
Transport in Porous Media (2018) 125:413–434
https://doi.org/10.1007/s11242-018-1126-y

Effective Diffusivity of Porous Materials with Microcracks:
Self-Similar Mean-Field Homogenization and Pixel Finite
Element Simulations

Jithender J. Timothy1 · Günther Meschke1

Received: 23 June 2017 / Accepted: 14 July 2018 / Published online: 21 July 2018
© Springer Nature B.V. 2018

Abstract
We investigate the influence of distributed microcracks on the overall diffusion properties of
a porousmaterial using the self-similar cascade continuummicromechanicsmodel within the
framework of mean-field homogenization and computational homogenization of diffusion
simulations using a high-resolution pixel finite element method. In addition to isotropic,
also anisotropic crack distributions are considered. The comparison of the results from the
cascade continuum micromechanics model and the numerical simulations provides a deeper
insight into the qualitative transport characteristics such as the influence of the crack density
on the complexity and connectivity of crack networks. The analysis shows that the effective
diffusivity for a disorderedmicrocrack distribution is independent of the absolute length scale
of the cracks. It is observed that the overall effective diffusivity of a microcracked material
with the microcracks oriented in the direction of transport is not necessarily higher than
that of a material with a random orientation of microcracks, independent of the microcrack
density.

Keywords Diffusivity · Micromechanics · Porous materials · Microcracks · Computational
homogenization · Anisotropy

1 Introduction

Reliable estimates for the effective transport properties of porous materials containing dis-
tributed microcracks are relevant for a number of engineering problems. Examples are the
analysis of the durability of concrete structures, which is controlled by the ingress of water
and hazardous ionic substances into the material, or numerical simulations in subsurface
engineering, where the knowledge of the effective transport characteristics of the rock mass
is needed for the design and construction of tunnels or caverns, for the exploitation of oil,
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gas and geothermal energy reservoirs and the installation of underground storage systems.
Diffusely distributed microcracks in cementitious materials modify the transport properties
by increasing the permeability (Hoseini et al. 2009; Banthia et al. 2005) and the diffusivity
(Gerard and Marchand 2000). In addition, they also modify the mechanical properties by
reducing the strength and stiffness of the material. Moreover, the distribution and orientation
of the microcracks, their connectivity and its interaction with the porous matrix material
leads, in general, to highly anisotropic effective material parameters.

The problem of estimating the effective diffusivity of porous materials with a random
disordered microcrack distribution falls under the general category of estimating effective
properties of multiphase materials. Given such a multiphase material, the determination of
the effective diffusivity is qualitatively analogous to the problem of determining the effective
thermal conductivity, the electrical conductivity, and the elastic stiffness due to the similar
mathematical structure of the constitutive relations governing these physical phenomena. To
estimate effective properties of disordered multiphase materials, the mean-field homogeniza-
tion method, assuming simplified microstructure morphologies, has been very successful for
a wide variety of materials and microstructures (Hashin 1983; Nemat-Nasser and Hori 1999;
Zaoui 2002; Qu and Cherkaoui 2006; Li and Wang 2008). The effective properties are esti-
mated by characterizing the mean field perturbation due to a particular heterogeneity using
localization tensors (Hill 1963, 1965) and suitable schemes to consider the interactions of the
heterogeneities. The localization tensors are obtained by solving a certain matrix-inclusion
problem (Eshelby 1957). The method is versatile and finds applications in a wide range of
materials such as cementitious materials (Lemarchand et al. 2003; Pivonka et al. 2004; Pich-
ler et al. 2008; Timothy and Meschke 2016c), biomaterials (Hellmich and Ulm 2005), foams
(Pichler and Lackner 2013), ceramics (Timothy and Meschke 2016a) and granular materials
(Saenger and Shapiro 2002; Xie et al. 2012; Berryman and Hoversten 2013).

According to the Dilute scheme, the microstructure is modeled by a direct application of
the Eshelby matrix-inclusion solution (Eshelby 1957). This scheme is applicable only for
a dilute volume fraction of inclusions. However, this scheme can be cumulatively applied
in small increments, leading to the differential scheme (McLaughlin 1977; Norris 1985).
According to the Mori- Tanaka scheme (Benveniste 1987; Mori and Tanaka 1973), the
far-field boundary condition used in the Dilute scheme is modified to approximately take
into account the interactions of the inclusions. While the aforementioned schemes assume
a certain matrix-inclusion morphology of the heterogeneous material, an implicit scheme,
denoted as the self-consistent scheme, has been proposed within this framework to model
materials without a clear matrix-inclusion microstructure. This scheme assumes, that the
matrix property is that of the yet unknown homogenized effective material. This idea goes
back to the work of Bruggeman (1935) and Landauer (1952) and finds wide applications
in the estimation of mechanical properties of heterogeneous materials (Hill 1965), transport
properties such as the thermal conductivity (Willis 1977) and the permeability w.r.t to fluid
transport in isotropic and anisotropically microcracked materials (Fokker 2001; Pozdniakov
and Tsang 2004; Dormieux et al. 2006; Barthélémy 2009; Pouya and Vu 2012; Berryman
and Hoversten 2013). Within this modeling framework, Sævik et al. (2013) developed novel
simplified expressions for the effective permeability of isotropic and anisotropic fractured
materials for the limiting case of flat inclusions and compared the model predictions with
3D computational finite element simulations. The self-consistent estimate is a special lim-
iting case in the recursively formulated cascade continuum micromechanics (CCM) model
(Timothy and Meschke 2016a, b, c, 2017).
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Fig. 1 REV with a random disordered isotropic distribution of microcracks with an aspect ratio γc = w/2a
(right)

For microstructures with a regular periodic microstructure, asymptotic homogenization
(Bensoussan et al. 2011) can be used to estimate the effective diffusivity (Auriault and
Lewandowska 1997).

