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Abstract Over the last decades, finite-volume discretisations for flow in porous media have
been extended to handle situations where fractures dominate the flow. Successful discreti-
sations have been based on the discrete fracture-matrix models to yield mass conservative
methods capable of explicitly incorporating the impact of fractures and their geometry.When
combined with a hybrid-dimensional formulation, two central concerns are the restrictions
arising from small cell sizes at fracture intersections and the coupling between fractures
and matrix. Focusing on these aspects, we demonstrate how finite-volume methods can be
efficiently extended to handle fractures, providing generalisations of previous work. We
address the finite-volume methods applying a general hierarchical formulation, facilitating
implementation with extensive code reuse and providing a natural framework for coupling
of different subdomains. Furthermore, we demonstrate how a Schur complement technique
may be used to obtain a robust and versatile method for fracture intersection cell elimination.
We investigate the accuracy of the proposed elimination method through a series of numeri-
cal simulations in 3D and 2D. The simulations, performed on fractured domains containing
permeability heterogeneity and anisotropy, also demonstrate the flexibility of the hierarchical
framework.

Keywords Fractures · Hybrid-dimensional discretisation · Finite volumes

1 Introduction

When fractures are present in a porous medium, flow may be totally dominated by the
fractured structure and significant complexity is added to the problem of numerical mod-
elling. Two main concerns are complex geometries, which challenge the grid generation, and
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high contrasts between permeabilities and length scales of matrix and fractures, which chal-
lenge the discretisation schemes. The most common modelling approaches may be classified
according to the relative importance of the fracture and matrix contribution and to which
extent the fracture geometry is honoured. In the one extreme, where large-scale fractures
dominate completely, the rock matrix is irrelevant, and the model may be restricted to the
fracture network. This gives the discrete fracture network models (DFN), e.g., Long et al.
(1982) and Endo and Long (1984). At the other end of the spectrum, the domain may contain
a high number of statistically homogeneous fine-scale fractures. In this case, it may be more
reasonable to consider their effective impact on the flow instead of considering each fracture
explicitly. This leads to equivalent continuum models with upscaled, possibly anisotropic,
permeability fields, as described by Sahimi (2011).

Compromises between the two extremes also exist. Both the dual-porosity, the dual-
permeability and more general multi-continuum models introduce computational domains
of simplified geometry representing fractures andmatrix connected through so-called transfer
functions. In the dual-porosity models, all flow is assumed to take place through the fractures,
and thematrix is only considered to have fluid storage capacity (Barenblatt et al. 1960;Warren
and Root 1963). In dual-permeability and multi-continuum models, e.g. Jarvis et al. (1991)
and Preuss and Narasimhan (1985), flow is also allowed through disconnected blocks of the
matrix, but a connected fracture network is assumed to carry the global flow. This allows for
a scale separation where the effect of the smaller fractures is upscaled to the matrix blocks.

In thiswork,wewill use the discrete fracture-matrixmodel (DFM) as described byDietrich
et al. (2005). The idea is to treat the rock surrounding explicitly represented fractures as a
porousmedium and possibly account for smaller, non-explicit fractures by an upscaledmatrix
permeability, as in the equivalent continuummodels. The explicitly represented fractures are
accounted for individually, as in the DFN methods. In contrast to DFN models, however,
flow is allowed between fractures and matrix. Reviews of fracture network models may be
found in Berkowitz (2002) and Dietrich et al. (2005).

Motivated by the fractures being very thin compared to typical length scales in the reser-
voir, a common approach to the explicit fracture modelling introduced by Kiraly (1979) is
to model them as lower-dimensional inclusions with an assigned hydraulic aperture, see also
Alboin et al. (2000) and Flemisch et al. (2018). Combined with a conforming discretisation,
in which fractures are located on boundaries between matrix cells, the result is a hybrid
representation of the fractures. This approach has been used in combination with several
different discretisation techniques, see Flemisch et al. (2018) and references therein, and is
the one we will adhere to.

Finite-volume (FV)methods are among themostwidely useddiscretisations for simulation
of flow in porous media. The popularity is explained by the methods’ local mass conservation
as well as computational efficiency and flexibility. For the simplest version, the two-point
flux approximation (TPFA), the computational cost is low and the implementation reasonably
straightforward,making it the principalworkhorse for a range of porousmedia flowproblems.
For more challenging problems, there are the multi-point flux approximations (MPFA).

When it comes to handling of fractures in FV discretisations, the two main approaches are
distinguished by whether the grids are restricted by the fracture geometry. Recently, there has
been considerable interest in the embedded DFMmodels (EDFM) as part of a FV discretisa-
tion, where the restriction of matrix grid alignment with the fractures is circumvented, see,
e.g. Hajibeygi et al. (2011) and Moinfar et al. (2014). While beneficial for the gridding, care-
fully computed transfer functions are required to account for the flow between fractures and
matrix. In this paper, we consider the classical FVDFMmodels using conforming grids. Such
methods include the vertex-centred method by Reichenberger et al. (2006), the cell centre-
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based one introduced by Karimi-Fard et al. (2004) and extended by Sandve et al. (2012), and
the related method of Ahmed et al. (2015) using transfer functions for the fracture-matrix
coupling. Other approaches include the vertex approximate gradient and hybrid FV schemes
of Brenner et al. (2016) and the application of hybrid-dimensional FV methods to two-phase
flow by Monteagudo and Firoozabadi (2004). We refer to Geiger and Matthäi (2014) for a
review of numerical methods based on the DFM model.

Two issues for FV methods introduced by explicit and conforming representation of
fractures are the fracture-matrix coupling and the handling of intersecting fractures. We
propose twogeneral approaches aimed at enhancing computational efficiency and simplifying
the modelling and implementation with respect to the two challenges, at minimal loss of
solution quality.

The fracture-matrix coupling is approached through a hierarchical partitioning of the
domain into a number of subdomains of different dimension corresponding to matrix, frac-
tures, and fracture intersections followingBoon et al. (2017). Discretisation is then performed
for each subdomain independently. This leads to a simple implementation, and allows for the
application of different discretisation schemes for different domains, at the price of certain
restrictions on the coupling between subdomains.

