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Abstract The effective flowand conduction properties of fractureswithGaussian spatial cor-
relations are investigated by solving themicroscale governing equations in three-dimensional
samples, along the lines initiated by Mourzenko et al. (J Phys II(5):465–482, 1995), Volik
et al. (Trasnp Porous Media 27:305–325, 1997) but in greater details, over a wider range of
the parameters, and with greatly improved accuracy. The effective transport coefficients are
related to intrinsic geometrical characteristics, quantified by the mean aperture, the surface
roughness RMS amplitude, its correlation length, and the intercorrelation coefficient of the
roughness on the two surfaces. Extensive results are presented and analyzed. An empirical
relationship between the transmissivity and conductivity is formulated, the validity of the
Reynolds approximation is assessed, and heuristic expressions are proposed for the direct
estimation of the transport coefficients as functions of the fracture geometrical characteristics.

Keywords Fracture · Conductivity · Permeability · Transmissivity

1 Introduction

Estimations of transport properties of single fractures are of large practical interest since the
fractures control the properties of fracturedmedia. Themain purpose of this paper is to revisit
the estimations of transmissivity and conductivity that were previously given by Mourzenko
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et al. (1995) and Volik et al. (1997), and to propose semiempirical or heuristic correlations
which can be used for practical purposes.

Developments in theoretical and experimental studies of hydraulic behavior of single
fractures are periodically summarized; an extensive review of the early literature is provided
by Adler and Thovert (1999), and a more recent one by Zimmerman and Main (2004).

A lot of attention was devoted to this topic since the 1970s, but first the lubrication approx-
imation was used almost exclusively in the so-called Reynolds approximation; it consists in
solving a two-dimensional equation instead of the governing equations in three dimensions.
The first contribution in this respect appears to be due to Patir and Cheng (1978) and was
followed by many others such as Zimmerman et al. (1991). Some initial contributions were
concerned by the hydromechanical behavior of fractures (Witherspoon et al. 1980; Tsang
and Witherspoon 1981).

It is not until the mid-1990s that the Stokes equation was solved in three-dimensional
random fractures by Mourzenko et al. (1995); lattice gas automata were applied the same
year to two-dimensional fractures by Gutfraind and Hansen (1995) and Brown et al. (1995),
and later to three-dimensional fractures by Genabeek and Rothman (1999) and Madadi and
Sahimi (2003). Volik et al. (1997) used the same methodology as Mourzenko et al. (1995)
and solved the Laplace equation in three dimensions in order to calculate the macroscopic
conductivity of fractureswithGaussian surfaces. Three-dimensional fractureswith self-affine
surfaces were addressed by Mourzenko et al. for conductivity (Mourzenko et al. 1999) and
permeability (Mourzenko et al. 2001).

Despite these early 3D contributions, two-dimensional fractures are still the topic of some
studies. Some of them considered fractures with self-affine profiles (Oron and Berkowitz
1998; Drazer and Koplik 2000) or real measured profiles (Koyama et al. 2008).

A method of perturbation was used by Basha and El-Asmar (2003) in order to obtain
the flux and pressure distribution in two-dimensional rough-walled channels, and Crandall
et al. (2010) studied them numerically by using a finite-volume CFD package. Sisavath et al.
(2003) derived an expression for the hydraulic aperture of a sinusoidal fracture from Stokes
equations by a perturbation method. Malevich et al. (2006) performed formal expansions
by an analytical and numerical algorithm for channels bounded by three-dimensional wavy
walls; Adler et al. (2013) extended their study to inertial flows.

The method of asymptotic expansions was applied by Plouraboué et al. (2004) in order to
derive expressions for the conductivity and transmissivity of rough-walled fractures. Brush
andThomson (2003) performed a numerical studyof 3DNavier–Stokes equations in synthetic
fractures and compared their solutions with those of the Reynolds equation.

Possible modifications of the Reynolds equation were considered by Ge (1997), Mallika-
mas and Rajaram (2010) and Nicholl and Detwiler (2001) in order to take into account the
local variations of the aperture field, i.e., to introduce the derivatives of this field directly in
this equation. Corrections for local orientation and roughness effects are introduced byWang
et al. (2015).

Nonlinear fracture flows have also received some attention. For instance, Skjetne et al.
(1999) discussed and investigated by two-dimensional lattice Boltzmann simulations the
differences between lowReynolds number creeping and highReynolds number inertial flows.
Flows of non-Newtonian fluids, which are used in reservoir engineering, have also been
examined (e.g., Talon et al. 2014; Roustaei et al. 2016; Bao et al. 2017). Combined inertial
and non-Newtonian effects are addressed by Yan and Koplik (2008). All these works except
Bao et al. (2017) consider fractures with self-affine geometry.

The present work proceeds along the lines initiated byMourzenko et al. (1995), Volik et al.
(1997) and investigates the fracture flow and conduction properties by solving the microscale
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Stokes and Laplace equations in three-dimensional fracture samples. Profit is taken of the
tremendous increase in computational resources to widely extend the investigated range of
parameters and to greatly improve the data accuracy, by using much larger fracture samples
and statistical data sets, and by quantifying and correcting the discretization errors. The results
of the solutions of the Stokes and the Laplace equations are systematically compared to those
obtained with the Reynolds equations. Finally, based on the improved data set, heuristic
expressions are proposed for the direct estimation of the transport coefficients as functions
of the fracture geometrical characteristics, which could not be attempted in Mourzenko et al.
(1995) and Volik et al. (1997).