In the absence of experimental data, direct numerical homogenization with finite elements
using numerically modeled microstructures (Garboczi and Bentz 1998; Kamali-Bernard and
Bernard 2009; Nilenius et al. 2015) or digitized images of micro CT scans of the actual
material (Karim and Krabbenhoft 2010; Wu et al. 2013) allows for a detailed and accurate
characterization of the microstructure and its effect on the effective transport properties.
Mourzenko et al. (2011) used data from numerical simulations to successfully develop an
empirical model (see Sect. 4 in Sævik et al. (2013) for a concise overview of this class
of empirical models). Another approach are computational lattice models for modeling the
mechanics and transport properties of materials with cracks (Segura and Carol 2004; Wang
et al. 2008; Grassl 2009; Grassl and Athanasiadis 2015; Khaddour et al. 2015). Numerical
homogenization provides a more detailed information on the transport path and the connec-
tivity (Carmeliet et al. 2004; Promentilla et al. 2009) in complex heterogeneous materials.
While this allows to consider realistically the complexity of the microstructure, it is limited
by the scales involved in the resolution of the microcrack and the intact phase.

1.1 Structure of the Paper

In Sect. 2, we model the effective diffusivity of a random isotropic and anisotropic micro-
cracked porous material within the framework of the Eshelby mean-field homogenization
method, using the cascade micromechanics model at the self-similar limit. In Sect. 3, we
provide details on the numerical method for the homogenization of the effective diffusivity
using so-called pixel finite elements. The micromechanical and numerical model predictions
are compared in Sect. 4 for an isotropic (Sect. 4.1) and an anisotropic (Sect. 4.2) disordered
distribution of microcracks. In Sect. 4.3, we investigate the scale independence of the effec-
tive diffusivity as predicted by the micromechanics model using numerical simulations. In
Sect. 5, we summarize themajor results of the paper and provide conclusions. In “AppendixA
and B”, we provide, for completeness, details on the computational method for the numerical
simulations and expressions for the polarization tensors, respectively.
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2 Mean-Field Homogenization

We consider a Representative Elementary Volume (REV) ΩREV of a heterogeneous porous
material with distributed microcracks belonging to the domain Ωc surrounded by an intact
porousmaterialΩint such thatΩREV = Ωint∪Ωc (see Fig. 1). Themicrocracks and thematrix
material are characterized by individual diffusivitiesD (z) depending on the local coordinate
z ∈ ΩREV. Molecular diffusion through this heterogeneous material is assumed to be driven
by the concentration gradient∇c (z). It is noted that interaction of the molecular species with
the solid skeleton, e.g., in form of adsorption are not taken into account. At the boundary Γ

of ΩREV, a macroscopic concentration gradient G0 is prescribed (Hashin 1983). The local
(‘microscopic’) flux field is j (z), and the local concentration gradient is g (z) = ∇zc. The
corresponding boundary value problem at the level of an REV can be written as:

c (z) = G0 · z ∀z ∈ ΓREV (1)

∇z · j (z) = 0 ∀z ∈ ΩREV (2)

j (z) = −D (z) · g (z) ∀z ∈ ΩREV. (3)

Let the total volume of ΩREV be denoted as V . The macroscopic concentration gradient G
is obtained by volume averaging of the concentration gradient at the micro-scale assuming
that all microcracks are geometrically similar:

G =< g >= 1

V

∫

V

g (z) dV = gint (1 − ϕ) + gcϕ. (4)

For the boundary condition according to Eq. (1), one obtains using the Gauss theorem,
G = G0 (Nemat-Nasser and Hori 1999) . In Eq. (4), gint and gc are the volume averaged
‘microscopic’ concentration gradients in the intact porous solid and in the microcracks,
respectively. ϕ is the volume fraction of the microcracks.
The macroscopic flux is also defined in terms of microscopic fluxes as:

J =< j >= 1

V

∫

V

j (z) dV = jint (1 − ϕ) + jcϕ (5)

Assuming that the local diffusivities within the individual microcracks and the intact porous
solid are isotropic, the phase-averaged microscopic fluxes can be written in terms of the
phase-averaged microscopic concentration gradients:

jint = −Dint gint, jc = −Dc gc (6)

In Eq. (6), Dint is the intrinsic diffusivity of the intact porousmedium and Dc is the diffusivity
of the microcracks. In concrete, the diffusivity Dc has been observed to be equivalent to that
of the intact porous material for microcrack widths < 30µm. It increases almost linearly
with the crack width up to widths of ≈ 80µm (Ismail et al. 2004, 2008; Yoon et al. 2007;
Djerbi et al. 2008). For larger crack widths, the diffusivity Dc can be assumed as equivalent to
the intrinsic molecular diffusivity D in ionic solutions. In this paper, we assume Dc = D to
be independent from the crack width. In all validation examples, we assume the microcrack
width ≥ 50µm. At the macroscopic scale, according to the definitions of Eqs. (4 and 5)
and as the ‘microscopic’ concentration gradients are a linear function of the macroscopic
concentration gradient due to the linearity of the considered boundary value problem, we
obtain the macroscopic constitutive relation:

J = −Deff · G (7)
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In Eq. (7), Deff is the effective diffusivity of the microcracked porous material at the macro-
scopic scale. The specification of a relation between the microscopic concentration gradients
and the macroscopic concentration gradient within the mean-field homogenization scheme
is generally established using the Eshelby matrix-inclusion technique in conjunction with
appropriate schemes (for e.g. Dilute, Mori- Tanaka, Differential, self-consistent, cascade
micromechanics model etc.), depending on the morphology of the microstructure.