The challenge related to handling of intersecting fractures is due to the comparatively small
volumes of cells at the one- and zero-dimensional fracture intersections, as was recognised
by Slough et al. (1999) and Granet et al. (2001). These cells impair solution matrix condition
numbers and, in the case of transport or multi-phase simulations, time step restrictions.
One widely used remedy for FV schemes is the elimination of these cells following the
approach introduced by Karimi-Fard et al. (2004) based on the star–delta transformation.
The approach has also been extended to MPFA methods by Sandve et al. (2012). While
producing satisfactory results in many cases, the procedure does not handle the intersection
of fractures of highly varying permeability and some aspects of multi-phase flow, as shown
by Stefansson (2016) and Walton et al. (2017).

We suggest a new approach to the elimination of fracture intersections that accounts for
the permeability of the intersection cells. By discretising the domain with the intersection
cells and then performing a Schur complement reduction to remove the degrees of freedom
corresponding to the intersection, we obtain a reduced system possessing information on the
permeability of the eliminated cells. Moreover, we show how the original elimination based
on the star–delta transformation can be interpreted as the limiting case of the new scheme
as the intersection permeability goes to infinity. The new technique also provides a natural
way of back-calculating the pressure values at the intersections, as may be desirable e.g. for
coupled problems. Finally, the technique is not restricted to FVmethods and may in principle
also be applied to other discretisations of the problem.

For a discretisation to be suitable for DFM modelling, it should be applicable to unstruc-
tured grids corresponding to geometrically complex fracture networks and strong parameter
heterogeneity. The ability to handle strong anisotropy in permeability is also necessary in
many situations. For a hybrid-dimensional FVmethod on a conforming grid, the geometrical
complexity is mostly dealt with by the constrained meshing of the domain. The handling
of parameter heterogeneity and, in particular, the anisotropy, is related to the particular FV
method and flux approximation applied. These aspects will also be investigated in the current
work.

The transport of heat or chemical species is oftentimes of primary interest in porous media
modelling. Because of this, it is sensible to evaluate flowmethods not only in terms of pressure
fields but also indirectly through transport simulations on the flow fields they produce. By
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Fig. 1 To the left, a linear system matrix with off-diagonal subdomain coupling blocks and diagonal blocks
for the internal subdomain discretisations. To the right, the domain with one, two and one subdomains of
dimensions 3, 2 and 1, respectively. The correspondence between subdomains and matrix blocks is indicated
through dimension numbers and colours

examining accumulations of tracer, we aim at revealing details and differences that may be
critical to the concentration distribution, but almost indiscernible in pressure comparisons.

The implementation used in this work is available in the open-source simulation tool
PorePy (Keilegavlen et al. 2017). In addition to open source code,we provide documented run
scripts for the results shown in Sect. 3 at www.github.com/pmgbergen/porepy. The exception
to the above is the implementation of the star–delta elimination procedure, which is used for
comparison with the Schur complement procedure, and for which we rely on the Matlab
Reservoir Simulation Toolbox (Lie 2016).

2 Mathematical and Numerical Modelling

As noted in the introduction, the DFM approach to fracture modelling acknowledges that
fractures will strongly influence the behaviour of processes in porous media by explicitly
modelling selected fractures. Any remaining fractures are considered homogenised and are
represented by the matrix through average quantities. This motivates a structured framework
for the domain description, as well as governing equations for both matrix and fractures.
After the two have been introduced, we describe the FV discretisations used and elaborate
on the general methodology for subdomain coupling and the approach to handle fracture
intersections.

2.1 Mixed-Dimensional Domain Decomposition

We employ the hierarchical subdomain approach to discrete fracture modelling and associ-
ated notation introduced by Boon et al. (2017). The overarching idea is to use the constraints
imposed by the fracture geometry to divide the N-dimensional (ND) domain Ω into sub-
domains Ωd

i of dimension d ≤ N . Specifically, for N �3, we extract the matrix without
fractures as a 3D subdomain, the fractures as 2D subdomains, fracture plane intersections
as 1D subdomains and the intersection points of such lines as 0D subdomains. A similar
cascade is defined for N �2. As an example, consider the domain depicted in Fig. 1, which
consists of one subdomain of dimension three, two fracture subdomains of dimension two
and one intersection subdomain of dimension one. 0D intersections were not included to
ensure visual simplicity.
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Each subdomain is meshed with the immersed lower-dimensional subdomains acting as
constraints. We define a mesh size indicator hmin to be the smallest cell diameter of the mesh
of the highest dimension.

Although not required for the general hierarchical approach, we further assume the grids
to match between subdomains of subsequent dimensions, so that each face in Ω̄d+1

i ∩ Γ d
i j

corresponds to exactly one cell inΩd
j , where Γ d

i j denotes the interface between subdomains i
and j. For most realistic fracture networks this demands unstructured grids, which we limit to
simplex grids in this work. For analytical purposes, however, it may also be useful to consider
Cartesian grids. All descriptions in the following apply to simplex and Cartesian grids alike.

All subdomains are discretised separately before they are coupled two at a time by dis-
cretisations on the interfaces Γi j . This requires the coupling conditions to be local to the
interfaces but makes for a very flexible method in several ways. Firstly, we can use different
discretisations in the different subdomains, as will be shown below. Secondly, this makes
the conversion from a general porous medium discretisation into a mixed-dimensional DFM
method straightforward: An existingmono-dimensionalmethodmay be coupled by an appro-
priate coupling scheme. Thirdly, this also in principle facilitates the use of different physical
models in different parts of the domain.

2.2 Governing Equations

We solve the single-phase mixed-dimensional Darcy flow problem

u +K∇ p � 0,

∇ · u − [[
n̂ · û]] � f

∀ �d
i ⊂ �. (1)

Here, u denotes the flux, K the permeability tensor, p the pressure, f the sources and sinks,
and n the outward unit normal vector of a subdomain of dimension d. Quantities related to
dimension d +1 are indicated using the hat notation ·̂. Denoting the jump operator from the
neighbouring higher-dimensional grids by [[·]], the second term in the second equation of (1)
enforces coupling of the subdomains. For the highest dimension N , we define û to be zero.

