of these flow regime transitions for non-Newtonian fluids still need
to be understood by theory or further simulations, for example, via the promising microscale
simulation approaches such as CFD and LBM, and starting from very simple geometries.
The authors are actively working on this problem.
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Appendix A: Derivation of Shift Factor˛ for Two Simple Cases Based on
the Classical Fluid Mechanics/Dynamics Theory

A.1 Simple Power-Law Fluid in a Tube

Refer to Eq. (8.3–9) in Bird et al. (2002) (Revised Second Edition) for the average velocity
which is obtained by dividing the total volumetric flow rate by the cross-sectional area,
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Therefore, the shift factor α in the case of the simple power-law fluid flow in a tube is:

αtube = 3n + 1√
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A.2 Simple Power-Law Fluid in a Narrow Slit

Refer to Eq. (8.3–14) in Bird et al. (2002) (Revised Second Edition) for the average velocity,

〈vz〉 = B
1
n + 2

(ΔPB

K ′L

) 1
n = K

μeq

ΔP

L
=

(2B)2

12

μeq

ΔP

L

123

https://www.tacc.utexas.edu/


3D Microscale Flow Simulation of Shear-Thinning Fluids in… 265

where B is the half-width of the narrow slit [L].
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Therefore, the shift factor α in the case of the simple power-law fluid flow in a narrow slit is:

αslit =
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masha@utexas.edu

Maryam Mirabolghasemi
maryam@che.msstate.edu

Jianlin Zhao
zjlsetoff@163.com

1 Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at
Austin, Austin 78712, USA

123

https://doi.org/10.1007/s00397-015-0863-x
https://doi.org/10.1016/0021-9797(89)90128-8
https://doi.org/10.1016/0021-9797(89)90128-8
https://doi.org/10.3389/fphy.2014.00024
https://doi.org/10.1002/2015JB012045
https://doi.org/10.1007/s11242-012-0070-5
https://doi.org/10.1007/s11242-012-0070-5
https://doi.org/10.1002/2014WR015815
https://doi.org/10.1016/j.petrol.2017.08.019
https://doi.org/10.1088/1742-2132/10/4/045015
https://doi.org/10.1088/1742-2132/10/4/045015
https://doi.org/10.1103/PhysRevE.77.036315
https://doi.org/10.1016/j.ijrmms.2015.09.027
https://doi.org/10.1007/BF00145263
https://doi.org/10.1016/0148-9062(91)90597-F
https://doi.org/10.1016/0148-9062(91)90597-F
https://doi.org/10.1016/j.ijrmms.2015.01.016
http://orcid.org/0000-0003-4678-8561


3D Microscale Flow Simulation of Shear-Thinning Fluids in… 269

2 Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville 39762,
USA

3 Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich (Swiss
Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland

123


	3D Microscale Flow Simulation of Shear-Thinning Fluids  in a Rough Fracture
	Abstract
	1 Introduction
	2 Methodology
	2.1 Non-Darcian Flow of Shear-Thinning Fluids in a Rough Fracture
	2.2 Microscale Flow Simulations
	2.3 Model Validation: Flow of Shear-Thinning Fluids in a Narrow Slit

	3 Results
	3.1 Macroscopic Results
	3.1.1 Non-Darcian Flow of Newtonian Fluids: Obtaining Hydraulic/Equivalent Aperture weq and Inertial Coefficient β
	3.1.2 Non-Darcian Flow of Shear-Thinning Fluids: Obtaining Shift Factor α and Inertial Coefficient β
	3.1.3 Comparison of Flow Behavior Between Newtonian and Shear-Thinning Fluids

	3.2 Microscopic Flow Patterns

	4 Discussion: Correlation of Shift Factor for Shear-Thinning Fluids Flow in the Rough Fracture
	5 Summary and Conclusions
	Acknowledgements
	Appendix A: Derivation of Shift Factor α for Two Simple Cases Based on the Classical Fluid Mechanics/Dynamics Theory
	A.1 Simple Power-Law Fluid in a Tube
	A.2 Simple Power-Law Fluid in a Narrow Slit

	References




