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Abstract
The main objective of this work is to describe reaction–diffusion of two species in a porous
medium.We aim at finding themacroscopicmodel equivalent to the description of the physics
at the pore scale, with a peculiar attention to possible shape morphogenesis as introduced in
Turing’s seminal article in 1952 (Turing in Philos Trans R Soc Lond Ser B 237:37, 1952). The
upscaling process makes use of the method of asymptotic expansions which takes advantage
of the presence of the small parameter of separation of scales ε = l/L , where l and L are the
characteristic sizes of the pores and the sample or the diffusion wavelength, respectively. Two
different situations are investigated here: large reaction–diffusion and large diffusivity ratios.
Among all possibilities, we investigate three orders of magnitude of the reaction terms and
two orders of magnitude of the diffusivity ratio. In each of the situations, we demonstrate, if it
exists, the macroscopic equivalent model at a scale L � l, at the first order of approximation.
Hence, we obtain a catalogue of macroscopic models for each considered case, their domain
of validity, and the expression of the macroscopic properties. We underline the adequate
conditions to account for the appearance of morphogenesis.

Keywords Reaction–diffusion · Homogenisation · Morphogenesis · Porous media

1 Introduction

Themain objective of this work is to describe reaction–diffusion of two chemical substances,
called morphogens, in a porous medium. Citing the introduction of Murray (2002), “Math-
ematics is required to bridge the gap between the level on which most of our knowledge is
accumulating and the macroscopic level of the patterns we see. [...] Even if the mechanisms
were well understood, mathematics would be required to explore consequences of manipu-
lating the various parameters associated with any particular scenario. [...] The goal is to
develop models which capture the essence of various interactions allowing their outcome
to be more fully understood”. We aim here at finding the macroscopic equivalent model to
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the description of the physics at the pore scale, with a peculiar attention to possible morpho-
genesis. Morphogenesis is a mechanism which produces spatial patterning. Let us note that
morphogenesis could be also present in the absence of separation of scales, when consider-
ing a periodic sample of a porous medium. Patterns appear, for example, on coat mammals,
on butterfly’s wings, or on flowers. Morphogenesis may result from eventual instabilities of
species concentrations (Turing 1952), as in the present work. Morphogenesis is also present
in geology, for example, in hornfels, metamorphic rocks formed by contact metamorphism
and heat diffusion. A nice example of such hornfels can be found in theMilliau Island, France
(Barriere 1977). Other examples may be found in Kessler and Werner (2003).
For examples of morphogenesis in the nano-micro-technologies, the interested reader may
refer to Grzybowski et al. (2005). Some authors addressed the problem at stake by using
homogenisation techniques such as Panfilov (2010) for an example of such patterns in porous
media, but he did not introduce dimensionless parameters, Allaire [8] by considering only one
particular case or Valdes-Parada et al. (2017) by using another technique of homogenisation.

The existence of macroscopic equivalent model is here determined by using the method
of asymptotic expansions (Auriault 1991; Auriault et al. 2009). The equations describing
the physical phenomena at the pore scale are first set in a dimensionless form, based on
characteristic physical values. Dimensionless parameters are hence obtained explicitly as
ratios of characteristic quantities. Considering these dimensionless parameters, at different
orders of magnitude, leads to different macroscopic behaviours in the case of homogenisable
situations. If the situation cannot be homogenised, no macroscopic equivalent model exists.
Hence,weobtain a catalogue ofmacroscopicmodels for each considered case, their domain of
validity, and the expression of the macroscopic property. For the sake of clarity, we will limit
the development to the first order of approximation. In order to illustrate our methodology,
we consider here a porous media as the fluid holder. For the sake of simplicity, we assume a
rigid periodic porous medium with a large number of periods � with a characteristic size l:
the size of the porous sample is L � l. ε = l/L � 1 is the small parameter of separation
of scales. The boundary of the pores �l is denoted δ�l . Two species of concentration c1 and
c2 are diffusing and reacting with each other in a fluid at rest which saturates the periodic
porous medium.We also assume that the process is isotropic. The reaction–diffusion process
is described at the pore scale by the following two coupled equations:

∂c1
∂t

= D1
∂2c1

∂Xi∂Xi
+ f (c1, c2), (1)

∂c2
∂t

= D2
∂2c2

∂Xi∂Xi
+ g(c1, c2), (2)

The boundary δ�l is assumed as impervious to the solutes:

Dp
∂cp
∂Xi

ni = 0 on δ�l , p = 1, 2, (3)

wheren is the unit normal to�l . In the above equations, D1 and D2 are themolecular diffusion
coefficients of the two species 1 and 2, respectively.Wewill see that the structures of functions
f and g have no influence on the upscaling process. In contrast to the upscaling process, the
structures of f and g play an important role when investigating morphogenesis. Different f
and g yield different patterns. Therefore, for the sake of simplicity of the presentation, we
will consider linear reaction terms, since the upscaling results will remain valid for nonlinear
f and g
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f (c1, c2) = R11c1 + R12c2 + R10,

g(c1, c2) = R21c1 + R22c2 + R20.