2.1 The Cascade ContinuumMicromechanics Model

For porousmaterialswith an increasing randomdistribution ofmicrocracks (for e.g. in fatigue
processes), the microstructure does not retain a constant matrix-inclusion morphology. For
low density of microcracks, the intact porous material forms a continuous matrix phase
engulfing all the microcracks. At this density, the classical Mori- Tanaka scheme can be
applied assuming distributedmicrocracks embedded in a continuous porousmatrix. Here, the
overall effective diffusivity is dominated by the diffusivity of the porous material. However,
beyond a certain critical microcrack density, the existing microcracks are connected to each
other by newmicrocracks and the overall transport is dominated by networks of microcracks.

According to the self-consistent scheme and the cascade continuum micromechanics
model (CCM), the matrix material is not constant. This allows both models to be able to
predict a threshold associated with the connectivity of the microcracks (a property that is
dependent on a non-constant matrix diffusivity). While the self-consistent scheme solves a
polynomial expression for the effective diffusivity out of which a positive solution has to be
selected, the CCMmodel explicitly solves the matrix-inclusion problem recursively, starting
with simple matrix-inclusion morphologies (Timothy and Meschke 2016a).

According to the CCM model, the microscopic fluxes and the concentration gradients
defined in Eqs. (4) and (5) at a particular cascade level n + 1 (the cascade level characterizes
the complexity of the morphology) is written in terms of the localization tensors A(n+1)

int and

A(n+1)
c as follows:

g(n+1)
int = A(n+1)

int · G∞, ∀z ∈ Ωint, g(n+1)
c = A(n+1)

c · G∞, ∀z ∈ Ωc. (8)

The recursively evaluated localization tensors in Eq. (8) can be written in terms of the matrix-
inclusion contrast tensor and theHill polarization tensor according to Timothy andMeschke
(2016a, c):

A(n+1)
int = K(n)

int ·
(
K(n)

int − P(n)
int

)−1
, K(n)

int =
(
D(n)
eff − DintI

)−1
(9)

A(n+1)
c = K(n)

c ·
(
K(n)

c − P(n)
c

)−1
, K(n)

int =
(
D(n)
eff − DcI

)−1
(10)

In Eqs. (9 and 10),K(n)
int andK

(n)
c are the matrix-inclusion contrast tensors and P(n)

int and P
(n)
c

are the Hill polarization tensor corresponding to the intact solid and microcrack inclusions
for which explicit expressions are provided in “Appendix B”. Equation (8) now allows to
establish a recursive link to the macroscopic effective diffusivity through the localization
tensors. According to Eq. (8), the microscopic concentration gradients do not explicitly
take into consideration the influence of other microcracks and the intact porous solid. In
other words, while the interactions across cascade levels n is taken into account through
the effective diffusivity D(n)

eff , at a particular cascade level, these interactions are ignored.
This is a direct consequence of assuming the far-field boundary conditionG∞ = G. To take
into account the interactions between microcracks at a particular cascade level, the far-field
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boundary condition is modified asG∞ = GI (Timothy and Meschke 2017) such that Eq. (8)
is written as:

g(n+1)
int = A(n+1)

int · GI , ∀z ∈ Ωint, g(n+1)
c = A(n+1)

c · GI , ∀z ∈ Ωc. (11)

An expression for the effective diffusivity D(n+1)
eff can be obtained as follows. Using Eq. (11)

in Eq. (6) and substituting these expressions into Eq. (5) yields:

J = −
(
DintA

(n+1)
int (1 − ϕ) + DcA(n+1)

c ϕ
)

· GI (12)

According to Eq. (4), the macroscopic concentration gradient can be related to interaction
term GI in Eq. (12) as follows:

G = g(n+1)
int (1 − ϕ) + g(n+1)

c ϕ =
(
A(n+1)
int (1 − ϕ) + A(n+1)

c ϕ
)

· GI . (13)

Thus, Eq. (13) can be inverted to provide an expression for GI

GI =
(
A(n+1)
int (1 − ϕ) + A(n+1)

c ϕ
)−1 · G, (14)

= B(n+1) · G. (15)

Substituting, Eq. (15) in Eq. (12) and comparingwith Eq. (7), the explicit recursive expression
for the effective diffusivity is:

D(n+1)
eff =

(
Dint · A(n+1)

int (1 − ϕ) + DcA(n+1)
c ϕ

)
· B(n+1). (16)

B(n+1) is the interaction tensor obtained by taking the inverse of the average of the localization
tensors. Figure 2 illustrates the cascade micromechanics model for the estimation of the
effective diffusivity ofmicrocracked porous solids. As the interactions between the inclusions
are approximately accounted for at a particular cascade level, this model variant is called
the short-range interaction model (Timothy and Meschke 2016c). Ignoring the interactions
between the microcracks, i.e., assuming G∞ = G, we can directly substitute Eq. (8) in
Eqs. (6) and (5) and using Eq. (7) we obtain:

D(n+1)
eff = Dint · I + (Dc − Dint)A(n+1)

c ϕ. (17)

The term A(n+1)
int has been eliminated using Eq. (8) in Eq. (4). It must be noted that Eq. (17)

can also be obtained by assuming B(n+1) = I in Eq. (16). This is the long-range interaction
model (Timothy and Meschke 2016c).