2 General

2.1 Description of Fractures

2.1.1 Geometric Statistical Parameters

A fracture is bounded by two non-planar surfaces which may coincide over what is called a
contact area. Such a fracture is schematized in Fig. 1a. It is generally assumed that the two
surfaces oscillate around two average planes h±

0 , parallel to the xy-plane. The two surfaces
S+
p and S−

p displayed in Fig. 1a can be represented by the relations

z±(x) = h±
0 + h±(x), (1)

where x(x, y) is the position vector and h±(x) the fluctuations of the surface around the
average planes. The local aperture b is the difference w = z+ − z− when it is nonnegative

b(x) =
{

w(x), w(x) ≥ 0
0, w(x) < 0

. (2)

When this aperture is equal to zero, it corresponds to the contact areas in Fig. 1a.
The fluctuations h±(x) are random in character. Let us first consider the average of these

fluctuations. Two averages can be used, namely statistical and spatial averages, which are
denoted by brackets <.> and overbars (.), respectively. For random fields which are sta-
tistically homogeneous, these two averages are equivalent. Since the statistical averages are
more general, they are used in this section.

The distance between the two average planes (for which 〈h±(x)〉 = 0) is denoted by

bm = h+
o − h−

o . (3)

At least three other statistical characteristics are necessary to describe the random prop-
erties of a fracture. The first one is the probability densities ϕ(h±) of the fluctuations h±(x).
Experimental measurements generally show that these densities are Gaussian with identical
roughness σh (Adler and Thovert 1999; Brown 1995; Gentier 1986; Plouraboué et al. 1995)

ϕ(h±) = 1√
2πσh

exp

[
−h±2

2σ 2
h

]
, σh = σh+ = σh− . (4a)

The second statistical characteristic is the spatial autocorrelation function of each surface

Ch±(u) = 〈h±(x)h±(x + u)〉, (4b)
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Fig. 1 a Convention and notations for the fracture geometry; the contact areas are displayed in black. b
Three-dimensional view of a random surface with a Gaussian correlation

where u is the lag. The average is performed over x. For isotropic surfaces,Ch± only depends
on the norm u of u.

The third statistical characteristic is quantified by the intercorrelation coefficient θI
between the two surfaces

θI = 〈h+(x) h−(x)〉
σ 2
h

. (5)

From now on, the statistical properties of the upper and lower surfaces are identical and the
superscript ± is omitted.

2.1.2 Autocorrelation Function

There are two major classes of autocorrelation functionsCh(u), namely the Gaussian and the
self-affine autocorrelations. The self-affine character ofmany rock surfaceswas demonstrated
by experimental observations (see e.g., Brown and Scholz 1985). Their transport properties
have been investigated inMourzenko et al. (1999, 2001). Empirical but fairly accuratemodels
for their conductivity and transmissivity have been formulated in the form of power laws of
their fractional open area. We focus in this paper on the other classical case of Gaussian
autocorrelations.

The Gaussian autocorrelation function for an isotropic fracture can be expressed as

Ch(u) = σ 2
h exp

[
−

(
u

�c

)2
]

, (6)

where u is the norm of the lag u.Ch(u) is characterized by a single correlation length scale �c.
The fracture surfaces with such an autocorrelation look like old mountains as in Fig .1b, and

123



Conductivity and Transmissivity of a Single Fracture 239

�c corresponds roughly to the distance between two summits or two valleys. The Gaussian
surfaces are statistically homogeneous, or in other words they are statistically invariant by
arbitrary translations.

Other surface rugosity indices than σh are used in the literature, such as the RMS slope
Z2 along a profile Myers (1962). For the Gaussian correlation (6), they are directly related
by

Z2 =
〈(

dh

dx

)2
〉1/2

= 2
σ 2
h

l2c
. (7)

2.1.3 Fractional Open Area and Mean Aperture

The fractional open area S0 is the fraction of the total fracture surface where the aperture b
defined by (2) is strictly positive, or equivalently, it is the probability that w is positive. The
mean aperture b is the spatial average of b over the whole fracture, including the contact
zones. It is directly accessible to observation, for instance, by measuring the fracture volume
per unit area. These two quantities are related to themean separation bm byAdler and Thovert
(1999)

S0 = 1

2
erfc

(
− bm√

2σw

)
, (8a)

b = S0bm + σw√
2π

e
− b2m

2σ2w , (8b)

where σw is related to σh by
σw = σh

√
2 (1 − θI ). (9)

Note that these results apply regardless of the spatial correlation function Ch .

2.1.4 Summary and Generation

If the surface roughness σh is taken as the unit length, the dimensionless geometrical parame-
terswhich characterize the fracture are bm/σh , �c/σh and θI .Many experimental observations
(Gentier 1986; Brown et al. 1986) are found in the intervals

0.3 � b

σh
� 3 , 1 � �c

σh
� 7 , 0 � θI � 1. (10)

The generated fractures are spatially periodic in the x- and y-directions, with a unit cell
size L × L , discretized into Nc × Nc × Ncz elementary cubes of size a. The dimension
Ncz is set in order to encompass the whole open space τ0 of the fracture (see Fig. 1a). Two
uncorrelated random fields, h1 and h2, are generated by the standard method of Fourier
transforms [see Adler 1992; Mourzenko et al. 1996 for details], by imposing their variance
σ 2
h and the power spectrum of the covariance Ch , which depends on lc. Then, fields h+ and

h− with the prescribed intercorrelation coefficient θI are obtained by a linear combination
of h1 and h2. Note that the spatial correlations of the functions h± and of their difference w

are identical,
Cw (u)

σ 2
w

= Ch (u)

σ 2
h

. (11)
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The two surfaces are then placed in the three-dimensional grid with their mean planes sep-
arated by the prescribed distance bm . Finally, the discretized interstitial volume is obtained
by retaining all the cubic volume elements whose centers rest between S−

p and S+
p .

