
Transp Porous Med (2018) 124:395–411
https://doi.org/10.1007/s11242-018-1074-6

Stability of Penetrative Natural Convection in a
Non-Newtonian Fluid-Saturated Vertical Porous Layer

B. M. Shankar1 · I. S. Shivakumara2

Received: 27 January 2018 / Accepted: 26 April 2018 / Published online: 3 May 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract The stability of natural penetrative convection arising due to a uniform internal heat
source in a vertical porous layer saturatedwith anOldroyd-Bfluid is investigated. The vertical
walls of the porous layer are impermeable and maintained at different uniform temperatures.
The energy stability analysis performed reveals that the system is unconditionally stable even
in the presence of internal heating in the case of Newtonian fluids, while for viscoelastic
fluids the base flow is found to be unstable. As the energy stability analysis of Gill type is
unable to decide the stability of the system, the Galerkin method is used to solve the complex
eigenvalue problem. The internal heating introduces asymmetry in the basic flowand amounts
to the existence of different set of onset modes. The internal heating and stress relaxation
parameter facilitates instability of the system while increasing strain retardation parameter
discloses stabilizing effect on the system. Moreover, the critical Darcy–Rayleigh number,
wave number and wave speed become invariant as Ns becomes large. The streamlines and
isotherms presented herein demonstrate the development of complex dynamics at the critical
state.

Keywords Natural convection · Internal heat source · Vertical porous layer · Newtonian
fluid · Oldroyd-B fluid
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c Wave speed
ci Growth rate
cr Phase velocity
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2d Thickness of the porous layer
D =d/dx Differential operator
g Acceleration due to gravity
k̂ Unit vector in z direction
K Permeability
Ns Dimensionless heat source strength
P Modified pressure
�q � (u, v, w) Velocity vector
Q Heat generated within the fluid per unit volume per unit time
RD Darcy–Rayleigh number
t Time
T Temperature
T1 Temperature of the left vertical wall
T2 Temperature of the right vertical wall
(x, y, z) Cartesian coordinates

Greek Symbols

α Ratio of heat capacities
β Thermal expansion coefficient
� Disturbance fluid temperature
κ Effective thermal diffusivity
λ1 Stress relaxation time constant
λ2 Strain retardation time constant
�1 Relaxation parameter
�2 Retardation parameter
μ Fluid viscosity
ρ0 Reference density at T0

ψ Stream function

 Disturbance stream function

1 Introduction

Buoyancy-driven convection in a Newtonian fluid-saturated porous layer has been a subject
of intensive research because of its relevance in many fields of applications including the
design of packedbed reactors, geothermal systems, enhanced oil recoverymethods, insulation
engineering to mention a few. The stability aspects of natural convection in a differentially
heated vertical porous slab in the framework of Darcy’s law was first studied by Gill (1969)
and established that the system is always stable. Later, Rees (1988) considered the effect
of a finite Prandtl–Darcy number on Gill’s problem and observed that the flow is linearly
stable even in the presence of a time derivative of the velocity. Straughan (1988) showed that
Gill’s proof of stability can be extended to the nonlinear domain of perturbations. By taking
into account of the local thermal non-equilibrium (LTNE) effect, Rees (2011) and Scott
and Straughan (2013) presented a new perspective on Gill’s problem by performing linear
and nonlinear stability analyses, respectively, and observed that the basic state is stable. By
assuming permeable boundaries of the vertical porous layer instead of impermeable walls,
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Barletta (2015) reconsidered the analysis carried out by Gill and found that the buoyant flow
in the vertical porous slab exhibits a linear instability.

