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Abstract The thermodynamically constrained averaging theory (TCAT) has been used to
develop a simplified entropy inequality (SEI) for several major classes of macroscale porous
medium models in previous works. These expressions can be used to formulate hierarchies
of models of varying sophistication and fidelity. A limitation of the TCAT approach is that
the determination of model parameters has not been addressed other than the guidance that
an inverse problem must be solved. In this work we show how a previously derived SEI
for single-fluid-phase flow and transport in a porous medium system can be reduced for the
specific instance of diffusion in a dilute system to guide model closure. We further show how
the parameter in this closure relation can be reliably predicted, adapting a Green’s function
approach used in the method of volume averaging. Parameters are estimated for a variety of
both isotropic and anisotropic media based upon a specified microscale structure. The direct
parameter evaluation method is verified by comparing to direct numerical simulation over
a unit cell at the microscale. This extension of TCAT constitutes a useful advancement for
certain classes of problems amenable to this estimation approach.
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Notation

Roman Letters

b Entropy source density
b Variable vector that maps ∇CAw to C̃Aw

C Species concentration in an entity
D̂ Effective diffusivity tensor

D̂
ABw

Second-rank symmetric closure tensor for a binary system
D̂ Diagonal component of the macroscale effective diffusivity tensor
D̂Aw Molecular diffusion coefficient
d Rate of strain tensor
E Partial mass energy
Ew∗∗ Particular material derivative form of a macroscale entity total energy conservation

equation
G Geometric orientation tensor
G Green’s function associated with the initial and boundary value problem for con-

centration deviations
Gw∗∗ Particular material derivative form of a macroscale body force potential balance

equation
α→ws
G0 Macroscale transfer associated with body force potential from the α = w, s to the

ws interface
g Gravitational acceleration vector
h Energy source density
I Identity tensor
I Initial condition source term
Is Index set of species
i Species qualifier
Jws
s Mean curvature of the ws interface
KE Kinetic energy term due to velocity fluctuations
�mi Microscale length scale
�rr Resolution length scale
�ma Macroscopic length scale
�me Megascale length scale

Miw∗∗ Particular material derivative form of a macroscale species mass conservation equa-
tion

iκ→iα
M Transfer of mass of species i from the κ entity to the α entity per unit volume per

unit time
MWi Molecular weight of species i
MWw Molecular weight for entity w

nα Outward unit normal vector from entity α

p Fluid pressure
α→ws
Q1 Entity-based energy exchange term from entity α = w, s to the ws interface

q Non-advective energy flux vector
qg0 Non-advective energy flux vector due to the product of fluctuations
R Ideal gas constant
r Mass production rate density
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r Position vector
Sw∗∗ Particular material derivative form of a macroscale entropy balance
α→ws
T0 Macroscale momentum transfer from entity α = w, s to the ws interface

T w∗ Particular material derivative form of a macroscale differential thermodynamic
equation

T w
G∗ Particular material derivative form of the body source potential equation

t Stress tensor
t Time
t∗mi Microscale time scale
t∗ma Macroscale time scale
u Species deviation velocity vector
v Velocity
x Position vector locating the centroid of the REV
x Mole fraction of a species in an entity

Greek Letters

� Boundary of REV
�we External boundary of the w phase on the boundary of an REV
�wi Internal boundary of the w phase within an REV
γ ws Macroscale interfacial tension of the ws interface
γ̂ Macroscale activity coefficient
εα Specific entity measure of the α entity (volume fraction, specific interfacial area)
η Entropy density
θ Temperature

 Entropy production rate density
λw
G Lagrange multiplier for potential energy balance equation

λiwM Lagrange multiplier for mass conservation equation
λMi Constant related to the sum of potentials
λw
T Lagrange multiplier for thermodynamic equation

λw
T G Lagrange multiplier for derivative of potential energy equation

μ Chemical potential
μ0 Reference chemical potential
ξ Microscale position vector relative to the centroid of the REV
ρ Mass density
ϕ Entropy density flux vector
ψ Body force potential per unit mass (e.g., gravitational potential)
� Spatial domain
�0 Megascale spatial domain
ω Mass fraction of a species in an entity

Subscripts and Superscripts

A Species qualifier (subscript, superscript)
B Species qualifier (subscript, superscript)
E Energy equation qualifier (subscript)
G Potential equation qualifier (subscript)
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i General index denoting a species (subscript, superscript)
l Length qualifier for regularly shaped domain (subscript)
M Mass equation qualifier (subscript)
N Number of chemical species (superscrpt)
r Associated with the position vector r (subscript)
s Index that indicates a solid phase (subscript, superscript)
T Thermodynamic equation qualifier (subscript)
T G Fluid potential energy identity qualifier (subscript)
w Entity index corresponding to the wetting phase (subscript, superscript)
ws Entity index corresponding to the wetting-solid interface (superscript)
x Associated with the position vector x (subscript)
ξ Associated with the position vector ξ (subscript)

Other Mathematical Symbols

− Above a superscript refers to a density weighted macroscale average
= Above a superscript refers to a uniquely defined macroscale average
˜ Deviation of a microscale quantity from the macroscale average
⊗ Outer vector product
〈 f 〉�α,�,w Averaging operator,