It has to be mentioned that whereas this discretization procedure yields a correct fracture
volume, i.e., a mean aperture b in agreement with (8), the fractional open area S0 is slightly
smaller than in the continuous space. The deviation can be quantified analytically, and the
complicated expression for the exact result is approximated with excellent precision by the
simple statement that the fractional open area in the discrete model corresponds to S0 as
predicted by (8a) for (bm − a/2). The maximal deviation occurs for bm = 0, where S0 is

smaller than the theoretical value 1/2 by a/
(
2
√
2πσw

)
, i.e., by 0.028 for θI = 0 and the

discretization a = σh/5 used in the simulations.
In the following, the results for the fracture transport properties are analyzed in terms of

the parameters σh , lc, θI and b, rather than bm since all these quantities can be measured in
real fractures. The mean separation bm is used only in the discussion of technical issues such
as discretization effects.

Examples of fracture samples with cell size L = 16lc and discretization a = σh/5 are
displayed in Fig. 2, for various apertures, correlation lengths and intercorrelation coefficients.

2.2 Transmissivity

The lowReynolds number flow of an incompressible Newtonian fluid through a rough-walled
channel is governed by the usual three-dimensional Stokes equations (see Mourzenko et al.
1995) together with the no slip boundary condition at the solid surfaces

μ∇2v = ∇ p , ∇ · v = 0 , v = 0 on S±
p , (12)

where v, p and μ are the velocity, pressure and viscosity of the fluid, respectively.
A macroscopic pressure gradient ∇ p is applied. Owing to the periodicity of the fracture

geometry, the velocity field is periodic as well, with a period L in the plane of the fracture.
When these equations are solved, the mean flow rate per unit fracture width J is derived

and related to the mean pressure gradient by the 2×2 transmissivity tensor σ S

J = 1

L2

∫∫∫
τ0

v dxdydz , J = − 1

μ
σ S · ∇ p. (13)

σ S is homogeneous to the cube of a length, and it only depends on the fracture geometry.
The subscript S indicates that σ S is calculated by solving the Stokes equation. For isotropic
fractures, σ S is a spherical tensor σS I , where I is the unit 2×2 tensor.

In reference to Poiseuille flow between parallel planes separated by a gap b, with trans-
missivity b3/12, the equivalent hydraulic aperture of a random channel can be defined by

bS = (12σS)
1/3. (14)

2.3 Conductivity

The conduction problem in the fracture is cast here in terms of diffusion, but the same
formalism applies to electric current. In both cases, it is considered that the solid matrix is
impervious or insulating and that no surface diffusion or conduction takes place along the
fracture boundaries.
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Fig. 2 Cross sections through fracture samples with b′
m = 1, θI = 0 and l ′c = 1, 2, 4 and 8 (a), and with

l ′c = 4, θI = 0, 0.5 and 1, and b′
m = 1 (c) or 2 (d). Top view of a fracture with b′

m = 2, θI = 0 and l ′c = 8
(e); the contact areas are shown in black. In all cases, L ′ = 16 and a′=0.2. Colors correspond to the local
flow velocity (a, c, d), and to the aperture, diffusive flux and flow rate integrated over the fracture aperture (e),
with a driving gradient from left to right. All these quantities are normalized by their averages over the whole
fracture and displayed with the logarithmic color code shown in (b)

The local concentration c in the fracture void space τo is governed by the usual Laplace
equation (see Volik et al. 1997) together with the no flux boundary condition

∇2c = 0 , n · ∇c = 0 on S±
p , (15)

where n is the normal vector to the solid surface S±
p . A macroscopic concentration gradient

∇c is specified. Owing to the periodicity of the fracture geometry, the local concentration
gradient is periodic as well, with a period L in the plane of the fracture.
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The mean flux per unit fracture width Jc can be derived by integrating the local flux over
the volume τo

Jc = − D

L2

∫∫∫
τ0

∇c dxdydz, (16)

where D is the molecular diffusion coefficient. Again, the mean flux is linearly related to the
concentration gradient,

Jc = −ΛL · ∇c. (17)

For an isotropic fracture, the 2×2 conductivity tensor ΛL becomes a spherical tensor ΛL I .
The subscript L indicates that ΛL is deduced from the solution to the Laplace equation.
ΛL/D is homogeneous to a length, and it only depends on the geometry of the fracture.

In reference to the plane channel with aperture b whose conductivity is equal to D b, an
equivalent mean aperture for a random channel can be defined by

bL = ΛL

D
. (18)

2.4 Numerical Procedure

The partial differential equations (12) and (15) are discretized by finite differences in the
Nc × Nc × Ncz elementary cubes of size a in which the fracture space is represented (cf
Sect. 2.1.4).

As in Mourzenko et al. (1995), the so-called artificial compressibility method is used for
the Stokes equations. The equations are solved successively along each direction by using an
alternating direction implicit scheme. Convergence is reached when the flow rate is found to
be the same within a precision of 10−3 across various sections of the medium. The Neumann
problem (15) is solved via a second-order finite-difference formulation by using a conjugate
gradient method Volik et al. (1997). The conductivity of each random sample is determined
with a precision of 10−6.

The calculations are repeated for a number Nr of random realizations, with macroscopic
gradients applied successively along the x- and y-axes. The mean transport coefficients
denoted by 〈σS〉 and 〈ΛL 〉 are deduced from the statistical averages of the macroscopic
fluxes obtained in these 2Nr calculations.