In various practical problems, unusual reactions to applied mechanical stresses are likely
to occur, including time-independent viscosity, time-dependent viscosity and a combination
of both time-dependent and time-independent viscosity. In these cases, the non-Newtonian
rheology of fluids becomes important. There exist different kinds of non-Newtonian fluids
whose behavior is different from one another. Most of the time, non-Newtonian viscous
fluidsmodeled as viscoelastic oneswith retardation and relaxation effects are used asworking
media. The flowof viscoelastic fluids has received significant attention of researchers because
of their importance in superfluity of engineering applications including blood flow, catalytic
polymerization, polymer processing, bio-processing, geology and many others. Such types
of fluids are modeled more effectively by an Oldroyd-B constitutive equation. Alishaev and
Mirzadjanzade (1975) and Khuzhayorov et al. (2000) formulated a modified Darcy’s law
to be considered when the fluid saturating a porous medium has a viscoelastic behavior.
Majority of the studies on this topic are concentrated on convective instability in a horizontal
porous layer and the details can be found in the book by Nield and Bejan (2017). However,
a limited number of studies have been dealt with the stability of natural convection in a non-
Newtonian fluid-saturated vertical porous layer. Barletta and Alves (2014) investigated Gill’s
stability problem for power-law fluids and observed that the system remains stable despite
the presence of inflexion point at the mid-plane in the base flow. Recently, Shankar and
Shivakumara (2017a, b) treated Gill’s problem for viscoelastic fluids of Oldroyd-B type and
noticed that the systembecomes unstable although the basic state is same as that ofNewtonian
fluid. In the latter case, the LTNE effect was considered in investigating the problem.

The occurrence of natural convection in a fluid-saturated porousmediumwith internal heat
generation is of interest in many engineering problems and it is also a commonly occurring
configuration in geophysics which has been studied extensively (Gasser and Kazimi 1976;
Rhee et al. 1978; Khalili and Shivakumara 1998; Nouri-Borujerdi et al. 2007, 2008; Nield
andKuznetsov 2013, 2016; Kuznetsov andNield 2013). Alves et al. (2014) discussed thermal
convective instability of viscoelastic mixed convection flows in a horizontal porous layer in
the presence of horizontal throughflow and viscous dissipation. It was shown that an ample
description of the combined effects of viscoelasticity and viscous dissipation can be obtained
with the large Peclet number approximation. The effect of internal heat generation on the
instability of parallel buoyant Newtonian fluid flow in a vertical porous layer was investigated
by Barletta and Celli (2017) considering the boundaries of the porous layer to be permeable
and showed that the stationary flow is unstable.

Nonetheless, the study on the stability of natural penetrative convection arising due to a
uniform internal heating in a vertical porous layer saturated by a viscoelastic fluid has not
received any attention to the best of our knowledge. AmodifiedDarcy’s law for anOldroyd-B
type of viscoelastic fluid is used to describe the flow in a porous medium. The basic state
becomes non-uniform due to the presence of a uniform internal heat source and the eigenvalue
problem is solved numerically using the Galerkin method.

2 Mathematical Formulation

Weconsider a vertical porous layer heated uniformly internally and saturated by anOldroyd-B
fluid lying in the region− d ≤ x ≤ d as shown in Fig. 1. The vertical boundaries of the porous
layer are kept at constant but different temperatures T1 and T2(> T1). The porous medium
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Fig. 1 Physical configuration z

g

d− d0 x

1T 2T

is considered to be homogeneous and isotropic with local thermal equilibrium between the
fluid and the solid phases. Assuming that the Oberbeck–Boussinesq approximation is valid,
the governing equations in the dimensionless form are (Alishaev and Mirzadjanzade 1975;
Khuzhayorov et al. 2000; Shankar and Shivakumara 2017a)

∇ · �q � 0, (1)(
1 + �1

∂

∂t

)(
∇P − RDT k̂

)
�
(
1 + �2

∂

∂t

)
�q, (2)

α
∂T

∂t
+ (�q · ∇)T � ∇2T + Ns. (3)

In these equations, �q � (u, v, w) is the velocity vector, t is the time, P is the modified
pressure, T is the temperature, α is the ratio of heat capacities. Here RD � ρ0gβ�T Kd

/
μκ

is theDarcy–Rayleigh number,�1 � λ1κ/d2 is the relaxation parameter,�2 � λ2κ/d2 is the
retardation parameter and Ns � Qd2/�T κ is the dimensionless heat source strength, while
ρ0, g, β,K ,μ, κ ,Q, λ1 and λ2 are the density at reference temperature T =T0 (at themiddle of
the channel), gravitational acceleration, thermal expansion coefficient, permeability, viscosity
of the fluid, effective thermal diffusivity, heat generated within the fluid per unit volume per
unit time, stress relaxation and strain retardation time constants, respectively.