∫
�α

w f dr/
∫
�

w dr
D/Dt Material derivative

Abbreviations

CEI Constrained entropy inequality
DNS Direct numerical simulation
EI Entropy inequality
MVA Method of volume averaging
REV Representative elementary volume
SEI Simplified entropy inequality
TCAT Thermodynamically constrained averaging theory

1 Introduction

Porous medium systems consist of a connected solid phase and one or more fluids that fill the
pore space. Boundaries between phases are interfaces, and the location where three phases
intersect forms common curves. Such systems can bemodeled from amacroscale perspective
or a microscale perspective. Models formulated at the macroscale represent the state of
the system in terms of quantities averaged over some region in space. Directly postulating
macroscale models, although common, suffers from a lack of connection to the microscale
physics.When the morphology and topology of the pore space is known, mechanistic models
should be formulated at themicroscale and solved (at least in some statistically representative
sense) for each phase that is present. The importance of connectingmicroscale andmacroscale
models is becoming increasingly recognized, in part because of the rapid development of
pore-scale experimental and modeling methods that provide a means to reveal fundamental
aspects of microscale transport phenomena (Gray et al. 2015).

123



A Priori Parameter Estimation for the Thermodynamically… 615

To bridge the physical behavior of systems at the microscale and at the macroscale, mul-
tiscale approaches have been developed. These approaches include the method of volume
averaging (MVA) (Whitaker 1999), homogenization, hybrid mixture theory, and the ther-
modynamically constrained averaging theory (TCAT). TCAT methods have been the focus
of substantial recent work, and a variety of model formulations have been developed. The
TCAT approach was first introduced by Gray andMiller about a decade ago (Gray andMiller
2005; Miller and Gray 2005); however, elements of this theoretical approach were derived
prior to the introduction of the formal TCAT structure (Gray 1999, 2000, 2002; Gray and
Hassanizadeh 1989, 1998; Gray and Lee 1977; Gray et al. 1993, 2002). A recent book
exhaustively details the general approach, the components of the method, and the derivation
of three general classes of models (Gray and Miller 2014). Some of the important aspects of
TCAT, not combined in alternative approaches, are as follows:

1. The inclusion of conservation and balance equations for phases, interfaces, common
curves, and common points

2. The use of thermodynamic constraints that are upscaled from the microscale
3. The derivation and use of a set of macroscale equilibrium conditions
4. Formulation and use of the entropy production rate to constrain the form of closure

relations
5. The development and use of kinematic equations based upon averaging theorems, which

are separate from any conservation principle

Together, these components provide a means to derive models that are consistent across
scales and naturally contain physics known to be important at the microscale in larger-scale
models. The classes of models developed to date include: single-fluid-phase flow (Gray
and Miller 2014), megascale models of single-fluid-phase flow (Gray and Miller 2009c),
single-fluid-phase flow and species transport (Gray andMiller 2009b, 2014; Miller and Gray
2008), single-fluid-phase flow and heat transport (Gray and Miller 2009a), two-fluid-phase
flow (Dye et al. 2015; Gray et al. 2015; Gray and Miller 2011, 2014; Jackson et al. 2009),
two-fluid-phase flow and species transport (Rybak et al. 2015), andmodeling of the transition
between a two-fluid-phase porous medium system and a single-fluid-phase domain (Jackson
et al. 2012).

TCAT model formulations have been developed to specify closure relations in either a
general or specific functional form depending upon the application. For the specific clo-
sure relation forms, model parameters appear that depend upon the physical system being
modeled. The evaluation, and prediction, of such parameters (e.g., macroscale transport
parameters such as the effective diffusion tensor, thermal conductivity, resistance tensors)
has received little attention to date for TCAT models. Typically, parameter estimation is
carried out by solving an inverse problem based upon experimental observations, or direct
numerical simulation of subscale systems. Since TCAT model formulations assure consis-
tency across scales, microscale simulation can be used to determine macroscale parameters
and validate the model forms derived.

In contrast to TCAT, the MVA is an upscaling approach that has been used to develop
macroscale models and to provide a priori prediction of the derived macroscale closure
parameters for certain microscale geometric and transport conditions. The existence of a
representative elementary volume (REV) element is a requirement for this approach as well
as the imposition of convenient scaling postulates (Wood 2009; Wood and Valdés-Parada
2013). Although macroscale property prediction is a powerful component of the theory, the
MVA has been applied to develop models with phases alone, no thermodynamic constraints,
and relatively simple physics compared to the TCAT formulations.
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Fig. 1 Conceptual representation of the TCAT approach

The overall goal of this work is to advance TCAT methods for modeling porous medium
systems by incorporating means for parameter predictions. The specific objectives of this
work are (1) to show how a general entropy inequality relation can be used to produce a
particular closed model instance, (2) to introduce an approach for determining macroscale
parameters for TCAT models based upon known microscale characteristics and modeling,
(3) to evaluate macroscale parameters for a range of isotropic and anisotropic media using the
new approach, and (4) to validate the parameter estimates using direct numerical simulation
at the microscale.

2 TCAT Framework

The components of the TCAT formulation approach are depicted in Fig. 1 and can be sum-
marized as follows.