For Stokes flow, the typical values of Nr range from 20 for large bm and lc (where the
size of computational domain can reach Nc = 640 and Ncz ≥ 100) to 100 for smaller lc and
intermediate bm , and several hundreds for small apertures. Larger values were considered in
some cases with large variability (up to 1600 when bm = σh/2 and lc = σh), and sometimes
smaller ones (but at least 10) when lc � σh with θI ≥ 0.5, where the statistical fluctuations
are very small (see Fig. 3). For the numerically less demanding Laplace problem, larger
values of Nr were applied, from at least 40 to several thousands for small lc or bm .

2.5 Notations

The following notations are used in the presentation of the results.
The distinction between spatial averages denoted by an overbar (e.g., b) and statistical

averages over a set of realizations denoted by brackets (e.g., 〈σS〉) should be kept in mind.
Note that for the hydraulic aperture bS , the improper but convenient notation 〈bS〉 is used
to designate 〈12 σS〉1/3, rather than 〈(12 σS)

1/3〉. Thus, 〈bS〉 and 〈σS〉 are related by (14)
and the results presented in terms of the mean hydraulic aperture can be straightforwardly
transposed in terms of the mean transmissivity.
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Fig. 3 Reduced standard deviations of the hydraulic aperture σbS /〈bS〉 (a) and of the conductivity σbL /〈bL 〉
(b) as functions bm/σh . Data are for L = 16lc , θI = 0 (filled circle), 0.5 (filled square) and 1 (filled inverted
triangle), with lc/σh = 1 to 8. The labels in the figures correspond to lc/σh for θI = 1. The thick solid lines
correspond to Eq. (34) in “Appendix”

Dimensionless quantities denoted by primes are defined by normalization by geometric
lengths associated with the surface characteristics, generally σh except for the cell size L for
which lc is a more relevant scale,

b′
m = bm

σh
, b′ = b

σh
, l ′c = lc

σh
, a′ = a

σh
(19a)

L ′ = L

lc
, σ ′

S = σS

σ 3
h

, b′
S = bS

σh
, b′

L = bL
σh

. (19b)

The transport coefficients are often compared to those of a plane channel with the same
aperture b. The corresponding dimensionless ratios are denoted by tildes,

σ̃S = σS

b
3
/12

, b̃S = bS
b

, b̃L = bL
b

. (20)

3 Numerical Results

As discussed in Sects. 2.2 and 2.3, the transport coefficients only depend on the geometry
and one can write

σS = f
(
σh, b, lc, θI , a, L

)
, ΛL = D g

(
σh, b, lc, θI , a, L

)
. (21a)

This can be expressed in dimensionless form as

σ̃S = b̃S
3 = f

(
b

′
, l ′c, θI , a′, L ′) , b̃L = g

(
b

′
, l ′c, θI , a′, L ′) . (21b)

There are two kinds of quantities among the arguments of f and g in (21). The first ones
are real geometrical characteristics of the fracture, but the last two arguments are parameters
without any physical relevance introduced in the numerical procedure. Their influence on the
results should vanish if they are set appropriately, i.e., with a fine enough discretization step
a and a large enough unit cell size L .
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Unless otherwise stated, all calculations are conducted with a discretization step a′ = 0.2,
which was found satisfactory in earlier works (Mourzenko et al. 1995, 1999, 2001; Volik
et al. 1997). The influence of a on the numerical solution was carefully and thoroughly
examined. The discretization error was quantified, and a corrective procedure was devised
and systematically applied to the results. The residual error in the predictions of bS and bL
is estimated to be at most ± a/10 = ± 0.02σh .

The cell size effects have also been quantified with great care. By comparison with data
for larger sizes, the residual size effects associated with the value L ′ = 16 used in all system-
atic calculations are found to be in all cases of a much smaller amplitude than the statistical
fluctuations.

Finally, the statistical fluctuations associated with the average results discussed in the
following are presented in “Appendix.” The standard deviations of bS and bL decay from
a few tens of percent for small apertures to a few percent or less as the aperture increases,
according to the power laws (34).

3.1 Percolation

Percolation of the interstitial space, i.e., the existence of a continuous path open to the flow
across the whole fracture, is obviously a crucial parameter for its transport properties. This
occurs when the fracture is sufficiently open, beyond a threshold which can be expressed in
terms of bm , b or S0, in view of (8).

Percolation and the critical behavior of the fracture properties around the percolation
threshold are out of the scope of the present study, but a short presentation of some basic
results is useful for the discussion of the transport properties.

Two general features can be recalled. First, in a continuous description, percolation of the
fracture interstitial volume is equivalent to the two-dimensional percolation of the projected
open regions in the mean fracture plane. Second, the correlation length �c of Gaussian frac-
tures only determines the scale of the contact and open zones, but not their topology; hence,
�c does not influence the percolation characteristics. Thus, the percolation of the fracture
open space depends only on S0 or bm/σw. The percolation of the projected open regions
was carefully investigated in Mourzenko et al. (1996), with a fine resolution and elimina-
tion of the size effects by extrapolation to L → ∞. The threshold was found very close
to S0c = 1/2, as expected in 2d continuous percolation, which corresponds to bmc=0 and
bc = σw/

√
2π = √

(1 − θI ) /π σh .
In this work, only fractures with b′

m ≥ 1/2 are considered, i.e., S0 ≥ 0.638, signif-
icantly larger than 1/2. However, a small fraction of the random realizations are found
non-percolating, for some combinations of the geometrical characteristics. This results from
finite size effects, even though L is relatively large, and from a discretization effect, since
the percolation of the interstitial volume is not strictly equivalent to the percolation of the
projected open areas in a discrete representation.