At n = 0 we assume A(1)
int = A(1)

c = I, which reduces Eq. (16) to the Voigt estimate. For

n → ∞, the effective diffusivity satisfies the self-consistent equation (D(n)
eff = D(n+1)

eff , ⇔
n → ∞) as the matrix phase in the homogenization processD(n)

eff is equal to the effective dif-

fusivityD(n+1)
eff . The solution to Eq. (16) according to the CCMmodel at n → ∞ (CCM (∞))

is exactly the same as that of the positive solution of the symmetric self-consistent method
(Sævik et al. 2013). Thus, in the rest of the paper, this model is referred to as the symmetric
CCM (∞)/SC model.

The solution to Eq. (17) according to the CCM model at n → ∞ ( i.e., CCM (∞)) is
exactly the same as that of the positive solution of the asymmetric self-consistent method
(Sævik et al. 2013). The terms ‘symmetric’ and ‘asymmetric’ refer to the manner in which
the interactions are taken into account within the mean-field homogenization scheme.
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Fig. 2 Illustration of the homogenization procedure and the estimation of the appropriate localization tensors
from cascade level n to n + 1. a Homogenized effective diffusivity at cascade level n, b estimation of the
localization tensors and the interaction tensor assuming the matrix material has the properties of the previously
homogenized material and c homogenized effective diffusivity at n + 1

Even though the solution and the procedure according to CCM (∞) is equivalent to the
solution obtained by a fixed-point iteration of the self-consistent equation, there is a subtle
difference between both models. It must be noted that for the case of diffusive inclusions
distributed in an impermeable material, SC predicts non-physical values for the effective
diffusivity (Timothy and Meschke 2016c). This can be overcome by assuming the matrix
material is slightly diffusive and subsequently solving the polynomial equation and selecting
the positive root (Timothy and Meschke 2016b). While SC admits non-physical solutions
for the effective diffusivity, CCM (∞) predicts strictly positive effective diffusivities.

To evaluate Eq. (16), the diffusivity Dint of the intact porousmatrix, the intrinsic diffusivity
Dc of the species in an infinite medium, the aspect ratio γc and orientation of the microcrack
and the aspect ratio γint and orientation of the intact porous solid and the volume fraction of
the microcracks have to be specified. For completeness, explicit formulas for the effective
diffusivity according to the Dilute scheme and the Mori- Tanaka scheme are provided
below [for further details the reader is referred to Dormieux et al. (2006), Li and Wang
(2008), Timothy and Meschke (2016c)]. The effective diffusivity according to the Dilute
scheme is given by:

DD
eff = Dint · I + (Dc − Dint)ϕAD

c , (18)

and according to theMori- Tanaka scheme as:

DMT
eff = Dint · I + (Dc − Dint)ϕAD

c · (
I (1 − ϕ) + AD

c ϕ
)−1

. (19)
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The localization tensor AD
c is:

AD
c = Kc · (Kc − Pc)

−1 , Kc = (Dint − DcI)−1 . (20)

In Eq. (20), the tensor Pc is obtained by substituting
(
D(n)
eff

)
11

=
(
D(n)
eff

)
22

= Dint in

Eq. (31).

3 Computational Homogenization Using Pixel Finite Elements

In this section, we present the explicit computational model for estimating the effective dif-
fusivity using numerical experiments at the scale of an REV. The numerical experiment is
designed tomimic a real experiment, i.e., given a two-dimensional image of themicrocracked
solid with a pixelwise definition of the geometries of the microcracks, we evaluate, using the
finite element method, the overall flux through this REV (assuming the microgeometry is
constant through the depth of the REV) for various microcrack densities and crackmorpholo-
gies. Using the averaged flux through the REV and the applied concentration gradients, the
effective diffusivity of the REV is computed. As each pixel corresponds to a finite element,
we call these elements pixel finite elements. The steps summarizing the procedure involved
in the numerical computations are as follows:

1. Using Mathematica, we generate a 2D image I of the microcracked solid ΩREV with
a spatially random distribution of black colored elliptical microcracks Ωci ∈ Ωc with
given radii embedded in a white colored square domain Ωint (see Fig. 3). The quality of
the image I is determined by its resolution. The resolution is chosen such that all ellipses
are well defined. The image I is a discrete approximation of ΩREV and is defined by the
size of the pixel Ωe as follows:

ΩREV = Ωint

⋃ (∑
i

Ωci

)
≈

NE⋃
e=1

Ωe,

∫

Ωci

dV >

∫

Ωe

dV (21)

2. I is binarized (to avoid any gray pixels). Each pixel has a value of p = 1 or p = 0
depending on whether it belongs to Ωc or Ωint (see Fig. 3).

p =
{
1 ∀ z ∈ Ωe ∈ Ωint

0 ∀ z ∈ Ωe ∈ Ωc
(22)

3. Based on Eq. (22), the diffusivity of each pixel is defined according to

De (p) = pDint + (1 − p) Dc. (23)

4. The averaged concentration at each pixel is obtained by solving the diffusion equation
with the boundary conditions according to Fig. 3 on a pixelwise discretized domain
ΩREV using the Finite Element Method (see “Appendix A”). In case of microcracks
predominantly oriented at a certain angle to the applied concentration gradient, the zero-
fluxNeumann boundary conditions have to be replaced by periodic boundary conditions.
This is a consequence of the microcrack orientation inducing an effective flux that is not
tangential to the applied concentration gradient.