1. Primary restrictions are made, which specify the entities (phases, interfaces, common
curves, and common points) and the phenomena (e.g., flow, species transport, heat trans-
port) to be modeled, the thermodynamic theory to be relied upon at the microscale, and a
requirement that the resulting macroscale model has a clear separation of length scales.

2. Based upon the primary restrictions, a set of macroscale equations is specified for the
system corresponding to the entities and phenomena to be modeled. These macroscale
equations include conservation equations for mass, momentum, and energy, a balance
of entropy, thermodynamic equations, and macroscale conditions that must apply at
equilibrium. As shown in Fig. 1, the macroscale equations are derived uniformly from
the corresponding microscale equations by application of an averaging operator and
simplified using a set of transport, divergence, and gradient theorems.

3. Amacroscale entropy inequality (EI) iswritten by summing the entropybalance equations
for all species and all entities and equating this summed equation to the rate of entropy
production for the system, which must be greater than or equal to zero by the second law
of thermodynamics.
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4. The macroscale EI is augmented with a set of conservation and thermodynamic equa-
tions corresponding to the entities and processes being modeled. These equations are
all arranged so that they are equal to zero; thus, adding the product of these equations
with Lagrange multipliers for each equation to the EI does not change the inequality. The
reason for augmenting the EI in this manner is to introduce the processes that result in
entropy production into the EI. The Lagrange multipliers are thus free parameters that
do not affect the inequality but will change the form of the resulting expression. The
Lagrange multipliers are chosen such that a subset of the material derivatives vanish
from the EI, which is desired so that the EI can be reduced to a flux-force form.

5. The augmented EI is arranged to yield a constrained EI (CEI). The CEI is an EI that is
manipulated to produce an expression that is as close as possible to a flux-force form
without introducing approximations. The CEI is an important intermediate formulation
result because of its exact and general nature.

6. The simplified EI (SEI) is derived from the CEI by applying a set of approximations that
allow for a strict flux-force form to be obtained. Additionally, secondary restrictions may
be applied to simplify the SEI for a particular system of concern that may be simpler
than the general model specified by the primary restrictions. For example, an isothermal
system might be specified at this point.

7. The SEI, including potential secondary restrictions, is used to posit permissible forms
of closure relations. The form of the SEI is a strict flux-force form comprised of expres-
sions for the dissipative processes operative in the system. These processes can result in
the production of entropy, so the inequality in the SEI provides a set of permissibility
conditions on closure relations used to close a macroscale model. The closure relations
are not unique, but they must meet permissibility constraints.

8. Evolution equations are specified using the averaging theorems and certain approxi-
mations to yield kinematic equations relating entity extents, such as volume fractions,
specific interfacial areas, specific common curve lengths, and specific common point
densities. These evolution equations are distinct from any conservation equation.

9. A macroscale model is formulated by combining the conservation equations, closure
relations, and evolution equations. The closure relations may include state equations in
a general functional form.

10. Computational or experimental means are used to produce specific, closed forms of a
model complete with all needed model coefficients. Model evaluation, approximation
evaluation, and validation can also be accomplished using microscale information.

The TCAT approach produces models that are consistent across scales, are thermody-
namically consistent, and are of potentially higher fidelity than models that do not include
interfaces and common curves. The execution of the steps summarized above results in a
long, detailed calculation for each class of model considered. The starting point for specific
model instance formulation and closure is the SEI. In the next section, we illustrate how an
available SEI can be used to guide the closure of a specificmodel instance in a straightforward
manner.

3 Model Formulation

We consider the case of diffusion of a single dilute, non-reactive species through a water-
saturated isothermal porous medium system consisting of a macroscopically homogeneous,
immobile, inert, non-deformable solid with a constant porosity. We further specify that mass
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and energy are not exchanged between entities. This system is specified to be a simple subset
of an available model hierarchy that can be used to illustrate the general approach to model
closure and to provide a formulation upon which an a priori closure scheme can be advanced.

The TCAT approach, as summarized in the previous section, involves formulating closed
macroscale models that are consistent across scales with regard to thermodynamics and
conservation principles and which are closed with relations that are provably consistent with
the second law of thermodynamics. Miller et al. (2017) detailed the TCAT formulation of a
macroscale model consistent with the system described in this work, which included all of the
steps in the model-building approach. An alternative approach is to use available results to
derive a model, thereby eliminating the majority of the work involved, while still producing
a scale-consistent macroscale TCAT model. From the above description of the system to be
modeled, it can be observed that the macroscale conservation equation that must be solved
is given by

∂
(
ρwωi w

)

∂t
+ ∇·

(

ρwωi wuiw
)

= 0 (1)

where ρw is the mass density of the water phase, ωi w is the mass fraction of species i in

the water phase, t is time, and uiw is the deviation, or diffusion, velocity of the water phase.
The superscripts denote macroscale quantities, and reactions and interphase mass exchange
terms have been neglected. The closure problem for this system is the determination of an

approximation for uiw . This can be deduced from an available SEI.
A general SEI for single-fluid-phase flow and species transport for the case of momentum

transport of an entity, rather than for a species in an entity, is (Gray and Miller 2014)