Taking curl on both sides of Eq. (2) to eliminate the pressure term and introducing the
stream function ψ(x, z, t) through

(u, 0, w) �
(

−∂ψ

∂z
, 0,

∂ψ

∂x

)
, (4)

the governing Eqs. (2) and (3) become

RD

(
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∂t
+

∂ψ

∂x

∂T

∂z
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∂T

∂x
� ∂2T

∂x2
+

∂2T

∂z2
+ Ns. (6)

123



Stability of Penetrative Natural Convection in a… 399

The boundaries are impermeable, and the appropriate boundary conditions are

ψ � 0, T � − 1, at x � − 1, ψ � 0, T � 1 at x � 1. (7)

3 Base Flow

The basic flow is fully developed, unidirectional, steady and laminar. Under these circum-
stances, Eqs. (5) and (6) reduce to

d2ψb

dx2
� RD

dTb
dx

, (8)

d2Tb
dx2

+ Ns � 0, (9)

accompanied with the boundary conditions

ψb � 0 at x � ± 1,

Tb � ± 1 at x � ± 1, (10)

where the subscript b denotes the basic state.The basic state solution is found to be

ψb(x) � RD

6

{
3(x2 − 1) + Ns(x − x3)

}
,

Tb(x) � 1

2

[
2x + Ns(1 − x2)

]
. (11)

The scaled basic stream functionψb(x)/RD and the temperatureTb(x) are plotted in Fig. 2a,
b, respectively. From Fig. 2a, it can be seen that the flow near the hot wall increases as the
strength of internal heating increases and as a consequence of this, flow near the cold wall
reduces. Basic temperature field shows a parabolic distribution with the width of the layer
due to the presence of a uniform distribution of internal heat sources (Fig. 2b). Increase in
the value of Ns enhances the deviation of basic temperature profile and, otherwise, it is linear
in the absence of internal heat generation.

4 Linear Stability Analysis

In linear stability analysis, infinitesimal disturbances are imposed on the base flow. Thus, the
stream function and temperature fields can be written as

ψ � ψb(x) + ψ ′, T � Tb(x) + T ′, (12)

where the primed quantities denote infinitesimal disturbances to the corresponding terms.
By using normal mode analysis, the disturbances can be expressed by(

ψ ′, T ′) � [
(x),�(x)] ei a (z−ct), (13)

where a is the real-valued vertical wave number and c =cr + ici is the complex wave speed.
If ci <0 the system is stable, ci >0 the system is unstable and ci =0 the system is neutrally
stable. Following the standard linear instability analysis, the governing linear equations for
the infinitesimal disturbances can then be shown to be

(1 − ia�2c) (D
2 − a2)
 � (1 − ia�1c) RDD�, (14)
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Fig. 2 a Plots of the scaled basic stream function profile for different values of Ns. b Plots of the basic
temperature profile for different values of Ns

(D2 − a2)� + ia 
(1 − Ns x) − ia �RD

6
(6x + Ns(1 − 3 x2)) � − ia α c�. (15)

The associated boundary conditions are:


 � � � 0 at x � ± 1. (16)

5 Energy Stability Analysis

Following the method of Gill (1969) and Rees (2011), Eq. (15) is used to determine 
 in
terms of �, and substitute it into Eq. (14), to obtain

�′′′′ − 2a2�′′ + a4� + iaRD

(
1 − iac�1
1 − iac�2

)
(1 − Ns x)�′

− iaRD
6

{
6
[
(x�)′′ − a2x�

]
+ Ns

[(
�′′ − a2�

)
− 3

((
x2�

)′′ − a2x2�

)]}
� −iaαc

(
�′′ − a2�

)
. (17)

Given that 
 and � are complex quantities, we now multiply Eqs. (17) by �̄, a complex
conjugate of �, and integrate over the channel width to get the following expression,

1∫
−1

(∣∣�′′∣∣2 + 2a2
∣∣�′∣∣2 + a4 |�|2

)
dx + iaRD

(
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− iaRD
6

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
6

⎡
⎢⎣

1∫
−1

(x�)′′ �̄ dx − a2
1∫

−1

x |�|2 dx
⎤
⎥⎦− Ns

⎡
⎢⎢⎢⎣

1∫
−1

(∣∣�′∣∣2 + a2 |�|2
)
dx

+ 3

(
1∫

−1

(
x2�

)′′
�̄ dx − a2

1∫
−1

x2 |�|2 dx

)
⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� iaαc

1∫
−1

(∣∣�′∣∣2 + a2 |�|2
)
dx . (18)
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If we take the real part of Eq. (18), we get
1∫