5. Given the averaged concentration at each pixel, the molecular flux is evaluated at each
pixel. If hREV is the height of the REV and he the height of the finite element, the
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Fig. 3 Image representation ofΩREV with an anisotropic distribution of 100 randomly distributedmicrocracks
and the corresponding pixel finite elements belonging to the crack domain and the intact porous domain. Also
shown are the Neumann and Dirichlet boundary conditions used in the simulations

effective diffusivity can be estimated from the averaged molecular flux across a section
Γm corresponding to the boundary conditions as illustrated in Fig. 3 as:

Deff : e1 ⊗ e1 = − 1

hREV

NE∈Γm∑
e=1

jhe · e1 (24)

As this method takes as input any topological information in terms of pixels, it is so versatile
that it is very easy to read in any digitized input, e.g. from CT scans, or from scanned
drawings of microstructures, to perform a diffusion simulation in a few minutes. When
applyingmean-field homogenizationmethods, the geometry of themicrocracks are in general
limited to shapes that are ellipsoidal. However, computational homogenization using pixel
finite elements allows for all possible microcrack geometries. The complete code is compact
and includes the microstructure generation, pixelation, preprocessing, assembly, solution
steps, computation of the fluxes and the estimation of the effective diffusivity for various
configurations of the microstructure. A single simulation for a given microcrack distribution
with a resolution of 6.25 million pixel finite elements, independent of the microcrack density,
takes 130 s on a desktop Corei5 3570 @ 2.1 Ghz, (4 cores) with 16 GM RAM @ 1600
MHz. In contrast to embedded crack models, the proposed approach accurately captures the
connectivity characteristics of the microcrack network as we always assume the element size
is smaller than the crack width.

4 Numerical Simulations versus Predictions from the CCMModel

In this Section, results from numerical simulations of different REVs of cracked porous
materials for a random isotropic and anisotropic distribution of microcracks using the pro-
posed Pixel FE are compared with results from the CCM model at the self-similar limit.
Furthermore, we will use the numerical simulations to show that the effective diffusivity is
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independent of the absolute size of the microcracks and that it is only dependent on the aspect
ratio of the microcracks.

4.1 Random Isotropic Microcrack Distribution

In the first series of analysis, we assume that the microcracks are randomly distributed with
arbitrary orientations. The intact solid can be assumed to be composed of spherical aggregates
or an isotropic distribution of elliptical aggregates. In this paper, we assume the intact solid
to be composed of spherical aggregates with an aspect ratio γint = 1. In all numerical
simulations, the size of the REV is 1 cm2. The crack volume fractions (equivalent to the
area fraction for 2D analysis) for each simulation is generated by a random distribution up
to a maximum of ≈ 18, 000 cracks. The total number of pixel finite elements used in the
simulation is 6.25 million. Figure 5a shows the mesh for an REV with 10, 100 and 1000
microcracks with a width of 50µm and length 1mm. The diffusivity of the intact porous
solid is assumed as Dint = 0.001 D with D ≈ 1.9 × 10−9 m2/s as the intrinsic chloride
diffusivity in bulk water at 25o. This value for Dint is within the range of diffusivities for
cementitious materials (Pivonka et al. 2004). The diffusivity in the microcrack is assumed as
Dc = D.

Figure 4 shows a comparison of of the effective Diffusivities for different crack densities
obtained from the symmetric and the asymmetricCCM (∞)/SC models and numerical simu-
lations fromPixel FE for three differentmicrocrackgeometries, (w = 50µm, 2a = 500µm),
(w = 50µm, 2a = 1000µm), (w = 50µm, 2a = 2000µm) corresponding to the aspect-
ratios γc = 0.1, γc = 0.05 and γc = 0.025. The triangles, squares and circles in Fig. 4
correspond to Pixel FE simulations of three different realizations for the complete range of
microcrack volume fractions. The number of pixels that approximate a single microcrack
along the minor-axis is 5 and along the major axis 50, 100 and 200 pixels corresponding to
the three different lengths of microcracks used in the numerical simulation. For comparison,
also results from, theMori- Tanaka (MT) scheme and the Dilute (D) scheme are included.

For all investigated scenarios, the asymmetric(long-range) CCM (∞)/SC overestimates
the effective diffusivity around amicrocrack density ε ≈ 1, while the symmetric(short-range)
CCM (∞)/SC shows good agreement with the numerical simulations for the complete range
of the microcrack volume fractions. The Mori- Tanaka scheme and the Dilute scheme
show good agreement with the numerical simulations up to an infinitesimal range of micro-
crack densities. Within this range of low microcrack densities, the inherent assumptions of
the Mori- Tanaka scheme and the Dilute scheme comply well with the matrix-inclusion
microstructure. However, beyond this limit, a clear matrix-inclusion morphology ceases to
exist and the microstructure shows a geometrical phase-transition behavior. The crack den-
sity parameter ε for the case of a random distribution of microcracks (Timothy and Meschke
2017) is given by

ε = − ln(1 − ϕ)