1

θw

(
εwtw + εw pwI

)
:dw + 1

θ s

(
εsts − εsts

)
:ds

1

+ 1

θws

[
εwstws − εws(I − Gws)γ ws

]
:dws

2

−
∑

α∈I

⎡

⎣εαqα + εαqα
g0 +

∑

i∈I s

εαραωi α

⎛

⎝μiα + K iα
E + uiα·uiα

2

⎞

⎠uiα

⎤

⎦ ·∇
(

1

θα

)

3

−
∑

α∈I

∑

i∈I s /N

1

θα
εαραωi αuiα·∇

⎡

⎣μiα + K iα
E + uiα·uiα

2
+ ψ iα

4

−
⎛

⎝μNα + K Nα
E + uNα·uNα

2
+ ψNα

⎞

⎠

⎤

⎦ 5

−
∑

α∈I

∑

i∈I s

1

θα

⎛

⎝μiα + K iα
E + uiα·uiα

2
+ ψ iα

⎞

⎠ εiαr iα 6

+
∑

α∈I

∑

i∈I s

1

θα
〈riαψiα〉�α,� 7

+
∑

i∈I s

iw→iws
M

⎡

⎣ 1

θw

⎛

⎝μiw + K iw
E + uiw·uiw

2
+ ψ iw

⎞

⎠ 8
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− 1

θws

⎛

⎝μiws + K iws
E + uiws·uiws

2
+ ψ iws

⎞

⎠

⎤

⎦ 9

+
∑

i∈I s

is→iws
M

⎡

⎣ 1

θ s

⎛

⎝μis + K is
E + uis·uis

2
+ σ s:Cs

3ρs j s
+ ψ is

⎞

⎠ 10

− 1

θws

⎛

⎝μiws + K iws
E + uiws·uiws

2
+ ψ iws

⎞

⎠

⎤

⎦ 11

−
⎧
⎨

⎩

w→ws
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∑
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(

E
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Eiw + uws
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iw

2
+ ψws

iw

)
iw→iws

M 12

+
⎡

⎣
w→ws
T0 +

∑

i∈I s

(
vws

w − vs

2
+ uws

iw
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iw→iws

M

⎤

⎦ ·
(
vws

w − vs
)

13

+pws
w

Dsεs

Dt

⎫
⎬

⎭

(
1

θw
− 1

θws

)

14

−
⎧
⎨
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(

E
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is + Kws
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2
+ ψws
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)
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+
⎡

⎣
s→ws
T0 +

∑

i∈I s

(
vws
s − vs

2
+ uws

is

)
is→iws
M

⎤

⎦ ·
(
vws
s − vs

)
16

+〈ns·ts·ns〉�ws ,�ws

Dsεs

Dt

⎫
⎬

⎭

(
1

θ s
− 1

θws

)

− 1

θw

⎧
⎨

⎩
ηw∇θw − ∇

(
εw pw

)
17

+
∑

i∈I s

εwρwωi w

⎡

⎣∇
⎛

⎝μiw + K iw
E + uiw·uiw

2
+ ψ iw

⎞

⎠ + giw

⎤

⎦ 18

−
⎡

⎣
w→ws
T0 −

∑

i∈I s

(
vw − vs

)

2

iw→iws
M 19

+
∑

i∈I s

(
vws

w + uws
iw − vs

) iw→iws
M

⎤

⎦

⎫
⎬

⎭
·
(
vw − vs

)
20

− 1

θws

⎧
⎨

⎩
ηws (I − Gws) ·∇θws + ∇·

[
εws (I − Gws) γ ws

]
21

+
∑

i∈I s

εwsρwsωi ws(I − Gws)·∇
⎛

⎝μiws + K iws
E + uiws·uiws

2
+ ψ iws

⎞

⎠ 22

+
∑

i∈I s

εwsρwsωi wsgiws
23
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+w→ws
T0 −

∑

i∈I s

(
vws − vs

)

2

iw→iws
M +

∑

i∈I s

(
vws

w + uws
iw − vs

) iw→iws
M 24

+s→ws
T0 −

∑

i∈I s

(
vws − vs

)

2

is→iws
M 25

+
∑

i∈I s

(
vws
s + uws

is − vs
) is→iws

M

⎫
⎬

⎭
·
(
vws − vs

)
26

− 1

θws

Dsεs

Dt

⎛

⎝pws
w + 〈ns·ts·ns〉�ws ,�ws + γ ws Jws

s 27

−
∑

i∈I s

〈
ρwsωiwsgiws·ns

〉
�ws ,�ws

⎞

⎠ 28

=
∑

α∈I

α ≥ 0. (2)

where all terms are defined in the notation section.
The approach taken to derive this equation is consistent with the schematic illustration

given by Fig. 1, and the details are provided by Gray and Miller (2014). We wish to simplify
this SEI to the form needed to model species transport in the system previously detailed
above. This study case is chosen for simplicity purposes, and the extensions to other more
complicated applications is straightforward. This particular instance allows for reductions
of the general SEI to a simpler form. To this end, we will refer to lines numbers in Eq. (2)
and to the previously detailed model restrictions. The simplifications of this expression are
summarized as follows.