We divide the boundary into parts where we prescribe Dirichlet and Neumann type bound-
ary conditions, respectively:

p � pD on ∂ΩD, f ,

u · n � un on ∂ΩN , f , (2)

using subscript f to indicate the flow problem. Finally, for the inter-dimensional flux on Γ d ,
Darcy’s law is

n̂ · û � −Kn
(
p − p̂|Γ d

)
. (3)

The notion of the effective normal permeability Kn on the fracture implies the assumption
that the normal direction of the fracture is a principal direction of the local permeability.

We also model the advection of a passive tracer concentration T . For a fixed flux field and
unitary porosity and density, the concentration is given according to

∂T

∂t
+ ∇ · (Tu) −

[[
T̂ n̂ · û

]]
� s in�, (4)
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with s denoting the tracer sources and sinks. Denoting the tracer discharge over the boundary
by JN and using subscript t to denote the transport problem, the boundary conditions may
be written as

T � TD on ∂ΩD,t ,

Tu · n � JN on ∂ΩN ,t . (5)

2.3 Finite-Volume Discretisations

We explore the subdomain coupling and intersection cell elimination in a FV framework. To
obtain the formulation, we start out from the integral form of the mass balance Eq. (1) over
a cell ci. Using Gauss’ divergence theorem on the left-hand side, we obtain

∫

δci\Γ
u · n dS −

∫

δci∩Γ

[[
n̂ · û]]

dS �
∫

ci

f dV , (6)

where n is the outward normal vector on the cell’s boundary δci. Assuming the right-hand
side source term to be known, and postponing the treatment of the coupling term (the second
term on the left-hand side) to Sect. 2.4, we proceed to the approximation of the flux in the
interior of the subdomain. Noting its dependency on the pressure as described by Eq. (1),
we aim at a relationship between the flux over a face Sij between cells i and j in terms of the
pressures pk at the centres of the surrounding cells, i.e.

∫

Si j

u · ndS � −
∫

Si j

�p · K · ndS ≈
∑

k

tk pk . (7)

The weights, or transmissibilities, tk incorporate geometry and permeability, and may be
computed in different manners leading to different FV discretisations. In this work, we limit
ourselves to two versions: the two-point and multi-point flux approximations described in
the following subsections and in “Appendix”. Once computed, the transmissibilities are
assembled into the discretisation matrix A, leading to a global system of equations of the
form

Ap � b, (8)

where b accounts for boundary condition contributions and source and sink terms, and p is
the vector of cell centre pressures.Note that even if we only solve for pressures, the fluxes
may be readily back-calculated using the information inA, which indeed is nothing else than
a discretisation and summation of the fluxes in the domain.

2.3.1 Two-Point Flux Approximation

To prevent the computational cost from blowing up when the number of discretisation cells
increases, the weights, tk , should be nonzero only locally around the face. In themost extreme
case, one can choose to approximate the gradient using the pressure values from the two cells
immediately next to the face to compute the discharge from ci to cj:

ui j �
∫

Si j

u · n dS � −
∫

Si j

∇ p · K · n dS ≈ −ti j
(
p j − pi

)
. (9)
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Fig. 2 Geometrical points and entities for TPFA transmissibility computations between the left cell i and the
right cell j

In this case, the face transmissibility is computed as the harmonic average of the half trans-
missibilities:

ti j � αiα j

αi + α j
, (10)

which in turn are given as

αi � Ai jni j · Ki

di j · di j · di j . (11)

Here, the aperture-weighted face area is denoted by Aij and the unit normal vector ni j on
the face points outward from ci. The permeability tensor and the distance vector between
the cell centre xcell and the face centre xf , di j � x f − xcell, also belong to ci. In Fig. 2,
the quantities needed for calculating the half transmissibility αi of the right cell and centre
face are shown. The TPFA is described in more detail in Aziz and Settari (1979) and is the
standard discretisation in commercial reservoir simulation.

2.3.2 Multi-Point Flux Approximation

While straightforward to derive and implement and computationally very efficient due to
matrix sparsity, the TPFA scheme is only consistentwhen the grid is alignedwith the principal
directions of the permeability tensor. Defining the normal component of the permeability as
wi j � Ki · ni j , the requirement is that wi j and di j be aligned for all cell-face combinations.
If this is not the case, as in Fig. 2, a more sophisticated flux approximation is called for.

To construct the multi-point flux approximation, a somewhat more involved computation
of face transmissibility is required. A description of the method can be found in “Appendix”.
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2.3.3 Transport Discretisation

The transport equation is also integrated over each cell to yield a FV formulation. The upwind
term is integrated by parts and then discretised with upwind concentration evaluation. For
the advection between ci and cj we use

Tupw �
{
Ti if ui j > 0,
Tj if ui j < 0.

(12)

Assuming stationary fluxes, sinks and sources, implicit Euler temporal discretisation is
applied, yielding for time step n

Vi
T n
i − T n−1

i

�t
−

∑

j

Ai j T
n
upwui j � si (13)

for the concentration Ti at the centre of ci of volume Vi.

2.4 Subdomain Coupling

We now consider the coupling of the flux discretisations between different subdomains. In
the discretisations of the individual subdomains, we impose Neumann conditions for all
boundaries internal to the full domain. This allows us to couple the subdomains by simply
discretising the flux over all faces of each internal boundary.

We consider the coupling of two subdomains Ωd+1
i and Ωd

j over the common boundary
Γi j . Letting the subscript indexes i and j also indicate cells from the respective subdomains,
we discretise the flux from ci ∈ Ωd+1

i to c j ∈ Ωd
j according to Karimi-Fard et al. (2004):

n̂i j · ûi j � − ti j
(
p j − p̂i

)
, (14)

with ti j � α̂iα j

α̂i+α j
. For the half-face transmissibility calculation, the lower-dimensional sub-

domain is extended by half an aperture a in the normal direction. Hence, on the fracture side
of the interface we obtain

α j � n j i · K j
a/
2

Ai j , (15)

which equals Kn from Eq. (3). On the matrix side, α̂i is computed according to Eq. (11).
In the DFM approach, the fracture domains are accounted for twice both in cell volumes

and distance computations, and so relies on a 
 hmin . The distance inconsistency can be
corrected by using the adjusted distance vector

d∗
i j � di j

(

1 − a

2
∣∣di j

∣∣

)

; (16)

see e.g. Sandve et al. (2012).
As the flux over the face may be expressed in terms of one pressure value from each of the

two subdomains only, the couplings are entirely local and can be computed independently.
The coupling conditions are arranged in four blocks and assembled into the global solution
matrix, as illustrated in Fig. 1. Thus, the diagonal blocks consist of the sum of the internal
discretisation and the contribution from the subdomain coupling. The off-diagonal blocks
will be nonzero only where the corresponding subdomains interact.