Non-percolating samples occurred only for the smallest investigated aperture b′
m = 1/2,

for which up to 10% of the samples are found non-percolating, and even 15% in the worst
case (θI = 0, b′

m = 1/2, l ′c = 1). These samples are included in the statistical sets for the
averaging of the transport coefficients, with σS = ΛL = 0, whereas nonzero values might be
obtained with a smaller grid step. This may affect the statistical averages by a few percent,
on top of the other discretization effects pertaining to the solution of the transport equations.
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Fig. 4 Mean reduced transmissivity 〈σ̃S〉 (a, c, e) and conductivity 〈b̃L 〉 (b, d, f) as functions of the aperture
b
′
for θI = 0 (a, b), 0.5 (c, d) and 1 (e, f). The labels correspond to l ′c . The solid symbols correspond to the

numerical data. The solid lines in (a, c, e) correspond to the model (32). The broken and solid lines in (b,
d, f) correspond to the model (33). Open symbols joined by dash lines correspond to the data of Mourzenko
et al. (1995) for l ′c = 1, 2 and 3 in a and to the data of Volik et al. (1997) for l ′c = 1 in b. The boxes in
c, d correspond to the uncertainty for 〈σ̃S〉 and 〈b̃L 〉 if the geometrical characteristics are measured with a
precision of ±10% for b

′
and l ′c and ±0.1 for θI

3.2 Overview of the Global Trends

The global trends of the dependence of the transport coefficients on the geometrical param-
eters are illustrated in Fig. 4. Data for l ′c = 1 to 8 are shown for uncorrelated surfaces with
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Fig. 5 Mean reduced transmissivity 〈σ̃S〉 (a) and conductivity 〈b̃L 〉 (b) as functions of θI for l ′c = 4 and

b
′ = 1, 2, 5 and 10. The symbols and error bars correspond to the mean numerical data and to ± one standard

deviation. The solid lines in a correspond to the model (32). The solid and broken lines in b correspond to the
model (32) for b

′ ≤ 2 and b
′ ≥ 2, respectively. The labels in the figures correspond to b

′

θI = 0 in (a, b) and for correlated surfaces with θI = 0.5 in (c, d) and θI = 1 in (e, f). Note
that the standard deviations associated with these averages are given in “Appendix.”

Of course, 〈σ̃S〉 and 〈b̃L 〉 increase with the aperture in all cases and approach one when
b

′ � 1, i.e., the fracture transport coefficients approach those of a plane channel. However,
this convergence is slow, and〈σ̃S〉 and 〈b̃L 〉 are still significantly smaller than 1 when, for
instance, b

′ = 6, even though the fractures are virtually entirely openwith a fractional contact
area 1-S0 smaller than 10−5.

Both transport coefficients increase with l ′c, i.e., when the aperture variations take place
over longer distances (see Fig. 2a). They also increase with θI , i.e., as the fracture surfaces
tend to be parallel. When both circumstances occur simultaneously, for instance, with θI = 1
and l ′c � 1 whatever the aperture, the transport coefficients are close to those of the plane
channel with the same b.

Note that the influence of the surface intercorrelation θI is strong for small apertures, but
rapidly decreases as the aperture increases. This is confirmed by Fig. 5, where 〈σ̃S〉 and 〈b̃L 〉
are plotted as functions of θI for l ′c = 4 and various apertures. The transport coefficients are
insensitive to the intercorrelation of the two surfaces when they are sufficiently far apart.

Examples of flow patterns are displayed in Fig. 2. Excursions of the surfaces are seen in
Fig. 2a to create deep grooves which poorly contribute to the flow when lc is short. When
θI increases (Fig. 2c, d), the fractures become sinuous channels with parallel walls, where a
nearly uniform flow can develop.

Some comparisons between the present data and those of Mourzenko et al. (1995) and
Volik et al. (1997) are given in Fig. 4a, b. The orders of magnitude are always found to be
in good agreement. For instance, 〈σ̃S〉 of Mourzenko et al. (1995) almost coincides with the
present values for l ′c = 1. However, there are discrepancies for l ′c = 3, which result primarily
from statistical effects, due to the small number Nr = 5 and size L/ lc = 3.33 of the samples
in Mourzenko et al. (1995), compared to Nr ≥ 100 and L/ lc = 16 for the present results.

3.3 Relationship Between the Effective Transport Coefficients

The effective apertures for flow and conduction are compared in Fig. 6a, b where 〈b̃S〉−〈b̃L 〉
is plotted as a function of b

′
. The most salient feature is that this difference changes sign.
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Fig. 6 Difference 〈b̃S〉 − 〈b̃L 〉 (a, b) and the length w̃c (c, d) as functions of b
′
. Data in (a, c) are for θI = 0,

and data in (b, d) are for θI =0 (solid lines), 0.5 (dotted lines) and 1 (dash lines). The labels in the figures
correspond to l ′c

Since 〈b̃S〉 − 〈b̃L 〉 increases with l ′c over the whole aperture range, the aperture where the

change of sign takes place also increases, from b
′ ≈ 2 for l ′c = 1 to b

′ ≈4 for l ′c = 8.
At small apertures, 〈b̃S〉 is larger than 〈b̃L 〉 due to the flow channelization. The fluid

tends to flow along paths that sample the largest values of the aperture. This effect is much
less significant for diffusion, as shown by the comparison of the flux maps in Fig. 2d, f.
The situation is reversed for large apertures, where channelization disappears. The surface
roughness reduces the effective aperture open to the fluid flow in a greater respect than for
diffusion, especially for small l ′c, and therefore, 〈b̃S〉 < 〈b̃L 〉.