– The absence of mean advective transport allows for the elimination of Lines 1,2, and
17–26

– The non-reactive species allows for the elimination of Lines 6 and 7
– the lack of exchange of mass, momentum, and energy between entities allow for the

elimination of Lines 8–11
– The isothermal system restrictions allows for the elimination of Lines 3, and 12–17
– The immobile, inert, incompressible solid phase allows for the elimination of Lines 27

and 28

With these simplifications, Eq. (2) reduces to

−
∑

α∈I

∑

i∈I s /N

1

θα
εαραωi αuiα·∇

⎡

⎣μiα + K iα
E + uiα·uiα

2
+ ψ iα

−
⎛

⎝μNα + K Nα
E + uNα·uNα

2
+ ψNα

⎞

⎠

⎤

⎦ =
∑

α∈I

α ≥ 0. (3)

Because we are only concerned with binary species transport in the fluid phase, and kinetic
energy terms are neglected, Eq. (3) can be written as

− 1

θ
εwρwωAwuAw·∇

(
μAw + ψ Aw − μBw − ψ Bw

)
= 
 ≥ 0 (4)
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or since the body force potential is only due to gravity, the porosity is constant, and the system
is dilute, the difference in body force potentials is neglected, and the restricted SEI becomes

− 1

θ
εwρwωAwuAw·∇

(
μAw − μBw

)
= 
 ≥ 0. (5)

This restricted SEI can be used to produce a closed model by deriving an approximation for

uAw , simplifying the resultant expression, and substituting into Eq. (1) as detailed in Miller
et al. (2017). This closed macroscale model is

∂CAw

∂t
= ∇·

[
D̂·∇CAw

]
(6)

where CAw = ρwωAw is the macroscopic fluid-phase concentration of the dilute species of
interest, and D̂ is an effective diffusion tensor.

4 Parameter Evaluation

As mentioned in the introduction, an objective of this work is to derive an approach for
evaluating and predicting closure relation parameter values for a macroscale TCAT model
based upon microscale system characteristics. To meet this objective, elements used in the
MVA (Whitaker 1999) will be used as inspiration to derive a similar parameter evaluation and
estimation approach for TCAT models. The direct parameter evaluation method for TCAT
differs from what has been done for the MVA, because deviations are non-local in the TCAT
formulation and thus careful accounting for both a microscale and macroscale coordinate
system are needed. The parameter evaluation approach detailed below will not always be a
practical option; when systems become complex, the direct parameter estimation scheme can
become intractable. For such problems, it may be best to approach parameter estimation in
the conventional way by solving an inverse problem based upon a comparison of amacroscale
TCAT model to experimental data, or microscale simulation results (Gray et al. 2015; Gray
and Miller 2014).

In essence, the proposed approach develops parameter estimates from an equation for
each dependent variable deviation from the macroscale average of the quantity. Once these
deviation equations are known, equations defining the macroscale parameters in terms of
microscale deviations can be computed, yielding a solution that provides an evaluation of
these parameters. The steps involved in the procedure are detailed and then illustrated for the
example case of diffusion in porous media using the previously derived TCAT model. The
result is a model that combines the generality of TCAT with the ability for direct parameter
evaluation present in the MVA.

4.1 Overview

Direct parameter evaluation can be accomplished, when possible, with the steps summarized
as follows.

1. A closed microscale model is developed that corresponds to the macroscale model for
which parameter estimates are sought.

2. The closed macroscale TCAT model is written in an equivalent unclosed form in terms
of averages and deviations of the dependent variables.

3. Amicroscale deviation equation is formulated together with the corresponding boundary
conditions in closed form and simplified.
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fluid

solid

Ω

x

r

(0,0,0)

ξ

Fig. 2 An averaging domain, �, illustrating the relationship among x, r, and ξ . For a particular averaging
volume with the centroid fixed at x, the variable r (or, equivalently, ξ ) is the independent variable that locates
points within the averaging domain. The variable x is fixed in this coordinate system

4. The microscale deviation equation is solved over an REV, and the solution is used to
provide a direct evaluation of the macroscale parameter.

4.2 Example Application

For the developments that follow, both microscale and macroscale coordinates will be used.
We will use the coordinate decomposition r = x + ξ illustrated in Fig. 2. TCAT averages
are computed about a domain � with point x located at the centroid of �. Locations within
� are defined relative to the centroid with the position vector ξ . The position vector r is the
vector sum of the macroscale position x and the microscale position relative to the centroid
of �, which is ξ .

To illustrate themacroscale TCATparameter evaluation approach summarized in Sect. 4.1,
we consider parameter evaluation for the TCAT model developed in Sect. 3, detailing the
steps involved in turn as follows.

Step 1 A closed microscale model is needed that corresponds to the closed macroscale
model. Thus, the restrictions relied upon to develop themacroscalemodel should be consistent
with the closed microscale model. In general, the TCAT approach does not require a closed
microscale model, although it can be used to derive such a closed form (Gray and Miller
2014). The need for a closedmicroscalemodel is a result of the parameter estimation approach
being considered.