For the transport problem, upwind coupling terms are calculated just as in the internal
discretisations. For the area, the face area of the higher-dimensional cell is used.
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Fig. 3 Conceptual sketch of the fluxes at a fracture intersection with and without an intersection cell, left and
right, respectively

2.5 Intersection Cell Removal

In realistic fractured porous domains, the fracture aperture is commonly several orders of
magnitude smaller than the domain length scale. This implies high contrasts in discretisation
cell size, as the smallest cell volumes in dimension d typically scale according to

V (c) ∝ hdmina
N−d . (17)

Strong cell size variationmay affect the solution quality and efficiency of an iterative linear
solver through high condition numberC � cond (A) of thematrixA fromEq. (8). As pointed
out and demonstrated by Karimi-Fard et al. (2004) and Walton et al. (2017), removing the
one- and zero-dimensional cells at fracture intersections may improve the condition number
significantly, while also relaxing time step restrictions for transport and multi-phase flow
simulations.

Karimi-Fard et al. (2004) proposed an elimination procedure for the TPFA, known as
a star–delta transformation, where direct connections are introduced between the higher-
dimensional cells. These connections are obtained by adding nf fluxes between all the n
higher-dimensional cells meeting at the particular intersection, see Fig. 3, where n �4 leads
to six cell pair combinations and hence nf �6 new fluxes. The transmissibility for each cell
pair at the intersection is computed as

Ti j � αiα j∑n
k αk

, (18)

where αk is computed as in Eq. 11. This popular transformation technique was extended to
the MPFA method by Sandve et al. (2012).

By ignoring the intersection cell, the star–delta elimination in effect assigns infinite per-
meability to the intersection. When the permeability of the intersection is in fact low, which
could be the case if a blocking fracture crosses a permeable one, this may lead to significant
overestimation of fracture connectivity, as demonstrated in Sect. 3.1 and further studied by
Stefansson (2016).

To remedy this shortcoming, we introduce a new technique for intersection cell removal
based on the Schur complement; see, for example, Zhang (2005). We first discretise the
problem including intersection cells and then identify the degrees of freedom to be kept
and those to be eliminated. Typically, the degrees of freedom to be eliminated are all those
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corresponding to intersections of some dimension(s), i.e. all cells satisfying c ∈ Ωm , for m
�0 or m ∈ {0, 1}. Associating the matrix rows and columns corresponding to the two sets
with subscripts k and e, respectively, we obtain the reduced system matrix and right-hand
side

Ar � Akk − AkeA−1
ee Aek,

br � bk − AkeA−1
ee be. (19)

This requires the inversion of the matrix Aee. With the above-described set of cells to be
eliminated, the size of this matrix is well below the size of the full system, and the com-
putational cost of the inversion is negligible. To demonstrate that Aee is invertible, we note
that it is the internal FV discretisation on Ωm . As described above, we first discretise a Neu-
mann problem on these subdomains to be eliminated. Then, the TPFA coupling contributes
with the addition of weights to all diagonal entries (and only these), yielding strict diagonal
dominance and invertibility.

Solving the system Arpr � br for the kept or “reduced” pressures, we accurately account
for intersections of fractures of arbitrary permeability ratios while avoiding the minute vol-
umes of the removed cells. In particular, the Schur complement avoids the restriction of having
to assume a certain intersection permeability in the design of the elimination scheme, leaving
the modeller free to assign any permeability at the intersections. The suggested procedure
accounts for the assigned intersection permeability in the solution, yielding full modelling
flexibility.

There are no limitations on the number of intersecting fractures or their geometry as long
as the validity of the underlying DFM model is ensured. As demonstrated in Sect. 3.1.3,
the technique yields accurate pressure solutions also in cases where 1D cells are eliminated.
Further, the Schur complement reduces to the above-mentioned star–delta transformation
in the limiting cases of infinite normal permeability and zero tangential permeability of the
eliminated cells. Note that this elimination technique is not particular to FV discretisations,
but the restriction that Aee must be invertible must be satisfied.

While this paper deals exclusively with incompressible single-phase flow, it is possible to
extend the elimination technique to more complicated, possibly nonlinear, physical models
such as compressibleflow.The approachdealswith the calculationof transmissibilities,which
are only affected by the intrinsic permeabilities and geometry of the cells involved through
K,n,d and A, see Eq. (11). The transmissibilities may be calculated for the intersections
once at the start of the simulation, and then reused throughout linearisation or time loops, as
is standard practice in reservoir simulation.

If fluxes between the grid cells are to be computed, there are two ways to proceed after
the elimination. The first option is to back-compute the pressure in the intersection cells
and proceeds as if the cells were never removed. While straightforward using the Schur
complement, this is inmany situations somewhat counterintuitive. If transport simulations are
performed using the resulting flux field, the original time step restrictions must be honoured.

Not reintroducing the lower-dimensional cells calls for flux computations between the
higher-dimensional neighbours directly, see Fig. 3. This may be done directly from the
reduced discretisation, in the samemanner as described in Sect. 2.3 for the internal subdomain
fluxes. This option is not entirely unproblematic, especially if 1D cells are eliminated in a 3D
domain. Flow along the intersection will be distributed more evenly between the intersecting
fractures compared to a non-eliminated or back-calculated solution, leading to additional
“leakage” from the main flow path to less permeable regions, as shown by Sandve et al.
(2012).
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The case of multi-phase flow is even more challenging due to the presence of counter-
current flows and gravity effects. We offer no satisfactory solution to this problem through
the Schur complement procedure.