The above reaction terms are such that positive (negative) R11 and R22 correspond to
auto-production (auto-degradation) and positive (negative) R12 and R21 correspond to cross-
production (cross-degradation). An example of such system may be found in Turing (1952)
p. 70. The assumption of linearity is based on the idea that any reaction terms may be lin-
earised as a first approximation, as suggested by Segel and Jakson (2012). This system was
also presented in Cross and Hohenberg (1993).

Let us recall that, in the framework of the upscaling process in use, two quantities A and
B are related by A = O(ε p B) if

ε p+1 � A

B
� ε p−1.

Then the domain of validity of A = O(B) is generally quite large. For the sake of simplicity,
all the coefficients in the above equations are assumed as constant over � f and we consider
c1/c2 = O(ε0) and f /g = O(ε0). The aim of the paper is to investigate transient diffusion
with reaction at scale L � l. Therefore, at least one species, say species 1, verifies

c1
tc

= O
(
D1

c1
L2

)
,

where tc is the characteristic time of the process. And c2 will verify

c2
tc

= O
(
εq D2

c2
L2

)
,

where q = 0 shows that transient diffusion with reaction is also present for c2 at scale L , and
q = 1, 2 correspond to high diffusivity contrasts.
In the case of linear f and g, we assume for simplicity

R11 = O(R12) = O(R21) = O(R22).

We will also consider cases where f = 0 and g = 0 intersect, which corresponds to the
following condition in the case of linear f and g :

R11R22 − R12R21 �= 0.

Note that the model (1, 2, 3) may be seen itself as a macroscopic equivalent model at scale l
to a model at a lower scale, the diffusing particle scale. Therefore, (1, 2, 3) is an approximate
model. However, this approximation has no influence on the upscaling process from scale l to
scale L to be addressed since we will limit the present analysis to the first-order macroscopic
model (Auriault 2017).

The aim of the paper is twofold:
1. To determine amacroscopic equivalentmodel, if it exists, at scale L from the description

at the pore scale l. Length L is either the characteristic size of the macroscopic porous sample
or the pseudo-wavelength of the solute concentrations (that supposes a sufficiently small
excitation time). The upscaling process is conducted by using the technique of double-scale
expansions (Auriault et al. 2009; Bensoussan et al. 1978; Keller 1977; Sanchez-Palencia
1974, 1980). It consists in first rendering dimensionless system (1, 2, 3) and evaluating the
dimensionless numbers in function of the integer powers of the small parameter of separation
of scale ε (Auriault 1991; Auriault et al. 2009). This is generally done by using either l or L
for the characteristic length. In this paper, we consider the “macroscopic point of view”, i.e.
we choose L . Therefore, the dimensionless space variable is x = X/L . However, as physical
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quantities are also varying at the pore scale l, we introduce a second dimensionless variable
y = X/l = x/ε. Physical dimensionless quantities, say φ, depend on both x and y and on
the dimensionless time t∗, defined as the ratio of the time to a characteristic time. They are
in the following form:

φ = φ(0)(x, y, t∗) + εφ(1)(x, y, t∗) + ε2φ(2)(x, y, t∗) + · · · , y = x/ε. (4)

Due to the assumed periodic character of the porous medium, the φ(i)’s are y-periodic. After
introducing such expansions for c1 and c2 into (1, 2, 3), the method consists in investigating
φ(0) and its successive correctors: εφ(1), ε2φ(2), etc. The approximate nature of the equations
(1, 2, 3) plays no role since we only need here the three first terms in the expansion (Auriault
2017). Indeed, the upscaling process yields the equivalent macroscopic model, if it exists.
Shortly speaking, non-homogenisable situations correspond to the absence of a separation
of scales: L = O(l).

2. To look for possible morphogenesis, which could occur in two different situations:

• When the diffusivity ratio is D1/D2 = O(ε0), a morphogenesis process appears under
two conditions as presented in Turing (1952); Murray (2002, 2003); Garikipati (2017).
Firstly, the reaction terms f and g in (1, 2) cancel out during the reaction–diffusion
process as t goes to infinity :

f (c1, c2) = 0, (5)

g(c1, c2) = 0, (6)

which means that c1 and c2 are constant. These values may be obtained by considering a
macroscopic boundary value problem with time-independent boundary values of c1 and
c2. Then, as time t goes to infinity, the concentrations reach locally constant values.
Secondly, the values of c1 and c2 given by (5, 6) should correspond to an unstable
equilibrium. The interested reader may refer for details to Murray (2003) page 87. The
induced diffusion process then yields patterns.

• A large diffusivity ratio, (D1/D2) = O(ε−2), could yield a pore scale concentration
c2(y) which describes patterns.

The dimensionless form of the diffusion–reaction system is presented in Sect. 2. When
the diffusivity ratio is D1/D2 = O(ε0), we are left with a single dimensionless number
which measures the ratio of the reaction term to the diffusion term. This dimensionless
number is to be evaluated in function of the small parameter of separation of scales,
ε. This number introduces a third characteristic length, the diffusion–reaction length
lDR = √

D/R, where D and R are diffusion and linear reaction constants, respec-
tively (Garikipati 2017). Then, in Sect. 3 we investigate the upscaling process in the case
D1/D2 = O(ε0), for different estimations of lDR , in particular: lDR = O(L), the interme-
diate case where lDR = O(ε−1/2l) = O(ε1/2L), and lDR = O(ε0) = O(εL). The possible
appearance of morphogenesis is investigated. Finally Sect. 4 is devoted to the investigation
of large diffusivity ratios, D1/D2 = O(ε−1) and D1/D2 = O(ε−2), respectively. All the
different macroscopic models of reaction–diffusion are presented in Table 1.