The intercorrelation coefficient θI strongly influences 〈b̃S〉 − 〈b̃L 〉 at small aperture. The
difference between the hydraulic and diffusion effective apertures decreases and eventually
vanishes as θI increases and approaches 1. However, it is remarkable that the influence of
θI totally vanishes when b

′ � 4 (Fig. 6b). At large apertures, the disturbances due to the
roughness of the two fracture surfaces do not interact, and they both result in an apparent
shift of the mean surface planes. This limit is examined in detail in Sect. 3.5.1.

Another comparison can be made by considering the ratio of the flow and diffusion trans-
port coefficients. In three-dimensional porous media, the ratio of the permeability K to the
effective diffusivity D is often successfully predicted by a semiempirical model based on a
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percolation theory argument Katz and Thompson (1986)

K

D
= C w2

c , (22)

where the constant C depends on the microstructure and wc is the width of the smallest
constriction that the fluid has to pass when flowing through the medium. A two-dimensional
counterpart of (22) for the fracture transport coefficients can be written as

〈σS〉
〈bL 〉 = 1

12
w2
c ,

〈σ̃S〉
〈b̃L 〉 = w2

c

b
2 = w̃c

2, (23)

where C has been set equal to 1/12, so that w̃c=1 for a plane channel. The length w̃c deduced
from the numerical data via (23) is plotted in Fig. 6c, d as a function of b

′
for various l ′c

and θI . It is always found of the order of unity, increasing with the correlation length l ′c, but
remarkably insensitive to the surface intercorrelation θI . In the practical range defined by
(10), w̃c can be represented within ± 5% by

w̃c ≈ 1.1
l ′c − 0.2

l ′c + 1
. (24)

Thus, the combination of (23) and (24) provides a practical and fairly accurate rule of thumb
to deduce one of the transport coefficients when the other one is known.

3.4 Comparison Between the Full Solutions and the Reynolds Approximations

When Mourzenko et al. (1995) and Volik et al. (1997) were published, a lot of emphasis was
put on the discussion of the Reynolds approximation, which is a simplified way to address the
properties of fractures governed in three dimensions by the Stokes and the Laplace equations.
Now, almost 20 years later, the situation has changed a lot since everybody is convinced that
the Reynolds approximation is often poor.

When the fracture aperture varies slowly over distances large with respect to the aperture,
the lubrication approximation is valid and the three-dimensional Stokes and Laplace equa-
tions can be replaced by a two-dimensional equation which is called the Reynolds equation.
More precisely, for flow, the local fluid flux j is approximated by Poiseuille’s formula,

j = − b3

12μ
∇ p (25a)

and the mass conservation equation yields

∇.(b3∇ p) = 0. (25b)

For diffusion, the local flux j c is given by

j c = −bD ∇c, (26a)

and if the molecular diffusion coefficient is constant, the Reynolds equation reads

∇ · (b∇c) = 0. (26b)

These equations should be supplemented with overall boundary conditions, such as pre-
scribed macroscopic pressure or concentration gradient, ∇ p or ∇c, together with spatial
periodicity, as in the 3D Stokes or Laplace problems.
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Fig. 7 Comparisons of the transport coefficients resulting from the Stokes (left column) or Laplace (right
column) equations with the predictions of Reynolds equation. Data are for: θI = 0 (a, b), 0.5 (c, d) and 1 (e,
f). Red thick lines in (a, b) indicate the ranges (10) of commonly observed values of b

′
and �′

c

After solution of the 2D problems (25) or (26) over the L × L domain, integration of
the two-dimensional fluxes over the fracture surface yields the transmissivity σR and the
conductivity ΛR where the subscript R refers to the Reynolds approximation.

The Reynolds approximations for flow and conductivity are compared to the Stokes and
Laplace solutions in Fig. 7 for θI = 0, 0.5 and 1. Note that no systematic correction of
discretization errors was applied for the solutions of Reynolds equation. However, it was
checked by successive refinements in some cases that these errors are generally negligible
and reach at most 3% for σR for very small apertures with θI = 0.

When the correlation length �′
c and the aperture b

′
are large, the Reynolds approximation

is valid and the ratios approach 1. However, realistic values of these parameters for real
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fractures are in the range given by (10) and indicated by frames in Fig. 7a, b where large
deviations between the two results are visible.

The maximal error is observed for small aperture b
′ ≈ 1 and short correlation length

�′
c = 1. The ratio 〈σR〉/〈σS〉 is about 6.6, and 〈ΛR〉/〈ΛS〉 is about 1.4 when θI = 0. Reynolds
approximation widely overestimates both transport coefficients. Interestingly, 〈σR〉/〈σS〉 is
still larger for mutually correlated surfaces, with 〈σR〉/〈σS〉 ≈ 9.4 and 〈ΛR〉/〈ΛS〉 ≈ 1.8
when θI = 0.5 and 〈σR〉/〈σS〉 ≈ 12 and 〈ΛR〉/〈ΛS〉 ≈ 2.2 when θI = 1.

The influence of θI vanishes for large apertures and/or correlation length, roughly speaking
when b

′
l ′c � 8. However, large deviations remain even in very open channels if the roughness

correlation length is short, with 〈σR〉/〈σS〉 ≈ 2.7 and 〈ΛR〉/〈ΛS〉 ≈ 1.13 for all θI when
b

′
=8 and �′

c = 1. A fair agreement is reached only for a slowly varying aperture which is the
a priori condition of validity of the lubrication approximation. When l ′c = 8, the solution of

Reynolds equation overestimates 〈σS〉 by about 10% and 〈ΛS〉 by 2∼3%, for all b
′
and θI .