2.6 Anisotropy

As mentioned above, anisotropic permeability calls for more sophisticated discretisations
such as the MPFA. Using a DFM model, the background matrix permeability may also
include the upscaled contribution from fine-scale fractures, which may enhance the matrix
anisotropy.

Using TPFA for the fracture-matrix coupling might impair the solution quality in the case
of matrix anisotropy as the half-face transmissibility on the matrix side, α̂i , will be computed
inconsistently, cf. Sect. 2.4. This is investigated in Sect. 3.2.

As shown by Mokhtari et al. (2015) and Tan et al. (2017), fracture planes may also
exhibit intrinsic permeability anisotropy; that is, the permeability depends on the direction
considered in the fracture plane itself. Given that the fracture network and its connectivity
oftentimes dominate the flow through the domain, it is conceivable that fracture anisotropy
may substantially influence the overall behaviour of the system. We investigate the impact
of fracture anisotropy in Sect. 3.3.

3 Results

The results are presented in the form of plots of pressure and tracer distributions and plots of
locally monitored tracer concentrations throughout the transport simulation time interval.We
report errors of both pressure andfinal tracer fields as compared to various reference solutions.
The errors are computed either over the entire domain or over specified subdomains, always
in the discrete L2 norm.

The numbering of the test cases corresponds to the subsections, so that Case 1.1
appears in Sect. 3.1.1 etc. We reiterate that source code is available at https://github.com/
pmgbergen/porepy/tree/develop/examples/papers/arXiv_1712_08479, as is additional visu-
alisation material intended as a supplement to the test case descriptions, figures and tables
provided in this section.

3.1 Intersection Elimination

This section is devoted to an examination of the Schur complement procedure for elimination
of fracture intersections introduced inSect. 2.5.Wecompare the pressure solution to a solution
based on a reference discretisation where the intersection cells have been kept and a solution
where the star–delta transformation is used for elimination of intersection cells. In addition
to assessing the solution quality through pressure and tracer field comparisons, we report the
condition numbers of the respective solution matrices. An indication on the improvement
offered by the eliminations is provided by the ratio between the condition number of the full
solution and the eliminated, which we denote by RC .
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Fig. 4 Pressure fields of Case 1.1, Kh �103 and Kv �10−3. The case is designed so that the intersection
permeability, Ki , equals that of the vertical fracture. The bottom left Schur complement solution with Ki
�1010 is included for comparison with the star–delta solution

3.1.1 Elimination of a 0D Intersection

We start by a systematic investigation of the elimination procedures in a synthetic two-
dimensional test case containing a single intersection. We incrementally change the fracture
permeabilities to reveal when the Schur complement and star–delta procedures differ.

The test case geometry is shown in Fig. 4. The domain contains two orthogonal fractures,
one normal to and one parallel to the pressure gradient, both having an aperture a�10−2. The
matrix permeability is set to unity, whereas the permeabilities of the fractures vary between
10−3 and 103 to yield a range of different ratios between the permeability of the horizontal
(gradient-aligned) fracture, K � KhI, and that of the vertical fracture, K � KvI. The
permeability of the 0D intersection cell is inherited from the vertical fracture. Homogeneous
Neumann conditions are imposed on the horizontal boundaries, and the Dirichlet condition
pD �1 − x is imposed on the vertical boundaries.

In Fig. 4, the pressure plots for the permeability ratio yielding the largest difference
between the elimination techniques are shown. The pressure jump across the vertical fracture
is markedly higher for the reference and Schur complement solution than for the star–delta
one, where the blocking effect at the intersection is lost. We include the pressure plot of
a simulation where the intersection cell permeability is 1010. The solution is practically
identical to the results using the star–delta transformation, which illustrates how the latter is
the limiting case of high intersection permeability, as discussed in Sect. 2.5.

A detailed report of the pressure errors and condition numbers is given in Fig. 5. We see
machineprecision agreement between the solution forwhich theSchur complement technique
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Fig. 5 Condition number ratios RC (top) and pressure errors (bottom) for Case 1.1 for different values of the
permeabilities of the horizontal and vertical fracture. Schur complement and star–delta elimination were used
for the subfigures to the left and to the right, respectively

was applied and the non-reduced solution. The solution where the star–delta transformation
was used, however, breaks downwhen the∇p-aligned fracture is permeable and the other one
is not. Under these conditions, the horizontal fracture strongly influences the solution, but the
blocking effect of the vertical fracture is not captured by the star–delta transformation. The
two fracture elimination schemes bring about significant and very similar condition number
improvements, up to more than a factor of 102. Note that while the magnitude of Rc in
general depends on the aperture and permeability values in question, Fig. 5 indicates that the
improvement is larger when low-permeable intersections are eliminated.

3.1.2 Elimination of Multiple 0D Intersections

We now consider a 2D test case presented in the benchmark study by Flemisch et al. (2018).
The case considers conducting fractures intersected by blocking fractures. The study showed
that applying the star–delta intersection cell elimination decreased solution quality. We here
investigate the Schur complement elimination procedure for that particular test case.

The test case contains ten fractures of two different permeabilities, 10−4 and 104, in a
matrix of unit permeability. The intersection permeabilities are set to the harmonic average of
the crossing fractures, making them in effect impermeable. For further details on the set-up,
we refer to (Flemisch et al. 2018), where this benchmark test case appears in Sect. 4.3.2.