2 Dimensionless Diffusion–Reaction System

The solute concentrations c1(X, t) and c2(X, t) verify

∂c1
∂t

= D1
∂2c1

∂Xi∂Xi
+ f (c1, c2), (7)
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Table 1 Synthesis of the different first-order macroscopic models of reaction–diffusion in porous media

Model A1, A2, B1, B2 Equations Eq.

I ε0, ε0, ε0, ε0
∂c(0)1
∂t = D(e f f )

1i j
∂2c(0)1
∂xi ∂x j

+ f (c(0)1 , c(0)2 ) (34–35)

∂c(0)2
∂t = D(e f f )

2i j
∂2c(0)2
∂xi ∂x j

+ g(c(0)1 , c(0)2 )

II ε−1, ε−1, ε0, ε0 f (c(0)1 , c(0)2 ) = 0 (42)

g(c(0)1 , c(0)2 ) = 0

III ≤ ε−2, ≤ ε−2, ε0, ε0 f (c(0)1 , c(0)2 ) = 0 (65–66)

g(c(0)1 , c(0)2 ) = 0

IV ε0, ε1, ε0, ε1
∂c(0)1
∂t = D(e f f )

1i j
∂2c(0)1
∂xi ∂x j

+ f (c(0)1 , c(0)2 ) (91–94)

∂c(0)2
∂t = g(c(0)1 , c(0)2 )

V ε0, ε2, ε0, ε2
∂c(0)1
∂t = D(e f f )

1i j
∂2c(0)1
∂xi ∂x j

+ < f (c(0)1 , c(0)2 ) > (102-105)

∂<c(0)2 >

∂t = < g(c(0)1 , c(0)2 ) >

VI ε1, ε1, ε0, ε0
∂c(0)1
∂t = D(e f f )

1i j
∂2c(0)1
∂xi ∂x j

∂c(0)2
∂t = D(e f f )

2i j
∂2c(0)2
∂xi ∂x j

VII ε0, ε0, ε0, ε−3 ∂c(0)1
∂t = D(e f f )

1i j
∂2c(0)1
∂xi ∂x j

+ < f (c(0)1 , c(0)2 ) > (111-113)

∂<c(0)2 >

∂t = < g(c(0)1 , c(0)2 ) >

∂c2
∂t

= D2
∂2c2

∂Xi∂Xi
+ g(c1, c2), (8)

Dp
∂cp
∂Xi

ni = 0 on δ�l , p = 1, 2. (9)

Remember that we assume both solute concentrations of similar orders of magnitude, as well
as the different terms in the definitions of f and g.

As above mentioned, the main results of the following upscaling analysis will remain
valid for nonlinear reaction terms, such as the Schnakenberg model (Schnakenberg 1976).

f (c1, c2) = R10 + R11c1 + R12c
2
1c2,

g(c1, c2) = R20 + R21c1 + R22c
2
1c2.

(10)

However, for simplicity, we consider here only linear expressions of both f and g.
Weconsider a periodic-timeexcitationwhichgenerates concentrationpseudo-wavelengths

O(L).We use L as the characteristic length tomake dimensionless the diffusion–reaction sys-
tem. The dimensionless space variable is x = X/L . Therefore, we have at constant frequency
ω

B1 = | ∂c1
∂t |

|D1
∂2c1

∂Xi ∂Xi
|

= ωL2

D1
, B2 = | ∂c2

∂t |
|D2

∂2c2
∂Xi ∂Xi

|
= ωL2

D2
, D = B2

B1
= D1

D2
.
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On the other hand, since f = O (g), we have:

A1 = | f |
|D1

∂2c1
∂Xi ∂Xi

|
= RL2

D1
= L2

l2DR1

, A2 = |g|
|D2

∂2c2
∂Xi ∂Xi

|
= RL2

D2
= L2

l2DR2

,

with lRDi = √
Di/R, i = 1, 2, and R = O(R11) = O(R12) = O(R21) = O(R22).

The dimensionless system becomes:

B1
∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ A1 f (c1, c2), (11)

B2
∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ A2 g(c1, c2), (12)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2, (13)

where, for the sake of simplicity, notations are kept unchanged, with the exception of the
space variable which is now x.
Among all possibilities, we focus on two classes of situations, either D1/D2 = O(ε0) or
large ratio D1/D2.