πγc
, (25)

and is included at the top of each sub-figure in Fig. 4.
The middle and right row of Fig. 5 contain the concentration field and the normalized

magnitude of the flux obtained from the numerical analyses for 10, 100 and 1000 isotropi-
cally distributed microcracks within the REV. While for 10 and 100 microcracks the crack
morphology is not yet connected, and hence, the effective property is still governed by the
diffusivity of the matrix material, one observes the emergence of a connected pathway for
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Fig. 4 Normalized effective diffusivity versus microcrack density (ε) and area fraction (ϕ) for a random
isotropic distribution of microcracks for three different microcrack geometries according to theCCM(∞)/SC
models, theMori- Tanaka scheme (MT), the Dilute scheme (D) and numerical simulations using Pixel FE.
Dint = 0.001 D

the case of 1000 microcracks from the distribution of flux on the right-hand side. As a conse-
quence, the enhanced diffusivity of themicrocracks starts to have an influence on the effective
diffusivity of the material.

4.2 RandomAnisotropic Microcrack Distribution with Parallel Alignment

While the microcrack orientation in the previous section was assumed to be random, in this
sectionwe assume themicrocracks are all oriented in parallel to each other. The parameters of
the numerical simulation are exactly the same as for the isotropic case with the only exception
that now the microcracks are all oriented parallel to each other. The microcracks are assumed
to be oriented along the major principal axes; hence, the diffusivity tensor is a diagonal
tensor with the component corresponding to the diffusivity tangential to the microcrack
orientation denoted as Deff,11 and a diffusivity orthogonal to the microcrack orientation is
denoted as Deff,22 . Figure 6 shows a comparison of the diffusivities obtained as functions
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Fig. 5 Concentration field c (middle column) and the normalized magnitude of the molecular concentration
flux ĵ (right column) for three different scenarios (left column) depicting a porous material with an isotropic
distribution of 10, 100 and 1000 microcracks of width 50µm and length 1mm. Size of REV: 1 cm2. Note the
images on the left-most column show the actual geometry after discretization that is used in the numerical
simulation

of the microcrack density from the CCM (∞)/SC models, the Mori- Tanaka scheme, the
Dilute scheme and numerical simulations for a REV characterized by a parallel alignment of
randomly distributed microcracks. The components of the effective diffusivity tensor Deff,11

and Deff,22 can be obtained using Pixel FE by applying a concentration gradient parallel (see
Fig. 7) and orthogonal (see Fig. 8) to the orientation of the microcracks (see inset illustrations
in Fig. 6). The diffusivity of the intact porous solid is again assumed as Dint = 0.001 D, and
the diffusivity in the microcrack is assumed as Dc = D. As in the previous analysis, three
different microcrack geometries (γc = 0.1, γc = 0.05 and γc = 0.025) are considered.

For the symmetricCCM (∞)/SC model, the aspect ratio γint has to be provided.While for
the case of an isotropic distribution of microcracks, the solid phase in between the phases can
be assumed to have an aspect ratio γint = 1, for the case of a parallel distribution of micro-
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Fig. 6 Normalized effective diffusivity Deff,11/D and Deff,22/D for a random anisotropic distribution of
microcracks vs microcrack density (ε) and area fraction (ϕ) for three different microcrack geometries accord-
ing to the CCM(∞)/SC models, the Mori- Tanaka scheme (MT), the Dilute scheme (D) and numerical
simulations using Pixel FE. Dint = 0.001 D

cracks, the solid phase in between the phases has an apparent geometry characterized by an
aspect ratio γint < 1. Using multiple realizations of the Pixel FE simulations, from compar-
ing the predictions for the effective diffusivity with the CCMmodel, we identify an estimate
for the aspect ratio of the intact solid phase as γint = 3.140γc. This choice of an apparent
aspect ratio is able to approximate very well the effective diffusivity for the relevant range
of the microcrack density. Figure 6 shows the micromechanical model predictions assum-
ing γint = 3.140γc with Pixel FE simulations. The Mori- Tanaka scheme and the Dilute
scheme once again considerably underestimate the effective diffusivity for high microcrack
densities as it is not well suited to provide estimates for a connected microcrack morphology.
The asymmetric (long-range) CCM (∞)/SC model marginally overestimates the component
of the effective diffusivity parallel to the microcrack orientation while the symmetric (short-
range) CCM (∞)/SC marginally overestimates the component of the effective diffusivity
orthogonal to the microcrack orientation.

Figure 7 shows the concentration field and the normalized magnitude of the flux obtained
numerically for a REVwith 10, 100 and 1000 parallel microcracks of width 50µm and length
1mm. The applied concentration gradient is parallel to the direction of the microcrack orien-

123



426 J. J. Timothy, G. Meschke

Fig. 7 Applied concentration gradient parallel to the orientation of the microcracks: the concentration field c
(middle column) and the normalized magnitude of the concentration flux ĵ (right column) for three different
scenarios (left column) depicting a porous material with an anisotropic distribution of 10, 100 and 1000
microcracks of width 50µm and length 1mm. Size of REV: 1 cm2. Note the images on the left-most column
show the actual geometry after discretization that is used in the numerical simulation

tation. Comparing the plots at the right-hand side of Fig. 7, again a transition from an isolated
microcrack morphology at low crack densities to a connected pathway is obtained for the
analysis with 1000 microcracks. Correspondingly, the concentration field shows large spatial
variations for a dense microcrack distribution. In contrast, when the applied concentration
gradient is orthogonal to the orientation of the microcracks (see Fig. 8), the concentration
field is smooth even for a dense microcrack distribution. The corresponding flux isolines are
highly tortuous.