The restrictions on the system considered were previously detailed in Sect. 3. For this
case, an unclosed microscale model is given by

∂(ρwωiw)

∂t
+ ∇· (ρwωiwuiw

) = 0 (7)
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where all other equations vanish from the finalmodel formulation. A standard Fickian closure
relation can be applied to Eq. (7) yielding a closed microscale model of the form

∂CAw(r, t)
∂t

− ∇·
(
D̂Aw∇CAw(r, t)

)
= 0 (8)

subject to an appropriate set of auxiliary conditions needed to form a well-posed model.
It is useful to note the following relationships among derivatives (Gray et al. 1993). For

any function f (x + ξ)

∇r f (x + ξ) = ∇x+ξ f (x + ξ) = ∇x f (x + ξ) = ∇ξ f (x + ξ). (9)

Thus, Eq. (8) can be equivalently expressed by

∂CAw(x + ξ , t)

∂t
− ∇x ·

[
D̂Aw∇xCAw(x + ξ , t)

]
= 0 (10)

Step 2 The unclosed macroscale model given by Eq. (1) can be written as

∂CAw(x, t)
∂t

+ ∇x ·
(

CAw(x, t)uAw(x, t)
)

= 0 (11)

We wish to express the second term in this equation as a function of averages of microscale
quantities. To arrive at such an equation, we apply an averaging operator to Eq. (8) giving

〈
∂CAw(r, t)

∂t
− ∇r·

(
D̂Aw∇CAw(r, t)

)〉

�w,�

= 0 (12)

Equation (12) includes averages of differential operators, which we wish to eliminate. To
do so, we can apply averaging theorems to the time derivative, T[3,(3,0),0]; the divergence,
D[3,(3,0),0]; and the gradient, G[3,(3,0),0], where the theorem nomenclature refers to avail-
able averaging theorems (Gray et al. 1993; Gray and Miller 2013, 2014). Applying these
theorems to Eq. (12) and simplifying for the case of an immobile and incompressible solid
phase in the absence of interfacial mass transfer yields

∂
(
εwCAw(x, t)

)

∂t
− ∇x·

[

εw D̂Aw∇xC
Aw(x, t) + D̂Aw 〈nwCAw〉�wi,�

∣
∣
(x,t)

]

= 0 (13)

or, for the constant porosity case, as

∂CAw(x, t)
∂t

− ∇x·
[

D̂Aw∇xC
Aw(x, t) + D̂Aw 〈nwCAw〉�wi,�w

∣
∣
(x,t)

]

= 0 (14)

where nw is the outward unit normal vector on the boundary of the water phase, the fluid
domain �w has boundary �w = �wi ∪ �we, �wi is the internal boundary formed where the
water phase intersects the solid phase, and �we is the external boundary where the water
phase intersects the boundary � of the averaging region �. Note that the internal boundary
term can be written explicitly by

〈nwCAw〉�wi,�w

∣
∣
(x,t) = 1

Vw

∫

ξ∈�wi(x)
nw(x + ξ)CAw(x + ξ , t) dA(ξ) (15)

where Vw is the volume of the wetting phase in �.
It can be observed from Eqs. (11) and (14) that there is the following relationship between

fluxes
CAw(x, t)uAw(x, t) = −

(
D̂Aw∇xC

Aw(x, t) + D̂Aw〈nwCAw〉�wi,�w

)
. (16)
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As an alternative to the boundary term in Eq. (16), we can seek a form that depends upon
a microscale deviation concentration instead of a microscale concentration. The microscale
concentration can be expressed by the decomposition

CAw(x + ξ , t) = CAw(x, t) + C̃Aw(x, ξ , t) (17)

where C̃Aw is a deviation concentration. The functional dependence of each variable is noted
and is important. A microscale value depends upon the overall location r = x + ξ and time;
the macroscale concentration depends only upon the macroscale spatial coordinate x and
time, and the deviation concentration depends upon x, ξ , and time, because the deviation is
relative to a specific macroscale average, which is specified to be at the centroid location x.

Spatial derivatives of the decomposed concentration can also be evaluated. The relation-
ship given by Eq. (9) can be used along with Eq. (17) to deduce

∇x+ξCAw(x + ξ , t) = ∇xCAw(x + ξ , t) = ∇xC
Aw(x, t) + ∇xC̃Aw(x, ξ , t) (18)

and
∇x+ξCAw(x + ξ , t) = ∇ξCAw(x + ξ , t) = ∇ξ C̃Aw(x, ξ , t) (19)

Note that there is an important distinction to be pointed out between the deviations defined
in theMVAand inTCAT. In theTCATdefinitions, the value of the averagewithin an averaging
domain � is always taken as the value at the centroid; deviations within the domain are
computed relative to this single average value. Although this creates an inherently non-local
definition for the deviations, it has the advantage that the average of the deviations is always
identically zero. In the MVA, averages and deviations are defined locally pointwise. One can
recover theMVAdefinitions for the deviations by setting ξ equal to zero in Eq. (17). Although
this has the advantage of generating a local expression for the deviations, the average of the
deviations in the MVA system is not necessarily zero.