2.1 Diffusivity Ratio (D1/D2) = O("0),A = A1 = A2 = O("−p), p = 0, 1, 2

(Presented in Sect. 3)
As D1/D2 = O(ε0), we have B1 = B2 = O(ε0). We are left with a single dimensionless
number, namelyA = A1 = A2. Three estimations ofA are of peculiar interest in order to take
into account the coupling between the species: A = O(ε0), i.e. lRD = O(L), A = O(ε−1),
i.e. lRD = O(ε1/2L), andA = O(ε−2), i.e. lRD = O(l), formodels I, II, and III, respectively.
The corresponding dimensionless systems are successively investigated in Sect. 3. For the
sake of simplicity, dimensionless notations are left unchanged, with the exception of the
space variable. The dimensionless diffusion–reaction system is in the form:

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ A f (c1, c2), (14)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ A g(c1, c2), (15)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (16)

2.2 Large Diffusivity RatiosD = D1/D2 = O("−p), p = 1, 2

(Presented in Sect. 4)
We consider D = D1/D2 = O(ε−p), A1 = O(B1) = O(ε0) and A2 = O(B2) = O(ε p),
p = 1, 2.
The dimensionless system then becomes:

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ f (c1, c2), (17)

∂c2
∂t

= ε pD2
∂2c2

∂xi∂xi
+ g(c1, c2), (18)
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Dq
∂cq
∂xi

ni = 0 on δ�l , q = 1, 2. (19)

The two cases q = 1, 2 of large diffusivity ratio, models IV and V, are investigated in
Sects. 4.1 and 4.2, respectively.

The estimations of the dimensionless numbers for the different investigated models are
shown in Table 1.

3 Diffusivity Ratio (D1/D2) = O("0)

3.1 Low reaction–diffusion:A1 = O(A2) = O("0): Model I

Model I is for B1 = O(B2) = O(A1) = O(A2) = O(ε0). We have lRD = O(L).
The dimensionless diffusion–reaction system becomes:

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ f (c1, c2), (20)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ g(c1, c2), (21)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (22)

c1 and c2 are in the following form:

c1 = c(0)
1 (x, y, t∗) + εc(1)

1 (x, y, t∗) + ε2c(2)
1 (x, y, t∗) + · · · (23)

c2 = c(0)
2 (x, y, t∗) + εc(1)

2 (x, y, t∗) + ε2c(2)
2 (x, y, t∗) + · · · , y = x/ε, (24)

where the c(i) ’s are y-periodic. The upscaling process is similar to the one presented in
previous works (Auriault 1991; Auriault et al. 2009). After introducing the two above ansatz
into (20, 21, 22), and extracting like powers of ε, we successively obtain boundary value
problems to be investigated.

• At the lower-order ε−2, it becomes:

D1
∂2c(0)

1

∂ yi∂ yi
= 0, (25)

D2
∂2c(0)

2

∂ yi∂ yi
= 0, (26)

Dp
∂c(0)

p

∂ yi
ni = 0 on δ�l , c(0)

p y-periodic, p = 1, 2. (27)

The solution is:

c(0)
1 = c(0)

1 (x, t), c(0)
2 = c(0)

2 (x, t).

• At the next-order ε−1, it becomes:

D1
∂

∂ yi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
= 0, (28)
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D2
∂

∂ yi

(
∂c(1)

2

∂ yi
+ ∂c(0)

2

∂xi

)
= 0, (29)

Dp

(
∂c(1)

p

∂ yi
+ ∂c(0)

p

∂xi

)
ni = 0 on δ�l , c(1)

p y-periodic, p = 1, 2. (30)

From the above, c(1)
1 and c(2)

1 will be in the following form:

c(1)
1 = ξ1i (y)

∂c(0)
1

∂xi
+ c̄(1)

1 (x, t),

c(1)
2 = ξ2i (y)

∂c(0)
2

∂xi
+ c̄(1)

2 (x, t).

• Finally, the first-order equivalent macroscopicmodel is obtained by considering the order
ε0:

D1
∂

∂ yi

(
∂c(2)

1

∂ yi
+ ∂c(1)

1

∂xi

)
= ∂c(0)

1

∂t
− D1

∂

∂xi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
− f (0), (31)

D2
∂

∂ yi

(
∂c(2)

2

∂ yi
+ ∂c(1)

2

∂xi

)
= ∂c(0)

2

∂t
− D2

∂

∂xi

(
∂c(1)

2

∂ yi
+ ∂c(0)

2

∂xi

)
− g(0) (32)

Dp

(
∂c(2)

p

∂ yi
+ ∂c(1)

p

∂xi

)
ni = 0, on δ�l , c(2)

p y-periodic, p = 1, 2. (33)

The Fredholm alternative imposes to the averages of the right-hand members of (31)
and (32) to cancel out. This gives the equivalent macroscopic model at the first order of
approximation

∂c(0)
1

∂t
= D(e f f )

1i j
∂2c(0)

1

∂xi∂x j
+ f (0)(c(0)

1 , c(0)
2 ), (34)

∂c(0)
2

∂t
= D(e f f )

2i j
∂2c(0)

2

∂xi∂x j
+ g(0)(c(0)

1 , c(0)
2 ). (35)

The effective diffusion tensors D(e f f )
1i j and D(e f f )

2i j are:

D(e f f )
1i j = D1 < Ii j + ∂ξ1i

∂ y j
>,

D(e f f )
2i j = D2 < Ii j + ∂ξ2i

∂ y j
>,

where < . > stands for the pore volume averaging symbol

< φ >= 1

�l

∫

�l

φ d�.