We display two of the solutions in Fig. 6 and in Table 1 we list the errors and the properties
of the discretisation matrices, specifically the densities and condition numbers. The plots
indicate that using the star–delta technique, significant flow passes through the blocking
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Fig. 6 The pressure distributions for Case 1.2 obtained using the two elimination techniques with MPFA
discretisation. Permeable and impermeable fractures are indicated in white and black, respectively. Isolines
are shown for pressure values of 1.5, 2, 2.5, 3 and 3.5

Table 1 Errors and matrix characteristics for Case 1.2

Method Fracture error Matrix error Matrix density Condition number

TPFA, no
elimination

1.3 × 10−2 1.3 × 10−2 2.8 × 10−3 2.0 × 105

TPFA, Schur
complement

1.4 × 10−2 1.4 × 10−2 2.8 × 10−3 2.1 × 104

TPFA, star–delta 5.1 × 10−2 6.7 × 10−2 2.8 × 10−3 3.1 × 104

MPFA, Schur
complement

1.2 × 10−2 1.4 × 10−2 8.0 × 10−3 2.0 × 104

MPFA, star–delta 5.1 × 10−2 6.7 × 10−2 8.5 × 10−3 3.1 × 104

fractures where they intersect with the conducting ones. The plotted isolines also highlight
that some of the blocking effect of the low-permeable fractures is missed in the star–delta
solution. The errors of the solutions obtained using the Schur complement elimination are
very similar to those obtained without elimination and considerably lower than those where
the star–delta elimination was applied. This indicates that the Schur complement technique
does not suffer from the restrictions of the star–delta transformation related to blocking
intersections. Moreover, the condition number of the Schur complement matrices is slightly
lower than for the two star–delta matrices. This means that we obtain the full benefits of the
star–delta technique while retaining solution quality.

3.1.3 Elimination of a 1D Intersection

Wenow turn to a 3D casewhere the 1D intersection is eliminated. In general, this is inherently
different from elimination of 0D intersections, as the tangential flow along the intersection
is affected. In particular, flux calculations are less straightforward, as discussed in Sect. 2.5.

The unit cube domain of unitary permeability contains two fractures lying in the xy- and
yz-plane, respectively. Both have aperture 10−6, and the isotropic fracture permeabilities are
106 and 10−6, respectively. The boundary conditions are homogeneous Neumann, except
for the pressure conditions pD(x �0)�1 and pD(x �1)�0. Similarly, tracer concentration
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Table 2 Errors of the eliminated solutions compared to the full solution (with 1D cells) for Case 1.3

Elimination Pressure error Tracer error Condition number
improvement

Schur complement 2.2 × 10−15 1.5 × 10−12 6.0 × 103

Star–delta 3.2 × 10−2 1.2 × 10−1 4.1 × 103

Fig. 7 Case 1.3 tracer concentrations at time t �0.5

Fig. 8 Monitored tracer concentration at the centre of the outflowboundary throughout the transport simulation
for Case 1.3

values of zero are prescribed at all external boundaries,whereas the initial tracer concentration
is one throughout the domain. The transport simulation runs to t �0.5.

We compare three solutions with TPFA in the entire domain: one where no elimination
of intersection cells is performed, one where the Schur complement elimination is used and
one using the star–delta elimination. The errors of the eliminated solutions compared to the
full one are listed in Table 2. The tracer concentrations shown in Fig. 7 show qualitative
differences: If the blocking nature of the intersection is honoured, the tracer is largely forced
around the vertical fracture, whereas it shoots through in the case of the star–delta elimination.
The perfect agreement between the solution without elimination and the Schur complement,
and difference to the star–delta, are highlighted by the concentration time series in Fig. 8,
recorded at the centre of the outflow boundary.
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For the solutions where the 1D intersection cells were eliminated, the fluxes at the inter-
sections are computed directly between the neighbouring 2D cells, as described in Sect. 2.5
and indicated to the right in Fig. 3. The very low error of the Schur complement solution
illustrates that this procedure is adequate also for flux computations provided that the flow
along the fracture is negligible.

3.2 Subdomain Coupling with Anisotropy in Matrix Permeability

Turning back to the unit square domain, we investigate the TPFA coupling’s behaviour in face
of anisotropy in the higher dimension by considering a single-fracture case. In particular, we
investigate the impact of non-alignment of the distance vector d̂i j and normal permeability
component ŵi j on the matrix side of the subdomain interface, with subscript indexes as in
Sect. 2.4. This means that we apply the TPFA to a problem for which it is known to be
inconsistent, but only in a small part of the domain.

We include one highly permeable (K � 104 I) horizontal fracture of aperture 10−3 at y
�0.5. No-flow conditions are set for both pressure and tracer except at two diametrically
opposing corners of the domain, where Dirichlet conditions are enforced. A series of simu-
lations are performed with varying anisotropy ratio Kmax/Kmin and angle (10°, 30° and 60°
relative to the coordinate axes) in the matrix, i.e.

K � R (θ)

[
Kmax 0
0 Kmin

]
,

where R is the rotational matrix and θ the angle of rotation relative to the x axis. For the
variation in matrix anisotropy ratio, we kept Kmax fixed at 1 while decreasing Kmin.

We compare the reduced model using the TPFA coupling and MPFA for internal discreti-
sations to an equi-dimensional model using MPFA in the entire domain in terms of both
pressure and tracer errors. The reference solution is equi-dimensional and computed on a
fine regular grid (256×256 cells), see Fig. 9. We refine the coarse solutions from 4×4 to
32×32 cells using Cartesian meshes. Because the matrix cell size hmin is only one order of
magnitude larger than the aperture for the finest grid, we use the aperture corrected distance
vector introduced in Sect. 2.4, thus avoiding that the inconsistency of the hybrid-dimensional
approach obscures the convergence comparison.

In Fig. 10, we show the results for the 30° rotation (the two other angles yielded qual-
itatively equivalent results). The results indicate that the TPFA coupling performs very
acceptably. There is, however, one significant limitation to the conclusion. For the anisotropy,
we consider a permeability ratio range of 1≤Kmax/Kmin ≤6. For larger values, the results
showed oscillations in the matrix pressure away from the fracture. We attribute this to mono-
tonicity issues for the MPFA unrelated to the presence of fractures, see Nordbotten et al.
(2007). We expect that the errors related to the TPFA coupling scheme are enhanced for
larger anisotropy ratios, although explicitly accounting for the large fractures relieves us
from the most severe anisotropies characteristic of effective permeabilities in the context of
fracture upscaling.