3.5 Modelization of the Transport Coefficients

Models are proposed in this section to represent the numerical data and provide a convenient
mean for the direct estimation of the fracture transport coefficients as functions of their
geometrical parameters. Expressions are given first in the limiting cases of large and small
apertures. Then, models are devised which represent the data with a fairly good accuracy
over the whole range of the parameters. It should be noted that the forms of the expressions
are heuristic and justified mostly by their practical success.

3.5.1 Large Apertures

In the limit of large apertures, the fractures can be viewed as plane channels with rough walls,
and the data can be analyzed in terms of the apparent reductions δbS and δbL of their aperture
due to the surface roughness,

δbS = b − bS , δbL = b − bL . (27)

These quantities are plotted in Fig. 8. They converge toward a limit when b increases.
This limit is a decreasing function of the correlation length l ′c but does not depend on the
intercorrelation coefficient θI ; as suggested by Fig. 8c, it can be modeled by the power laws

δb′
S ≈ 3 l ′ −3/4

c , δb′
L ≈ l ′ −3/4

c (b
′ → ∞). (28)

The influence of the surface roughness on the transmissivity is about three times larger than
on conductivity.

3.5.2 Small Apertures

Recall that the behavior of the fracture transport properties at the percolation threshold is not
specifically addressed in this study. We consider here apertures in the range 0.5� b

′ �2.
The numerical data for the transmissivity 〈σ ′

S〉 are shown in logarithmic scales in Fig. 9

(left column), as functions of the aperture b
′
shifted by an offset value. For all values of θI ,

the data appear to obey cubic laws, which can be summarized by

〈σ ′
S〉 ≈ 1

0.8
(
1 + 7/ l ′ 2c

)
[
b

′ − 0.4
√
1 − 0.94θI

]3
12

. (29)

123



Conductivity and Transmissivity of a Single Fracture 251

1/b

0 0.1 0.2 0.3 0.4 0.5

δb
S

0

0.5

1

1.5

2

2.5

3

1
2 3
4 5
6

7

8

(a)
1/b

0 0.1 0.2 0.3 0.4 0.5

δb
L

0

0.2

0.4

0.6

0.8

1

1.2

1
2 3

4

5
6

7

8

(b)

lc

 1        5         10

δb
S

δb
L

10-1

100

101

(c)

Fig. 8 Reductions δb′
S (a) and δb′

L (b) of the effective aperture for the transport processes at large apertures

as functions of 1/b
′
, for θI = 0 and l ′c = 1 to 8 (solid lines). Data are also shown for θI = 0.5 (dotted

lines) and 1 (dash lines) when l ′c = 1 and 8. Extrapolations of δb′
S (filled circle) and δb′

L (filled square) for

1/b
′ →0, as functions of l ′c (c). The straight lines in (c) and the symbols on the left axis in (a, b) correspond

to the models (28). The error bars shown in some cases correspond to ± one standard deviation. The labels in
the figures correspond to l ′c

This model involves a prefactor that depends on the correlation length, and an offset for
the aperture that depends on the intercorrelation coefficient θI . This offset does not exactly
correspond to the theoretical percolation threshold which is b

′
c = √

(1 − θI ) /π (for S0 =
1/2), but does not strongly deviate from it and depends on θI in a similar way.

Similar plots for the conductivity are shown in the right column of Fig. 9. They reveal
a more complex behavior. Power laws are still observed, but their exponent decreases from
1.35 when θI = 0 to 1 when θI = 1 with short l ′c. The prefactor also depends on both l ′c and
θI . Combining fitted models for the exponent, aperture offset and prefactor results in

〈b′
L 〉 ≈ 0.84 + 0.31θI

1 + (0.41 + 0.7θI ) / l ′c

×
[
b

′ − 0.55
√
1 − 0.996θI

]1+0.35

(
1− θ3I

1+12/ l′4c

)
. (30)

The offset for the aperture slightly differs from that in (29) and is found very close to b
′
c.

Models (29) and (30) are plotted in Fig. 9 in comparison with the numerical data.
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Fig. 9 Mean reduced transport coefficients 〈σ ′
S〉 (a, c, e) and 〈b′

L 〉 (b, d, f) as functions of the aperture b
′

shifted by an offset, for θI = 0 (a, b), 0.5 (c, d) and 1 (e, f). The symbols correspond to the numerical data,
and the solid lines correspond to the models (29, 30). The labels in the figures correspond to l ′c

3.5.3 Overall Models

There is no obviousway tomodel the transport coefficients for intermediate apertures between
the two limiting cases examined in the above. Besides, different situations are observed for
the transmissivity, where cubic laws are always observed in both limiting cases, and for the
conductivity, where the exponent varies with l ′c and θI . Hence, different heuristic approaches
have been applied in each case.
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Note first that the existence of cubic laws with different prefactors for the transmissivity at
small and large apertures separated by a transition regime in the intermediate range has already
been observed by Talon et al. (2010), who considered fractures with self-affine correlations
of the apertures and used the Reynolds approximation to evaluate the effective transmissivity.
However, there are differences. First, the transmissivity at small apertures is found in Talon
et al. (2010) to vary as the cube of the aperture of the tightest constriction that the flowing
fluid has to cross, whereas the cubic law (29) is in terms of the mean aperture b

′
, and there is

no straightforward way to relate the former to the latter. Secondly, the scaling properties of
the aperture field in Talon et al. (2010) allow a different but well-defined power law regime
to prevail over a wide range of intermediate apertures, whereas the transition takes place over
a shorter range without obvious law in the present situation.