Model I is a “classical” macroscopic equivalent model. Note that morphogenesis is generally
absent, unless very peculiar cases, for example, when considering a ring of size L , which
imposes periodic condition at the boundary of the sample X ∈ [0, L] (Turing 1952).
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3.2 Large Diffusion–Reaction:A1 = O(A2) = O("−1): Model II

We investigate B1 = O(B2) = O(ε0) and A1 = O(A2) = O(ε−1). We have here lRD =
O(ε1/2L).
The dimensionless diffusion–reaction system now takes the form:

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ ε−1 f (c1, c2), (36)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ ε−1 g(c1, c2), (37)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (38)

At the order ε−2, we recover the same system as for model I. Therefore, we have:

c(0)
1 = c(0)

1 (x, t), c(0)
2 = c(0)

2 (x, t).

At the order ε−1, the system becomes:

D1
∂

∂ yi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
= − f (0), f (0) = R11c

(0)
1 + R12c

(0)
2 + R10, (39)

D2
∂

∂ yi

(
∂c(1)

2

∂ yi
+ ∂c(0)

2

∂xi

)
= −g(0), g(0) = R21c

(0)
1 + R22c

(0)
2 + R20, (40)

Dp

(
∂c(1)

p

∂ yi
+ ∂c(0)

p

∂xi

)
ni = 0 on δ�l , c(1)

p y-periodic, p = 1, 2. (41)

Integration of (39) and (40) over the period yields

< f (0) >= 0, < g(0) >= 0.

However, since c(0)
1 and c(0)

2 are y independent, we obtain

f (0) = R11c
(0)
1 + R12c

(0)
2 + R10 = 0,

g(0) = R21c
(0)
1 + R22c

(0)
2 + R20 = 0.

(42)

The above system stands for the first-order approximation of the equivalent macroscopic
model. Since R11R22 − R12R21 �= 0, c(0)

1 and c(0)
2 are well defined. Note that they are y, x,

and t independent.

3.2.1 Morphogenesis

Values of the concentrations given by (42) may be unstable (Turing 1952). Possible mor-
phogenesis then occurs with a pattern wavelength lDR = √

D/R = O(ε1/2L). The
ε−1/2�-periodic increments c̃1 and c̃2, defined as
c̃i = c(0)

i − < c(0)
i > (i = 1, 2), towards a morphologic pattern, if it exists, are described by:

∂ c̃1
∂t

= D1
∂2c̃1

∂zi∂zi
+ R11c̃1 + R12c̃2, (43)

∂ c̃2
∂t

= D2
∂2c̃2

∂zi∂zi
+ R21c̃1 + R22c̃2, (44)
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Dp
∂ c̃p
∂zi

ni = 0 on the pore surface, c̃p y-periodic, p = 1, 2, (45)

where z = X/ε1/2L .
The general solution of this system takes the form, in the 1D case to simplify the presentation
(Garikipati 2017)

c̃p =
∑
k

Upk exp
ikz expωk t , p = 1, 2. (46)

After introduction in the above system, we obtain

U1kωk = −D1U1k |k|2 + R11U1k + R12U2k, (47)

U2kωk = −D2U2k |k|2 + R21U1k + R22U2k . (48)

For non-trivial values of the Upk , one must have

ωk = −((D1 + D2)|k|2 − R11 − R22)

2

±
√

((D1 + D2)|k|2 − R11 − R22)2 + 4R12R21

2
. (49)

Unstable situations are for Re(ωk) > 0, which gives morphogenesis. Model II is possibly a
morphogenesis model with c1 and c2 patterns.

3.2.2 Correctors

Remember that c(0)
1 and c(0)

2 are time-independent values of the concentrations. Equations

(39), (40), and (41) for the first �-periodic correctors c(1)
1 and c(1)

2 are simplified to

D1
∂2c(1)

1

∂ yi∂ yi
= 0 (50)

D2
∂2c(1)

2

∂ yi∂ yi
= 0 (51)

Dp
∂c(1)

p

∂ yi
ni = 0 on δ�l , c(1)

p y-periodic, p = 1, 2. (52)

From the above,

c(1)
1 = c(1)

1 (x, t), c(1)
2 = c(1)

2 (x, t).

At the next order, we obtain

D1
∂

∂ yi

(
∂c(2)

1

∂ yi
+ ∂c(1)

1

∂xi

)
= − f (1), f (1) = R11c

(1)
1 + R12c

(1)
2 , (53)

D2
∂

∂ yi

(
∂c(2)

2

∂ yi
+ ∂c(1)

2

∂xi

)
= −g(1), g(1) = R21c

(1)
1 + R22c

(1)
2 , (54)

Dp

(
∂c(2)

p

∂ yi
+ ∂c(1)

p

∂xi

)
ni = 0 on δ�l , c(2)

p y-periodic, p = 1, 2. (55)
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Integration over the period of (53) and (54) yields

< f (1) >= 0, < g(1) >= 0.

The above system stands for the first corrector of the equivalent macroscopic model. We see
that c(1)

1 = 0 and c(1)
2 = 0. It is easy to check that this property stands for all successive

correctors c(i)
1 = 0 and c(i)

2 = 0, i ≥ 2.