Equations (14) and (17) can be combined to yield

∂CAw(x, t)
∂t

− ∇x ·
[
D̂Aw∇xC

Aw(x, t) + D̂AwC
Aw(x, t) 〈nw〉�wi,�w

∣
∣
x

+ D̂Aw

〈
nwC̃Aw

〉

�wi,�w

∣
∣
∣
∣
(x,t)

]
= 0 (20)

where the CAw can be moved outside the averaging operator because it is a constant over the
averaging domain. It can be shown that (Gray and Miller 2014; Whitaker 1999; Wood 2013)

〈nw〉�wi,�w

∣
∣
x = −

(
εw

)−1 ∇xε
w = 0 (21)

since the porosity is constant. Under these conditions, it follows that

∂CAw(x, t)
∂t

− ∇x ·
[
D̂Aw∇xC

Aw(x, t) + D̂Aw

〈
nwC̃Aw

〉

�wi,�w

∣
∣
∣
∣
(x,t)

]
= 0 (22)

and

CAw(x, t)uAw(x, t) = −
(

D̂Aw∇xC
Aw(x, t) + D̂Aw

〈
nwC̃Aw

〉

�wi,�w

∣
∣
∣
∣
(x,t)

)

(23)

Note that, as we sought, Eq. (22) contains only averages and deviations of the dependent
variable, CAw . Also, by direct comparison with the closed macroscale mass balance given
by Eq. (6), it follows that
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D̂·∇xC
Aw = D̂Aw∇xC

Aw + D̂Aw

〈
nwC̃Aw

〉

�wi,�w

(24)

Clearly, the term D̂Aw

〈
nwC̃Aw

〉

�wi,�w

accounts for the influence of the morphology of the

solid phase on the diffusion process.Wewill subsequently return to this expression to express
the effective diffusion tensor D̂ in terms of microscale parameters. There are many options
available for computing the averaging operator that appears in Eq. (24). For example, onemay
perform direct numerical simulations at the microscale or perform experiments to quantify
this term for a given set of transport conditions. In the following, we show how to predict
the values of this term by deriving and formally solving a problem for the concentration
deviations. This approach is, at its core, simply a microscale simulation method. However, it
is a specific microscale simulation method that is informed by the admissible solution forms
for the deviation equations. Thus, the results provide efficient, and explicit, forms for the
effective transport parameters (in this case, the diffusion tensor).

Step 3 A deviation equation is sought so that Eq. (24) can be solved, yielding an estimate
of D̂. A deviation equation can be derived by subtracting the macroscale conservation of
mass given by Eq. (22) from the microscale conservation of mass equation given by Eq. (10)
and simplifying the resulting expression using the definitions given by Eqs. (17)–(19).

The boundary conditions that should be imposed on the external surfaces of the REV
pose a particular problem; this has been discussed extensively by Wood and Valdés-Parada
(2013). Conventionally, the approach has been to impose a weak condition on the boundaries,
such as demanding that the external boundaries be periodic in C̃Aw and its normal derivative.
Indeed, this weak condition is more a convenience than a necessity; however, comparison
with experimental data in several studies (Whitaker 1999) suggests its pertinence.

Finally, at the internal boundaries, a no-flux condition is imposed. To develop a boundary
condition for the deviations, we need to only use the decomposition defined by Eq. (18).
Adopting each of these approximations, we find that a complete statement of the deviation
equations is given by

∂C̃Aw(x, ξ , t)

∂t
= ∇x·

(

D̂Aw∇xC̃Aw(x, ξ , t) − D̂Aw

〈
nwC̃Aw

〉

�wi,�w

∣
∣
∣
∣
(x,t)

)

, (25a)

− nw(x + ξ)·D̂Aw∇xC̃Aw(x, ξ , t) = nw(x + ξ)·D̂Aw∇xC
Aw(x, t)

︸ ︷︷ ︸
source

on �wi(x), (25b)

C̃Aw(x, ξi = 0, t) = C̃Aw(x, ξi = ξil , t) for i = 1, . . . , nd on �we(x), (25c)

nw(x)·∇xC̃Aw(x, ξi = 0, t) = −nw(x + ξil)·∇xC̃Aw(x, ξi = ξil , t)

for i = 1, . . . , nd on �we(x), and (25d)

C̃Aw(x, ξ , 0) = I (x, ξ)
︸ ︷︷ ︸
source

. (25e)

Note that here we have completed the system of equations by specifying an initial condition.
In Eqs. (25c)–(25d), the spatial domain is indicated by � = [0, ξ1l ] × [0, ξ2l ] × [0, ξ3l ],
and nd is the number of spatial dimensions. The vectors ξil are a set of lattice vectors used
to define periodicity in the domain. Because of this periodicity, the boundary integral term
in Eq. (25a) vanishes for the steady-state case, since the domain of integration is invariant
with respect to location x within the periodic domain. The internal boundary condition is
specified in terms of a constant macroscale gradient that applies everywhere in the domain,
which could be used to write the right-hand side of Eq. (25a) in alternative forms under
certain conditions.
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Equation (25a) is an integro-differential equation that is non-local in space, which can be
made local by specifying a fixed x. One of the primary restrictions of the TCAT development
for this problem is that anREVexists and that the characteristic size of theREV is substantially
smaller than the characteristic size of �0

w (�ma � �me). Thus, for the purposes of computing

the spatial averaging operator D̂Aw

〈
nwC̃Aw

〉

�wi,�w

, it suffices to solve Eqs. (25a)–(25e) over

a single REV.
The problem for the concentrations deviations derived above contains two sources, namely

the concentration gradient ∇CAw(x, t) in the interfacial boundary condition and I (x, ξ) in
the initial condition. As suggested by Wood and Valdés-Parada (2013), one may use integral
equation formulations in terms of Green’s functions to solve this problem as

C̃Aw(x, ξ , t) =
∫

w∈�w(x)
G(x, ξ , t;w, 0)I (w, ξ) dV (w)

−
∫ τ=t

τ=0

∫

w∈�wi(x)
G(x, ξ , t;w, τ )nw(w + ξ)D̂Aw

·∇wC
Aw(w, t)dA(w) dτ (26)

with G being the Green’s function associated with the initial and boundary value problem
of the concentration deviations. Note that ∇CAw has been removed from the spatial integral
but not from the temporal integral in the last term of the above equation. This implies that if
this expression is substituted into Eq. (24), the effective diffusivity contains memory of the
initial condition and the early stages of the transport process.