It was therefore chosen to represent the variations in 〈σ̃S〉 over thewhole range of apertures
by combining (28) and (29) with a weighting function ψ that ranges from 0 (large apertures)
to 1 (small apertures)

ψ = 1

1 +
(
b

′
/8

)2 . (31)

A cubic law is built with a prefactor and an offset which are both deduced from those for
the small and large aperture limits, by applying coefficients ψ and (1-ψ) to the parameters
of (29) and (28) , respectively. Note that (28) is also replaced by the modified expression
δb′

S ≈ 2 l ′ −0.6
c , which is more representative of the observations in the upper range of

apertures for practical applications than the limit (28) for b
′ → ∞. The resulting model

reads

〈σ̃S〉 =
[

ψ

0.8
(
1 + 7/ l ′ 2c

) + (1 − ψ)

]

×
[
1 −

{
ψ

0.4
√
1 − 0.94θI

b
′ + (1 − ψ)

2 l ′ −0.6
c

b
′

}]3
. (32)

The comparison in Figs. 4 and 5 of (32) with the numerical data is gratifying. The trends
of the influences of all the geometrical parameters is captured, and the quantitative agreement
is satisfactory. The relative deviations are generally of a few percents; they reach 10∼20%
only for small apertures when l ′c = θI = 1, and they always remain within the range of± one
standard deviation of the statistical fluctuations. They are also smaller than the uncertainties
associated with the determination of the geometrical parameters in practical applications,
which are illustrated in Fig. 4c for a few typical cases in the range of (10) if b

′
and l ′c are

measured within ±10% and θI within ±0.1. Thus, (32) is a convenient model for a direct
and easy evaluation of the fracture transmissivity.

Because of the more complex form of (30) compared to (29), a different approach is
applied to conductivity. Figure 9 shows that (30) applies with reasonable accuracy up to
apertures b

′ � 2. Conversely, an expression for bL applicable in the range b
′ � 2 can be

devised by supplementing the corrective term δbL in (28) with a higher-order correction.
This results in the model

〈b̃L 〉 = 0.84 + 0.31θI

1 + 0.41+0.7θI
l ′c

b
′0.35

⎛
⎝1− θ3I

1+ 12
l′4c

⎞
⎠
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×
[
1 − 0.55

√
1 − 0.996θI

b
′

]1+0.35

⎛
⎝1− θ3I

1+ 12
l′4c

⎞
⎠

(b
′ � 2), (33a)

〈b̃L 〉 = 1 − l ′ −3/4
c

b
′

−
[
(2.2 − 2.7θI ) − 2.1 − 1.8θI

l ′c

]
1

b
′3 (b

′ � 2). (33b)

Again, the comparisons in Figs. 4 and 5 of (33) with the numerical data show a good
agreement. The relative deviations are smaller than ±3% for b

′ ≥ 2, smaller than ±5% for
b

′
< 2 except for a few outliners at very small apertures, and within± one standard deviation

of the statistical fluctuations. They are also smaller than the uncertainties associated with the
determination of the geometrical parameters, illustrated in Fig. 4c for few typical cases.

4 Concluding Remarks

The effective flow and conduction properties of fractures with Gaussian spatial correlations
have been investigated by solving the microscale governing equations in three-dimensional
samples, along the lines initiated by Mourzenko et al. (1995) and Volik et al. (1997) but in
greater details, over a wider range of the parameters, andwith greatly improved accuracy. The
effective transport coefficients have been related to the geometrical characteristics, quantified
by the mean aperture (fracture volume per unit projected area), the surface roughness RMS
amplitude, its correlation length, and the intercorrelation coefficient of the roughness on the
two surfaces.

Since these parameters are intrinsic, model-independent characteristics of the fracture
geometry, the numerical data and the various modelizations which have been proposed are
probably applicable with reasonable accuracy to fractures that do not strictly comply with
the Gaussian model. A check of this conjecture and if necessary a generalization of the
predictive models to account for other types of short-range spatial correlations are a natural
and straightforward extension of the present study.
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Appendix: Statistical Fluctuations

The statistical fluctuations of the transport coefficients are summarized in Fig. 3 for all
the calculations with L = 16lc. The reduced standard deviations of the hydraulic aperture
σbS/〈bS〉 and of the conductivity σbL /〈bL 〉 are plotted as functions bm/σh for lc/σh = 1 to
8 with θI = 0, 0.5 and 1.

When θI=0 and 0.5 , the relative fluctuations are decreasing functions of the aperture for
both transport processes, with only a very small influence of the correlation length lc. They
roughly follow the power laws

σbS

〈bS〉 ≈ 0.13

[
bm
σh

]− 3
2

,
σbL

〈bL 〉 ≈ 0.17

[
bm
σh

]− 3
2

(34a)
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for uncorrelated surfaces (θI=0) and

σbS

〈bS〉 ≈ 0.08

[
bm
σh

]− 3
2

,
σbL

〈bL 〉 ≈ 0.12

[
bm
σh

]− 3
2

(34b)

for correlated surfaces with θI = 0.5.
A different behavior prevails for θI = 1. The fluctuations decrease only slightly with the

aperture and much more significantly with the correlation length. However, the magnitude
of the fluctuations is smaller than when θI < 1. They are generally a few percents or less,
except for very small apertures and short correlation lengths, and never exceed 10%.
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