3.3 Very Large Diffusion–Reaction:A1 = O(A2) = O("−2): Model III

We now consider B1 = O(B2) = O(ε0) andA1 = O(A2) = O(ε−2). We have lRD = O(l).
The dimensionless diffusion–reaction system takes now the form

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ ε−2 f (c1, c2), (56)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ ε−2 g(c1, c2), (57)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (58)

After introducing ansatz (23) and (24), we obtain at the order ε−2

D1
∂2c(0)

1

∂ yi∂ yi
= − f (0), f (0) = R11c

(0)
1 + R12c

(0)
2 + R10, (59)

D2
∂2c(0)

2

∂ yi∂ yi
= −g(0), g(0) = R21c

(0)
1 + R22c

(0)
2 + R20, (60)

Dp
∂c(0)

p

∂ yi
ni = 0 on δ�l , c(0)

p y-periodic, p = 1, 2. (61)

The Fredholm alternative imposes

< f (0) >= 0, < g(0) >= 0.

From the above, constant values of < c(0)
1 > and < c(0)

2 > that are independent of x and t
are obtained. Let

c(0)
1 =< c(0)

1 > +c̃1, c(0)
2 =< c(0)

2 > +c̃2.

c̃1 and c̃2 verify

D1
∂2c̃(0)

1

∂ yi∂ yi
= −R11c̃

(0)
1 − R12c̃

(0)
2 , (62)

D2
∂2c̃(0)

2

∂ yi∂ yi
= −R21c̃

(0)
1 − R22c̃

(0)
2 , (63)

Dp
∂ c̃(0)

p

∂ yi
ni = 0 on δ�l , c̃(0)

p y-periodic, p = 1, 2. (64)

The solution is

c̃1 = 0, c̃2 = 0.
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c(0)
1 and c(0)

2 are constants independent of x and t as in model II.
Model III is therefore described as:

R11c
(0)
1 + R12c

(0)
2 + R10 = 0, (65)

R21c
(0)
1 + R22c

(0)
2 + R20 = 0. (66)

3.3.1 Morphogenesis

When the values given by the above system (65), (66) are unstable, a periodic instability of
period � arrises which yields a pattern wavelength lDR = l.
The �-periodic increments c̃1 = c(0)

1 − < c(0)
1 > and c̃2 = c(0)

2 − < c(0)
2 > towards a

morphologic pattern are described by

∂ c̃1
∂t

= D1
∂2c̃1

∂ yi∂ yi
+ f (c̃1, c̃2), (67)

∂ c̃2
∂t

= D2
∂2c̃2

∂ yi∂ yi
+ g(c̃1, c̃2), (68)

Dp
∂ c̃p
∂ yi

ni = 0 on δ�l , c̃p y-periodic, p = 1, 2. (69)

Model III may yield morphogenesis with c1 and c2 patterns.

3.3.2 Correctors

We assume now the stability at the first order. After taking into account the properties of c(0)
1

and c(0)
2 , the first correctors c(1)

1 and c(1)
2 verify

D1
∂2c(1)

1

∂ yi∂ yi
= − f (1), f (1) = R11c

(1)
1 + R12c

(1)
2 , (70)

D2
∂2c(1)

2

∂ yi∂ yi
= −g(1), g(1) = R21c

(1)
1 + R22c

(1)
2 , (71)

Dp
∂c(1)

p

∂ yi
ni = 0 on δ�l , c(1)

p y-periodic, p = 1, 2. (72)

It becomes

c(1)
1 = c(1)

2 = 0.

It is easy to check that all further correctors cancel out.

3.4 Other Estimations of the Diffusion–Reaction Term

To complete the analysis of the present section, let us shortly consider the two following limit
cases.
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3.4.1 Extremely Large Diffusion–Reaction:A1 = O(A2) = O("−3)

The dimensionless diffusion–reaction system takes now the form

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ ε−3 f (c1, c2), (73)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ ε−3 g(c1, c2), (74)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (75)

After introducing ansatz (23) and (24), we obtain at the order ε−3

R11c
(0)
1 + R12c

(0)
2 + R10 = 0, (76)

R21c
(0)
1 + R22c

(0)
2 + R20 = 0. (77)

We recover the result (65) and (66) which describes model III. It is clear thatA1 = O(A2) =
O(ε−p), p > 3 yields the same result.

3.4.2 Extremely Small Diffusion–Reaction:A1 = O(A2) = O(")

The dimensionless diffusion–reaction system takes now the form

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ ε f (c1, c2), (78)

∂c2
∂t

= D2
∂2c2

∂xi∂xi
+ ε g(c1, c2), (79)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (80)

Introducing again ansatz (23) and (24), it is easy to check that the upscaling process yields at
the first order of approximation, two non-coupled diffusion equations for c1 and c2, respec-
tively. Inmodel VI (see Table 1), the reaction–diffusion and morphogenesis are absent at the
first order of approximation. This result remains valid for A1 = O(A2) = O(ε p), p > 1.
The models associated with different evaluations of A are shown in Fig. 1.

Fig. 1 Different macroscopic models forD = D1/D2 = O(ε0) andA = A1 = A2 = O(ε p). Models with
possible morphogenesis are shown by a “∗”
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4 Large Diffusivity Ratio,D1/D2

4.1 Large Diffusivity Ratio, D1/D2 = O("−1): Model IV

We investigate in this section the case where the diffusivity ratio is large, D1/D2 = O(ε−1).
We have B1 = O(A1) = O(ε0) and B2 = O(A2) = O(ε). The dimensionless system now
becomes:

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ f (c1, c2), (81)

∂c2
∂t

= εD2
∂2c2

∂xi∂xi
+ g(c1, c2), (82)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (83)

The concentrations are in the following form (23–24).