−1

(∣∣∣�′′ − a2�
∣∣∣2
)
dx + a2cr RD

(
�1 − �2

a2c2r �2
2 +

(
1 + aci�2

)2
) 1∫

−1

(1 − Ns x)�′�̄ dx � −aαci

1∫
−1

(∣∣�′∣∣2 + a2 |�|2
)
dx .

(19)

From Eq. (19), it is clear that ci is always negative when �1 =�2 =0 (Newtonian fluid
case) indicating that all small-amplitude disturbances decay even in the presence of internal
heat source, a result established by Gill (1969). However, the stability of the system cannot
be ascertained for an Oldroyd-B fluid as the sign of ci cannot be determined and hence Gill’s
proof of stability becomes ineffective in the present case.

6 Method of Solution

Equations (14) and (15) together with the boundary conditions (16) constitute an eigenvalue
problem and solved numerically using the Galerkin method. Accordingly,
(x) and�(x) are
expanded in terms of Legendre polynomials in the form


(x) �
N∑

n�0

anξn(x), �(x) �
N∑

n�0

bnξn(x), (20)

with the corresponding base functions

ξn(x) � (1 − x2)Pn(x), (21)

where Pn(x) is the Legendre polynomial of degree n and an and bn are constants. It may
be noted that 
(x) and �(x) satisfy the boundary conditions. Equation (20) is substituted
into Eqs. (14) and (15) and the resulting error is required to be orthogonal to ξm(x) for m
=0, 1, 2,…, N . This gives

N∑
n�0

an

1∫
−1

(
ξ ′
nξ

′
m + a2ξnξm

)
dx + RD

N∑
n�0

bn

1∫
−1

ξ ′
nξm dx

� iac�2

N∑
n�0

an

1∫
−1

(
ξ ′
nξ

′
m + a2ξnξm

)
dx + iac�1RD

N∑
n�0

bn

1∫
−1

ξ ′
nξm dx, (22)

ia
N∑

n�0

an

1∫
−1

(1 − Ns x) ξnξm dx −
N∑

n�0

bn

1∫
−1

(
ξ ′
nξ

′
m + a2ξnξm

)
dx

− iaRD

6

N∑
n�0

bn

1∫
−1

(
6x + Ns(1 − 3 x2)

)
ξnξm dx � −iaαc

N∑
n�0

bn

1∫
−1

ξnξm dx, (23)

in which the primed quantities denote differentiation with respect to x. The above equations
form the following system of linear algebraic equations

AX � cBX (24)

where c is the eigenvalue, X is the discrete representation of the eigenfunction, A and B are
complex matrices of order 2(N +1). For fixed values of all dimensionless parameters present
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here, the values of c which make sure a non-trivial solution of Eq. (24) are achieved as the
eigenvalue of the matrix B−1A. Once the eigenvalues c are found then one of the parameters,
say RD, is varied until the imaginary part of c vanishes from one having the largest imaginary
part among the eigenvalues. The zero crossing of cr is accomplished by Newton’s method for
a fixed point determination. The corresponding values of RD and a are the critical conditions
for neutral stability. The bisection method is built-in to locate the critical Darcy–Rayleigh
number with respect to the wave number to the desired degree of accuracy. The real part
of c corresponding to the critical Darcy–Rayleigh number with respect to the wave number
gives the critical wave speed. This procedure is replicated for different values of physical
parameters involved therein (Shankar et al. 2016). The convergence process of the Galerkin
method is shown in Table 1. It is seen that as the order of polynomial (N) increased, the
results remain consistent and accuracy up to five decimal points can be obtained by taking
10 terms in the Galerkin expansion and the results obtained for this order are presented.

7 Results and Discussion

The effect of penetrative convection occurring due to internal heat source is investigated
on the stability of natural convection in an Oldroyd-B fluid-saturated vertical porous layer.
The dimensionless parameters which are affecting the stability of the system are the Dar-
cy–Rayleigh number RD, the heat source strength Ns, the relaxation parameter �1 and the
retardation parameter �2. The value of �1 must be greater than �2 (Bird et al. 2007; Hirata
et al. 2015) and for the Newtonian fluid �1 =�2 =0. The value of α is fixed at unity in all
the calculations.