In Fig. 9, we compare the effective diffusivity Deff,11 of a material with an isotropic
distribution of microcracks and an anisotropic parallel distribution of microcracks. While
the effective diffusivity is higher for a parallel orientation for ϕ < 0.2, for a certain range
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Fig. 8 Applied concentration gradient orthogonal to the orientation of the microcracks: the concentration
field c (middle column) and the normalized magnitude of the concentration flux ĵ (right column) for three
different scenarios (left column) depicting a porous material with an anisotropic distribution of 10, 100 and
1000 microcracks of width 50µm and length 1 mm. Size of REV 1 cm2. Note the images on the left-most
column show the actual geometry after discretization that is used in the numerical simulation

of microcrack volume fractions (ϕ ≈ 0.2 − 0.7), the effective diffusivity is larger for an
isotropic distribution as compared to the parallel orientation of microcracks. This effect
is predicted by both the symmetric (short-range) CCM (∞)/SC model and the Pixel FE
simulations. According to the author’s knowledge, this is the first reporting of such a result.
This observation can be explained as follows: At microcrack volume fractions between ϕ =
0.2 − 0.5, the higher diffusivity predicted by an isotropic orientation of microcracks is a
consequence of a higher connectivity of themicrocrack network, established by the possibility
of bridging two parallel microcracks by microcracks that are not parallel to them. Hence, the
effect of enhanced connectivity due to crack bridging is dominant. However, at ϕ > 0.5, these
potentially non-parallel cracks no longer contribute significantly to the enhancement of the
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Fig. 9 Influence of the microcrack orientation on the effective diffusivity for microcracks with an aspect ratio
γc = 0.1: symmetric CCM(∞)/SC versus Pixel FE simulations

overall diffusivity, since a connected network is already established. In case of only a parallel
alignment of microcracks, at large microcrack volume fractions, the influence of parallel
oriented microcracks on the enhanced diffusivity becomes comparably more significant. At
low microcrack volume fractions (ϕ < 0.2), where a connected microcrack network is not
yet established, the microcracks oriented in the direction of flow would contribute more to
the overall diffusivity than the isotropically oriented microcracks.

4.3 Effective Diffusivity of Materials with Microcracks at Multiple Length Scales

As Dc and Dint are independent from the absolute length scale of the microcracks, Eq. (16)
is also independent from the absolute length scale of the microcracks. Hence, CCM (∞)

predicts, that the effective diffusivity of a REV with microcrack distributions across multiple
length scales is equal to the effective diffusivity of a REV with cracks having a single length
scale, provided that the aspect ratio is the same. This suggests a “universality” of the effective
diffusivity which is independent from the absolute size of the cracks and is only depending
on the width-to-length ratio γc, at least when molecular interactions with the solid skeleton
can be neglected.

To test this hypothesis, we construct REV’s (Fig. 10) with isotropically distributedmicroc-
racks at multiple length scales (w = 20 µm,w = 100µm andw = 200µm). Consequently,
keeping thewidth-to-crack ratio γc constant, the crack lengths are 2a = 200, 1000 , 2000µm.
The crack size distribution is generated as follows: Given a specific initialization of N num-
ber of cracks, 90% of N , i.e., 90% of the total number of cracks have a width w = 20µm,
9% of N have a width 5 × w and 1% of N have a width 10 × w). The REV is spatially
resolved by 9 million pixel finite elements. For comparison, also simulations with monodis-
perse microcracks for two different microcrack geometries (w = 50µm and w = 100 µm)
are performed.

Figure 11 shows a comparison of the effective diffusivity vs. crack density plots obtained
from numerical simulations of the three REVswith multiple scales of cracks (crossed circles)
andwith two scenarioswith uniformcrack lengths (circles and squares). The numerical results
are compared with the prediction of CCM (∞) (green line). It is observed that the numerical
results for the poly-disperse as well as for the monodisperse microcrack morphologies are
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Fig. 10 Three different scenarios of an isotropic distribution of microcracks at multiple length scales (left)
and monodisperse microcracks with two different geometries (middle and right). Note the images show the
actual geometry after discretization that is used in the numerical simulation

Fig. 11 Results for three different scenarios of an isotropic distribution of microcracks at multiple length
scales. Universal behavior for constant aspect ratio (γc = 0.1) and evidence why a self-similar approach
within the cascade micromechanics model predicts a solution that is consistent with numerical simulations for
the complete range of the microcrack volume fractions

identical, independent from the crack size. It is also noted that the curve obtained from
CCM (∞) is in excellent agreement with the numerical simulations. The results shown in
Fig. 11 confirm the above hypothesis that the effective diffusivity is independent from the
absolute size of the cracks and is only characterized by the aspect ratio of the cracks for the
complete range of crack volume fractions. The good agreement of the model predictions with
the numerical simulations for a poly-disperse microcrack configuration (that approximates
a statistically self-similar geometry) also provides physical support for the assumption of a
self-similar microstructure within the CCM model.