• At the lower order, it becomes:

D1
∂2c(0)

1

∂ yi∂ yi
= 0, (84)

D2
∂2c(0)

2

∂ yi∂ yi
= 0, (85)

Dp
∂c(0)

p

∂ yi
ni = 0 on δ�l , c(0)

p y-periodic, p = 1, 2. (86)

The solution is:

c(0)
1 = c(0)

1 (x, t), c(0)
2 = c(0)

2 (x, t).

• At the next order, c(1)
1 is given by:

D1
∂

∂ yi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
= 0, (87)

D1

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
ni = 0 on δ�l , c(1)

1 y-periodic. (88)

As in Sect. 3, c(1)
1 will be in the form:

c(1)
1 = ξ1i (y)

∂c(0)
1

∂xi
+ c̄(1)

1 (x, t).

• Now, c(2)
1 verifies

D1
∂

∂ yi

(
∂c(2)

1

∂ yi
+ ∂c(1)

1

∂xi

)
= ∂c(0)

1

∂t
− D1

∂

∂xi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
− f (0), (89)

D1

(
∂c(2)

p

∂ yi
+ ∂c(1)

p

∂xi

)
ni = 0 on δ�l , c(2)

p y-periodic. (90)
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The Fredholm alternative imposes to the averages of the right-hand members of (89) to
cancel out. This gives the equivalentmacroscopicmodel at thefirst order of approximation
similar to Model I

∂c(0)
1

∂t
= D(e f f )

1i j
∂2c(0)

1

∂xi∂x j
+ f (0),

f (0) = R11c
(0)
1 + R12c

(0)
2 + R10. (91)

• c(1)
2 is given by

D2
∂

∂ yi

(
∂c(1)

2

∂ yi
+ ∂c(0)

2

∂xi

)
= ∂c(0)

2

∂t
− g(0) (92)

D2

(
∂c(1)

2

∂ yi
+ ∂c(0)

2

∂xi

)
ni = 0 on δ�l , c(1)

2 y-periodic, p = 1, 2. (93)

The Fredholm alternative imposes to the averages of the right-hand members of (92)
to cancel out. This gives the equivalent macroscopic model for c2 at the first order of
approximation

∂c(0)
2

∂t
= g(0), g(0) = R21c

(0)
1 + R22c

(0)
2 + R20. (94)

• Finally model IV is given by (91, 94). Model IV is model I when species 2 does not
diffuse.

4.2 Very Large Diffusivity Ratio,D = D1/D2 = O("−2): Model V

We investigate in this section the case where the diffusivity ratio is very large, D1/D2 =
O(ε−2). We have B1 = O(A1) = O(ε0) and B2 = O(A2) = O(ε2). The dimensionless
system now becomes

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ f (c1, c2), (95)

∂c2
∂t

= ε2D2
∂2c2

∂xi∂xi
+ g(c1, c2), (96)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (97)

The concentrations are in the following form

c1 = c(0)
1 (x, y, t∗) + εc(1)

1 (x, y, t∗) + ε2c(2)
1 (x, y, t∗) + · · · (98)

c2 = c(0)
2 (x, y, t∗) + εc(1)

2 (x, y, t∗) + ε2c(2)
2 (x, y, t∗) + · · · (99)

4.2.1 Macroscopic Equivalent Behaviour of c1

We first introduce the above two ansatz into (95) to (97), and extract like powers of ε. We
successively obtain boundary value problems to be investigated. The route is quite similar to
the one in Sect. 3.
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The lower-order ε−2 yields

c(0)
1 = c(0)

1 (x, t).

And at the next-order ε−1, it becomes

c(1)
1 = ξ1i (y)

∂c(0)
1

∂xi
+ c̄(1)

1 (x, t).

Finally, the first-order equivalent macroscopic model is obtained by considering the order ε0

of (95)

D1
∂

∂ yi

(
∂c(2)

1

∂ yi
+ ∂c(1)

1

∂xi

)
= ∂c(0)

1

∂t
− D1

∂

∂xi

(
∂c(1)

1

∂ yi
+ ∂c(0)

1

∂xi

)
− f (0), (100)

Dp

(
∂c(2)

1

∂ yi
+ ∂c(1)

1

∂xi

)
ni = 0 on δ�l , c(2)

1 y- periodic. (101)

The average of the right-hand members of (100) cancels out due to Fredholm alternative,
leading to the equivalent macroscopic model at the first order of approximation

∂c(0)
1

∂t
= D(e f f )

1i j
∂2c(0)

1

∂xi∂x j
+ < f (0) >,

< f (0) > = R11c
(0)
1 + R12 < c(0)

2 > +R10, (102)

where < . > stands for the pore volume averaging symbol

< φ >= 1

�l

∫

�l

φ d�.

The effective diffusion tensor D(e f f )
1i j is as in Sect. 3

D(e f f )
1i j = D1 < Ii j + ∂ξ1i

∂ y j
> .