3.3 Anisotropy in Fracture Permeability

A 3D test case investigating the effect of permeability anisotropy in a 2D fracture is now
studied.We explorewhether the anisotropy calls for the use ofMPFAor if TPFA is admissible.
We again consider a casewith limited geometric complexity and assign isotropic permeability
in the matrix. To further isolate the effect of fracture anisotropy, we use a Cartesian grid for
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Fig. 9 To the left, reference tracer solution for θ =30° and Kmax/Kmin �4. To the right, a close-up of the
equi-dimensional reference grid. The fracture is represented by the rectangular cells along the middle, whereas
normal Cartesian cells were used for the matrix. The in- and outlet part of the boundary is indicated by the
black lines at the bottom and top of the domain, respectively

Fig. 10 Pressure and tracer error plots for the θ �30° version of Case 2, left and right, respectively. Line
colours represent different permeability ratios. Solid lines correspond to the reduced model, dashed lines to
the equi-dimensional MPFA. Dotted black lines indicate a linear slope

our unit cube domain, ensuring alignment of face normals and distance vectors in the matrix,
cf. Sect. 2.3.1.

The domain contains a single, horizontal fracture of aperture 10−3 cutting the domain at
z �0.5. No-flow conditions are imposed on all but a part of the top and bottom boundaries,
for which we set pD �0 and pD �1, respectively. With unit permeability in the matrix and a
fracture permeability tensor with principal permeabilities of 103, 1/3 × 103 and 103 rotated
45° in the fracture plane:

K � R
(
45◦)

⎡

⎣
103 0 0
0 1/3 · 103 0
0 0 103

⎤

⎦ �
⎡

⎣
2/3 · 103 −1/3 · 103 0

−1/3 · 103 2/3 · 103 0
0 0 103

⎤

⎦ ,

we obtain a system strongly influenced by the fracture flow. Again, the initial and boundary
condition for the tracer is T (t � 0) � 1 inΩ and T � 0 on δΩ . The transport simulation
runs to t �30.

In the following, we use the solution where MPFA was used for the flow problem as a
reference. Comparison of the pressure solutions obtained using TPFA and MPFA yields the
relative differences reported in Table 3, revealing only slight differences. The tracer solutions
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Table 3 Difference to the MPFA reference in solutions and discretisation times for Case 3

Flux discretisation Subdomain Difference to
MPFA pressure

Difference to
MPFA tracer

Discretisation time,
relative to MPFA

TPFA 3D matrix 5.0 × 10−4 5.8 × 10−2 3.3 × 10−2

2D fracture 8.4 × 10−4 1.6 × 10−1

Hybrid 3D matrix 1.8 × 10−10 8.6 × 10−8 8.3 × 10−2

2D fracture 2.7 × 10−10 2.4 × 10−7

Fig. 11 Time series of tracer monitored in the cell of the outflow boundary, Case 3

Fig. 12 Tracer distributions at t �30 for Case 3. There is injection in the top, back corner and production
takes place at the opposite corner. The 2D fracture plane is left uncut for visualisation purposes

are compared both in terms of L2 errors and a time series of the concentration at the outflow
boundary in Table 3 and Fig. 11. By contrast, these reveal disparities between the flow fields
of significant magnitude, see also Fig. 12.

As mentioned in Sect. 1, we may also combine different discretisations on the different
subdomains. Exploiting that the permeability is anisotropic only in the fracture, we construct
a hybrid discretisation with TPFA in the matrix and MPFA in the fracture, coupled together
with the TPFA coupling. As evidenced from the tracer results, this discretisation is sufficient
to capture the anisotropy. We also report the CPU times obtained with our implementation
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Fig. 13 Distributionof pressure (left) and tracer at t�2 for a solutionobtainedwithout intersection cell removal
(middle) and one where the Schur complement procedure was applied (right) for Case 4. The injection well
placement may be inferred from the pressure plot

for the discretisation of the problem in Table 3. They indicate that the computational cost of
the hybrid discretisation is substantially reduced compared to theMPFA, although somewhat
larger than for the TPFA. Note that the times reported are those used for the assembly of the
discretisation matrix A. The time spent on inverting the linear system was left out to avoid
the complexity related to different linear solvers.

3.4 Matrix Heterogeneity

In the final test case, we provide an example of how the hierarchical subdomain approach
and coupling flexibility may be advantageously applied. We investigate a 3D case displaying
both strong fracture influence and matrix flow with a fracture geometry containing several
different intersection configurations.

We choose a mostly conductive fracture network which is symmetric about the xy-plane,
shown in Fig. 13. All fractures have aperture a �10−6, and all but one have permeability
K � 105I. The circular fracture at the centre of the domain is blocking, with K � 10−5 I.
Intersection permeabilities are inherited from the least permeable of the intersecting fractures.
The network is surrounded by a matrix of permeability K � 10−2I in the upper half and
K � 10−3I in the lower half. No-flow conditions are imposed on the vertical boundaries and
p, T �0 at the horizontal ones, whereas a well injection with a tracer concentration of one is
located in a fracture intersection cell near the centre of the domain. Starting from an initial
tracer solution of T �0, the simulation runs until t �2.

Since all permeabilities are isotropic, we discretise using TPFA in all dimensions. In this
test case, we apply the Schur complement intersection elimination procedure and compare
the solution with one where the intersection cells were kept. The solution is visualised in
Fig. 13. The tracer distribution clearly shows how the symmetry of the test case is broken by
the heterogeneous matrix permeability. In the upper half, a substantial part of the flow takes
place in the matrix, whereas virtually all of it is conducted through the fractures in the lower
half. Again, considering the solution without the elimination as reference, negligible errors
and considerable condition number improvement are observed for the Schur complement
procedure, see Table 4.
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Table 4 Errors and condition number improvement for the elimination procedure applied in Case 4

Elimination Pressure error Tracer error Condition number
improvement

Schur complement 1.6 × 10−11 4.8 × 10−11 8.6 × 103

4 Conclusion

Choosing a hybrid-dimensional conforming DFMmodel for simulations of flow in fractured
porous media may relieve some of the challenges posed by the fractures. We have considered
procedures to alleviate two of the remaining restrictions, namely the coupling of fractures
and rock matrix and the wide range in discretisation cell size. Firstly, we demonstrated how
discretising the subdomains individually and coupling them two at a time using a hierarchical
framework for mixed-dimensional porousmedia problems simplifies the implementation and
offers considerable modelling and discretisation flexibility, also facilitating reuse of code.
Secondly, we proposed a Schur complement technique to elimination of intersection cells
with a considerably broader scope than existing techniques. The technique is not limited to FV
discretisations andmay be applied to both 0D and 1D intersections of arbitrary permeabilities
without incurring additional pressure error. The technique may be extended to more general
models including nonlinear single-phase flow. However, preliminary investigations suggest
that the computation of fluxes introduces some issues in cases involving tangential flow
along 1D intersections. Similar limitations are expected for application to multi-phase flow
problems.