5 Conclusions

In this paper, we have estimated the effective diffusivity of a porousmaterial with an isotropic
and anisotropic distribution of microcracks using a self-similar cascade micromechanics

123



430 J. J. Timothy, G. Meschke

mean-field homogenization and numerical simulations. The results from numerical homog-
enization using the direct pixel-based simulations have been compared to the predictions
from the cascade continuum micromechanics model at the self-similar limit (CCM (∞)),
the self-consistent scheme (SC), the Mori- Tanaka scheme (MT ) and the Dilute scheme
(D) for a random isotropic distribution of the microcracks and a parallel alignment of the
microcracks. The symmetric version of CCM (∞)/SC has shown excellent agreement with
Pixel FE simulations over the complete range of crack densities, while MT and D consid-
erably underestimate the effective diffusivity at high microcrack densities. The asymmetric
version of CCM (∞)/SC overestimates the effective diffusivities. The overestimation is less
significant for the case of an anisotropic parallel arrangement of microcracks. We found that
the effective diffusivity of a material with all the microcracks oriented in the direction of
transport is not necessarily higher than that of a material with random orientation of micro-
cracks for the complete range of microcrack volume fraction. We also have shown that the
effective diffusivity is self-similar and only depends on the aspect ratio of the microcracks.
This observation provides support to the physical assumptions underlying CCM (∞).
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A Pixel Finite Element Method

1. Theweak form for the steady state diffusion equationwith an externally appliedmolecular
flux j∗ is obtained by multiplying the strong form of the balance equation (∇ · j = 0)
with a weighting function δc, using theGauss theorem, applying the boundary condition
and integrating over the whole domain (see Hughes 2012):

∫

ΩREV

∇ (δc (z)) · D (z) · ∇c (z) dΩREV =
∫

ΩΓN

δcj∗, {δc, c} ∈ H1, (26)

Equation (26) is discretized using piecewise bilinear approximations on each pixel finite
element Ωe. Using Eq. (23), the weak form is written in the discrete form:

NE⋃
e=1

δce · De (p)
∫

Ωe

BT · B dΩe · ce =
NE⋃
e=1

δce · De (p) ke · ce =
NE⋃
e=1

δce · fe. (27)

δce, ce and fe are the discretized values of the functions δc, c and j∗ defined at the nodes
of the pixel element e.B is the gradient operator Hughes (2012). Equation (27) constitutes
a set of linear algebraic equations to be solved for the unknown nodal concentrations c,
given an applied discrete molecular flux f at the external boundaries. This set of equations
can be written in matrix form:

K · c = f, (28)

where K = ⋃NE
e=1 D

e (p) ke and f = ⋃NE
e=1 f

e and c = ⋃NE
e=1 c

e .
2. For the analysis of a REVwith an appliedmacroscopic concentration gradient, themolec-

ular concentration c∗ = {0, 1} ∈ ΓD is specified at the Dirichlet boundary ΓD of the
REV (see Fig. 3). Considering f = 0, the linear system of equations Eq. (28) can be
partitioned as
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⎡
⎣ K00 K0c K01

Kcc Kc1

sym K11

⎤
⎦

⎡
⎣ 0
cred
1

⎤
⎦ =

⎡
⎣−

0
−

⎤
⎦ , (29)

where the submatrices correspond to the appliedDirichlet boundary conditions leading
to the reduced system of equations that is solved for the reduced set of unknown discrete
concentrations cred :

Kcc · cred = −Kc1 · 1 (30)

B The Polarization Tensor for Inclusions in an Anisotropic Matrix

The components of the polarization tensor P(n) for the case of an inclusion with aspect ratio
γ embedded in an anisotropic medium with diffusivityD(n)

eff at an angle θ is given by Fokker
(2001):

(
P(n)

)
11

= 1

2
A +

⎛
⎜⎜⎝ 2γ√(

D(n)
eff

)
11

(
D(n)
eff

)
22

− a′

2

⎞
⎟⎟⎠ Ab′ + γ Bc′

b′2 + c′2

(
P(n)

)
12

= 1

2
B +

⎛
⎜⎜⎝ 2γ√(

D(n)
eff

)
11

(
D(n)
eff

)
22

− a′

2

⎞
⎟⎟⎠ Bb′ + γCc′

b′2 + c′2

(
P(n)

)
22

= 1

2
C +

⎛
⎜⎜⎝ 2γ√(

D(n)
eff

)
11

(
D(n)
eff

)
22

− a′

2

⎞
⎟⎟⎠ −Cb′ + Bc′/γ

b′2 + c′2 (31)

a′ = (
1 + γ 2)

⎛
⎜⎝ 1(

D(n)
eff

)
11

+ 1(
D(n)
eff

)
22

⎞
⎟⎠

+ (
1 − γ 2)

⎛
⎜⎝ 1(

D(n)
eff

)
11

− 1(
D(n)
eff

)
22

⎞
⎟⎠ cos 2θ

b′ = (
1 − γ 2)

⎛
⎜⎝ 1(

D(n)
eff

)
11

+ 1(
D(n)
eff

)
22

⎞
⎟⎠

+ (
1 + γ 2)

⎛
⎜⎝ 1(

D(n)
eff

)
11

− 1(
D(n)
eff

)
22

⎞
⎟⎠ cos 2θ

c′ = −2γ

⎛
⎜⎝ 1(

D(n)
eff

)
11

− 1(
D(n)
eff

)
22

⎞
⎟⎠ sin 2θ (32)
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A = cos2 θ(
D(n)
eff

)
11

+ sin2 θ(
D(n)
eff

)
22

B = sin θ cos θ

⎛
⎜⎝ 1(

D(n)
eff

)
22

− 1(
D(n)
eff

)
11

⎞
⎟⎠

C = cos2 θ(
D(n)
eff

)
22

+ sin2 θ(
D(n)
eff

)
11

(33)
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