Figure 3a–c demonstrates the typical neutral stability curves in the (RD, a)-plane for
various values of �1 (with �2 =0.1, Ns � 1), �2 (with �1 � .5, Ns � 1) and Ns (with �1

=0.5, �2 =0.4), respectively. The neutral stability curves show an upward concave shape
exhibiting a single but different minima with respect to the wave number a, and the unstable
region lies above each of the neutral stability curve. The effect of increasing�1 (Fig. 3a) and
Ns (Fig. 3c) is to reduce the region of stability as theminimumof theDarcy–Rayleigh number
decreases, while an opposite trend could be seen with increasing �2 (Fig. 3b). Besides, the
minimum Darcy–Rayleigh number shifts toward the lower values of the wave number with
increasing �1, �2 and Ns indicating their effect is to increase the cell width.

It is intriguing to note that the presence of internal heating leads to a break in the symmetry
of the basic state which in turn breaks the symmetry between the upward-moving and the
downward-moving disturbances. When Ns=0, the solutions always correspond to cc <0,
and hence the cells move up the layer. By the odd symmetry of the basic thermal state, one
would expect identical cells moving down the layer and thus cc >0 with the same magnitude.
However, when Ns increases from zero then the positive cc will have a different magnitude
from the negative cc. To make the things more clear, the neutral stability curves for different
values of Ns when �1 =0.2 and �2 =0.1 are presented in Fig. 4a–c for both cc >0 and cc
<0. As expected, there exists a different set of onset modes and for the mode with cc <0 has
the lower value of RDc for all the values of Ns considered. The same trend was noticed for
other choices of parameters as well.

Figure 5a–c illustrates the variation of critical Darcy–Rayleigh number RDc, the critical
wave number ac and the critical wave speed cc, respectively, as a function of Ns for different
values of �1 when �2 =0.1. Figure 5a suggests that RDc is inversely proportional to Ns and
it will tend to a constant value as Ns becomes large because of the increase in energy supply
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to the system. As the value of �1 rises, the ordinate of the RDc curve alleviates indicating it
has a destabilizing effect on the flow. This may be due to the fact that enlarging of relaxation
stops the stickiness of the fluid and consequently the effect of friction will be smaller so that
the convection sets in at lesser values of RDc. The variation of ac versus Ns pursues a reverse
trend with unique rise rates for every value of �1 as shown in Fig. 5b but remains invariant
with increasing values of Ns. The values of ac are found to be high at lower values of �1

but only up to a certain value of Ns. It is observed that increase in �1 is to increase the size
of convection cells till Ns � 1 and thereafter the trend gets reversed. Corresponding curves
of cc displayed in Fig. 5c for different values of �1 show that the instability sets in only via
oscillatory mode and the values of cc tend to a constant value as Ns becomes large. It is also
evident that increasing �1 is to increase the critical wave speed.

A qualitative plot of the streamlines and isotherms of the perturbation modes at critical
conditions is given in Figs. 6, 7, 8 and 9 for values of Ns=1, 5, 10 and 50 and for different
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Fig. 5 Critical value of a RD, b a, c c versus Ns for various values of �1 when �2 =0.1

choices of viscoelastic parameters. These patterns are calculated from the sinusoidal change
of ψ

′
and T

′
given by Eq. (13). No explicit orientation of the streamlines and isotherms is

drawn in these figures but an alternate rotating and counter-rotating cells do in fact occur.
Figure 6 shows that the unicellular cells in the streamlines for Ns=1 are inclined and which