4.2.2 Investigation of c2

Equation (96) at the order ε0 becomes

∂c(0)
2

∂t
= D2

∂2c(0)
2

∂ yi∂ yi
+ R21c

(0)
1 + R22c

(0)
2 + R20, (103)

with

D2
∂c(0)

2

∂ yi
ni = 0 on δ�l , c(0)

2 y- periodic. (104)

By averaging (103) over the pore volume, we have

∂ < c(0)
2 >

∂t
= R21c

(0)
1 + R22 < c(0)

2 > +R20. (105)

Now, subtracting member to member the above relation (105) to (103) and noting the incre-
ment c̃2 as c̃2 = c(0)

2 − < c(0)
2 > yields

∂ c̃2
∂t

= D2
∂2c̃2

∂ yi∂ yi
+ R22c̃2, (106)
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with

D2
∂ c̃2
∂ yi

ni = 0 on δ�l , c̃2 y- periodic. (107)

Let us introduce the eigenfunctions φn and the corresponding eigenvalues λn , n = 0, 1, 2, ...
of the following problem

D2
∂2φn

∂ yi∂ yi
= −λnφn

D2
∂φn

∂ yi
ni = 0 on δ�l , φn y- periodic.

We have λ0 = 0 < λ1 < λ2 < ..., φ0 = 0 and the φ
′s
n are orthogonal. The solution of (106,

107) are in the following form

c̃2 =
∞∑
n=1

An exp
−(λn−R22)t φn .

Instabilities and corresponding c2 patterns will be present if R22 > λ1.

4.3 Different Estimations of the Diffusivity Ratio

It is clearly sufficient to investigate ratios D1/D2 ≥ O(ε0), as ratios D1/D2 < O(ε0) are
obtained by reversing c1 and c2. On the other hand, D1/D2 = O(ε0)was already investigated
in Sec 3.1 and corresponds to model I.
Let us consider D1/D2 = O(ε−3). The dimensionless systems now becomes

∂c1
∂t

= D1
∂2c1

∂xi∂xi
+ f (c1, c2), (108)

∂c2
∂t

= ε3D2
∂2c2

∂xi∂xi
+ g(c1, c2), (109)

Dp
∂cp
∂xi

ni = 0 on δ�l , p = 1, 2. (110)

The macroscopic equivalent behaviour of c1 is obtained as in Sect. 4.2.1 and becomes (102)

∂c(0)
1

∂t
= D(e f f )

1i j
∂2c(0)

1

∂xi∂x j
+ < f (0) >,

< f (0) > = R11c
(0)
1 + R12 < c(0)

2 > +R10, (111)

where < . > stands for the pore volume averaging symbol

< φ >= 1

�l

∫

�l

φ d�.

The effective diffusion tensor D(e f f )
1i j is as in Sect. 3

D(e f f )
1i j = D1 < Ii j + ∂ξ1i

∂ y j
> .
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Fig. 2 Different macroscopic models forA = A1 = A2 = O(ε0) andD = D1/D2 = O(ε p). Models with
possible morphogenesis are shown by a “∗”

Now, Equation (109) at the order ε0 becomes

∂c(0)
2

∂t
= R21c

(0)
1 + R22c

(0)
2 + R20. (112)

By averaging (112) over the pore volume, we have as in Sect. 4.2.2

∂ < c(0)
2 >

∂t
= R21c

(0)
1 + R22 < c(0)

2 > +R20. (113)

Now, diffusion of c2 is absent: Subtracting member to member the above relation (113) to
(112) and noting c̃2 = c(0)

2 − < c(0)
2 > yields

∂ c̃2
∂t

= R22c̃2. (114)

Model VII is similar to model V (Fig. 2), but an eventual morphogenesis is possible only for
c1.
The models associated with different evaluations of D are shown in Table 1.

5 Conclusion

The equivalent macroscopic model to be considered to describe the evolution of chemical
species which diffuse and react in a given porous medium is strongly sensitive to the size L
of the macroscopic sample or of the concentration pseudo-wavelength. Increasing L , with
a given l, decreases ε = l/L and, as a consequence, could change the estimations of the
dimensionless numbers in function of the small parameter of separation of scales ε. Thus the
equivalentmacroscopicmodel could change, aswell as the patterns in case ofmorphogenesis.
In the paper, the investigations to obtain the macroscopic description, if it exists, are limited
to two main categories of estimations. In the first one, Sect. 3, the relative weight of the
diffusion–reaction terms is varying from ε0 to ε−3 and over. In the second one, the diffusivity
ratio is varying from ε0 to ε−3. Each case yields different macroscopic equivalent models
presented in Table 1. It is noticeable that these first-order models are valid whatever the
structures of the source terms f and g.
Morphogenesis is present when the diffusion–reaction term enables instabilities. However,
the patterns wavelength lRD is sensitive to the macroscopic equivalent model into consider-
ation. It is shown in the paper that lRD is O(l), O(Lε1/2), or O(L), depending on the value
of the size of the macroscopic sample, L .
We considered here only the case of linear reaction terms. The main results of the above
analysis will, however, remain valid for polynomial reaction terms.
This study allows considering many cases in the huge literature dedicated to morphogenesis
model. We underline the idea that from the same microscopic description of the physical
phenomena, we obtained different macroscopic models, as well as their domains of validity,
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and the expressionof themacroscopic properties,which is very important for the identification
of their values.
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