The numerical test cases presented demonstrate the improved accuracy of the proposed
intersection cell elimination technique compared to existing solutions. Further, they show that
the proposed TPFA coupling between fractures and matrix does not lead to severely reduced
solution quality even in the presence of moderate anisotropy. We also demonstrate how
parameter heterogeneities and anisotropies have implications on the appropriateness of
different models and discretisations, and show how the inherent flexibility of our approach
renders it suitable for simulations considering heterogeneous parameter regimes. The
approach retains the benefits of FV discretisations and renders it feasible for simulation
of various processes in fractured porous media.

Acknowledgements The work has partly been funded by the Research Council of Norway through Grant
Number 267908.

Appendix

This appendix offers a description of the MPFA discretisation of a domain of a given dimen-
sion, using the following key ingredients:

• A partition of the mesh into subcells, and of cell boundaries into subfaces.
• Collection of subcells into interaction regions surrounding each node.
• Basis functions for the pressure that have support in a single interaction region and are
linear on each subcell.

• Enforcement of pressure continuity at a single point on the subfaces.
• Enforcement of flux continuity at the subfaces.
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Fig. 14 The O-shaped interaction region used for MPFA transmissibility calculations is marked by dotted
lines connecting cell centres and face centres. Cell centres are shown in red, face centres in purple, continuity
points in blue and the central vertex of the interaction region in black. A single subcell with four subfaces is
indicated in grey

As for the TPFA, this ultimately yields the transmissibilities to be assembled in the discreti-
sation matrix A for multiplication with the vector of cell centre pressures p.

We commence by extending the geometrical notation. InSect. 2.3.1, the cell and face centre
locations xcell and xf are defined based on Fig. 2. Referring now to Fig. 14, we partition the
mesh into subcells by splitting the faces at xf . This results in new subcells with vertexes
at cell centres, face centres and nodes xn of the original mesh. The faces between cells are
likewise split into subfaces. On the subfaces, we define the continuity points xc � (1 − η)xf
+ηxn. The weight η, determining the placement along the face, will be discussed below. We
define an interaction region to consist of all subcells sharing a common node xn.

As in the case of TPFA, we discretise the pressure using cell centre values pi. Further, the
pressure is approximated using linear basis functions within each subcell. In other words, we
can write the pressure at point x in the lth subcell of global cell i as

p (x) ≈ pi +Gi,l
(
x − xi,cell

)
, (20)

with Gi,l denoting the gradient of the subcell. Then, the discrete discharge over subface l in
terms of the gradient of an adjacent cell i is

ui,l � Gi,l
(
xi,c − xi,cell

) · Ki · ni j Al . (21)

We now wish to write the discharge over a subface in terms of the cell centre pressures
only, i.e. on the form

ui,l �
∑

k

t∗k pk, (22)
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where the asterisk is used to distinguish the subface weights from the full face transmissibili-
ties introduced in Sect. 2.3. To obtain this,we proceed to eliminate the gradients fromEq. (21).
This shall be done by (i) enforcing flux continuity over each subface and (ii) exploiting the
additional assumption of pressure continuity at the continuity points.

Equating the discharges from either side over subface l shared by cells i and j then reads

Ki · Gi,l · ni j Al � ui,l � −u j,l � −K j · G j,l · n j i Al , (23)

where Al denotes the subface area.
Similarly, by Eq. (20) statement (ii) reads

pi +Gi,l
(
xl,c − xi,cell

) � p j +G j,l
(
xl,c − x j,cell

)
. (24)

Here, xl,c denotes the continuity point on subface l. Inspection of Eqs. (23) and (24) reveals
that each relation couples a given subcell to a neighbouring subcell of the same interaction
region only through the values of cell centre pressures and gradients. This means that we
may collect all equations for each interaction region to a local system of the form

⎛

⎝
S 0
DG Dp
0 I

⎞

⎠
(
G
p

)
�

⎛

⎝
0
0
I

⎞

⎠ . (25)

The unknowns here are the gradients G, which are to be eliminated, and the cell centre
pressures p. The first row represents the flux balance over the subfaces, with S denoting
products between K and n, accounting for the sign of the normal vector. The second row
represents the pressure continuity, with the distances between cell centres and continuity
points, DG , and the cell centre contributions in the form of a matrix of±1, Dp. Finally,
the third row is a cell-wise enforcement of pressure values, with I denoting the identity
matrix. Note that in this system, the right-hand side is a matrix rather than a vector: For each
interaction region, there is one equation system corresponding to each subcell. Through the
last row, the pressure value is set to unity at one of the cell centres and to zero at all others,
corresponding to calculation of the basis function centred at that particular cell centre.

Solving the system (25) for G allows substitution into Eq. (21) to obtain a type (22)
equation. In other words, we have arrived at the weights t*k defining the subface discharges
in terms of the cell centre pressures.

Once the subfaceweights have been computed for all interaction regions, the global system
is obtained by a two-stage assembly. First, we sum over all subfaces of a given full face k to
obtain the face transmissibility

tk �
∑

l

t∗l . (26)

Then, the discharges on the boundary of each cell are collected and related to the cell centre
pressure of the surrounding cells through these face transmissibilities. Thus, we arrive at a
linear system of the form of Eq. (8) with each row representing the local mass conservation
equation of a cell.

Different choices of continuity point placement, characterised by the value of η, lead to
different variants of the MPFA method. The choice affects the discretisation’s symmetry
properties and robustness w.r.t. grid roughness, and the optimal placement depends on the
type of grid applied. In the current work, we set η �0 on Cartesian grids, and η �1/3 on
simplex grids, as suggested in Aavatsmark (2002), Klausen et al. (2008) and Friis et al.
(2009). These sources contain further information on the method and its properties, as does
Edwards and Rogers (1998).
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