123



406 B. M. Shankar, I. S. Shivakumara

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

(a) Ns=1

z

Ψmax= 0.630

x
-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

x

=0.520 (b) Ns=5

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

=0.398 (c) Ns=10

x
-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5
=0.115 (d) Ns=50

x

Fig. 6 Disturbance streamlines for different values of Ns when �1 =0.2, �2 =0.1

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

z

x

Θmax=0.104 (a) Ns=1

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

(b) Ns=5

x

=0.268

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

=0.388 (c) Ns=10

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

=0.525 (d)Ns=50

Fig. 7 Disturbance isotherms for different values of Ns when �1 =0.2, �2 =0.1

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

Ψmax= 0.650 (a) Ns=1

z

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5
=0.490 (b) Ns=5

x
-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

x

=0.374 (c) Ns=10

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

=0.109 (d) Ns=50

Fig. 8 Disturbance streamlines for different values of Ns when �1 =0.4, �2 =0.1

get stretched with further increase in its value. As far as the isotherms are concerned, the uni-
cellular cell elongates and the temperature field becomes double cells as Ns increases (Fig. 7).
These facts together denote that the transfer of the disturbance temperature takes place more
effectively, leading to a more unstable flow configuration. This can also be confirmed when
the largest disturbance function and temperature are compared. Streamlines value fall dras-
tically from 0.630 to 0.115 and at the same time isotherms increase from 0.104 to 0.525,
when Ns increases from 1 to 50. Similar trend is observed with increasing �1 and the same
is shown in Figs. 8 and 9. It is also observed that the maximum disturbance temperature for
�1 =0.4 and �2 =0.1 is higher than that for �1 =0.2 and �2 =0.1 indicating that the system
has a destabilizing effect with increasing relaxation parameter.

The effect of �2 on the stability characteristics of the system is presented in Fig. 10a–c
as a function of Ns for �1 =0.5. From Fig. 10a, it is seen that the effect of increasing �2 is
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Fig. 9 Disturbance isotherms for different values of Ns when �1 =0.4, �2 =0.1

to increase the value of RDc and thus it has a stabilizing effect on the system. This is because
increase in �2 amounts to increase in the time taken by the fluid element to react to the
applied stress. That is, all through the enlargement of retardation parameter, the effect of
friction will be higher and as a result higher values of RDc are needed to encourage instability
of the system. To confirm the above fact, disturbance stream function and temperature are
plotted for various values of Ns when �1 =0.5 and �2 =0.2 (Figs. 11, 12). By more closely
examining the maximum values of 
 and �, it is found that 
max decreases from 0.650 to
0.113 and �max increases from 0.113 to 0.580 as Ns increases. With increase in �2, 
max

increases while �max decreases (Figs. 13, 14). The plot of ac against Ns illustrates unique
characteristics for almost each value of �2 (Fig. 10b). For lower value of �2, the size of the
convection cell becomes smaller as Ns increases. As �2 increases, the cell width remains
constant as dependence of ac uponNs is weak. Figure 10c shows that the value of cc increases
with decreasing �2.

8 Conclusions

The effect of penetrative convection arising due to a uniform internal heating on the stability
of natural convection in an Oldroyd-B fluid-saturated vertical porous layer is investigated.
The following conclusions are drawn from the foregoing study:

1. Thepresenceof internal heating is to deviate the basic temperature from linear to nonlinear
with respect to the horizontal coordinate resulting in the asymmetry of the basic state.

2. The energy stability analysis is used to analyze the stability of the system. The system is
stable to disturbances of all wave numbers for all values of the Darcy–Rayleigh number
even in the presence of internal heat source only in the case of Newtonian fluid.

3. The energy stability analysis is ineffective in deciding the stability of the systemwhen the
viscoelastic effects are present and hence the eigenvalue problem is solved numerically
using the Galerkin method. The system is found to be unstable in the case of viscoelastic
fluids; a result which is qualitatively different from Newtonian fluids.

4. The asymmetry in the basic state due to the presence of internal heating amounts to the
existence of different set of onset modes and observed that the mode with cc <0 has
smaller RDc compared to the mode with cc >0 for all choices of physical parameters
considered.

5. The instability occurs via only oscillatory motions and the effect of increasing Ns has
a destabilizing effect on the fluid flow irrespective of the values of physical parameters.
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The critical values of Darcy–Rayleigh number, wave number and wave speed become
invariant as Ns becomes large.

6. The viscoelastic parameters exhibit opposite contribution on the stability of the system;
the relaxation and retardation parameters display destabilizing and stabilizing effects,
respectively.

7. Increase in the strength of internal heating amounts to decrease in 
max and an increase
in �max, irrespective of the values of viscoelastic parameters.
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