In many diffusive processes, the time for disturbances to relax at the microscale is much
shorter than the time it takes them to relax at the macroscale. This motivates an additional
point of simplification for the concentration deviations, which is supported by the separation
of characteristic lengths already imposed, and explained previously in the literature (Whitaker
1999). On the basis of the order of magnitude estimates of the characteristic time scales at the
microscale and the macroscale given by t∗mi = O[(�mi)

2/D̂Aw] and t∗ma = O[(�ma)2/D̂Aw];
it follows that t∗mi � t∗ma, since �mi � �ma. Under these conditions, the memory of the initial
condition is lost, and the solution given by Eq. (26) can be reduced to

C̃Aw(x, ξ , t) = b(x, ξ)·∇xC
Aw(x, t). (27)

Here b(x, ξ) is a closure variable that is conveniently defined to represent the surface integral
of the Green’s function. One can think of this variable as being the vector of deviation fields
that would be generated by unit gradients of concentration in each of the three cardinal
directions of the REV. Even without explicitly computing the Green’s function, this solution
gives us the proper form for the localized microscale closure. Substitution of this result into
Eq. (24) yields

D̂ = D̂AwI + D̂Aw 〈nw ⊗ b〉�wi,�w
(28)

where ⊗ denotes the outer product. In contrast to Eq. (24), the above result does not
require knowledge of the macroscopic concentration gradient, instead Eq. (28) provides
the macroscale definition of the effective diffusion tensor, assuming that b is available. In
order to derive the governing equations of b, we substitute Eq. (27) into Eqs. (25a)–(25e),
yielding (Whitaker 1999)

∇2
xb(x, ξ) = 0 in �w(x), (29a)

−nw(x + ξ)·∇x ⊗ b(x, ξ) = nw(x + ξ) on �wi (29b)

b(x, ξi = 0) = b(x, ξi = ξil), for i = 1, . . . , nd on �we(x), (29c)
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nw(x) · ∇x ⊗ b(x, ξi = 0) = −nw(x + ξil) · ∇x ⊗ b(x, ξi = ξil),

for i = 1, . . . , nd on �we(x) (29d)

〈b〉�w,�w

∣
∣
x = 0. (29e)

Note that, because this problem is treated as being steady in a periodic medium, the term
∇x· 〈nw ⊗ b〉�wi,�w

∣
∣
x is identically zero; thus, we have made this simplification on the right-

hand side of Eq. (29a). Because the initial condition is not used, we have also added a
constraint requiring the average of the deviations over the REV to be zero. Although this
is identically true for averages in the TCAT formulation, we must explicitly impose this
constraint in this set of equations in order to have a well-posed problem and thus to determine
a unique solution.

One could also determine D̂ by solving the microscale balance for CAw directly (and then
computing the deviations). However, this approach would require solutions for one linearly
independent value of ∇CAw per unknown tensor component (six solutions total for a three-
dimensional system). In Eqs. (29a)–(29e), each component of the effective diffusion tensor
is directly definable by a solution to the set of PDEs.

Step 4 The formulation specified above must be solved in a periodic unit cell that
is representative of the porous medium morphology and topology. Here, the terminol-
ogy “periodic unit cell” indicates an REV where all dependent variables are taken to
be periodic at the boundaries. For particularly simple geometries, the fields of the vec-
tor b can be determined analytically (Chang 1983; Ochoa-Tapia et al. 1994). Generally,
however, we would resort to numerical methods to compute the vector b in the REV
(Ochoa-Tapia et al. 1994; Ryan et al. 1980). Examples of the computation of the effec-
tive diffusion tensor are described in the next section for a variety of periodic unit
cells.

5 Computation of Macroscale Parameters

Asmentioned above, the complexity of the porous medium topologymust be included within
the periodic unit cells for the determination of the b fields. An interesting question then arises
about how much of the complexity is required to fully represent the processes of interest.
Although there is no simple answer to this question, one can consider trying a sequence
of unit cells of increasing complexity to answer this question, at least heuristically. In the
following paragraphs we present predictions of the components of the diffusivity tensor in
terms of isotropic and anisotropic periodic unit cells.

5.1 Isotropic Unit Cells

It is convenient to explore first the predictions resulting from using simple geometric repre-
sentations of the solid phase in the unit cell. With this in mind, let us consider the periodic
unit cells shown in Fig. 3 in which the solid phase is represented as a periodic array of in-line
spheres and as random distributions of non-overlapping spheres. In addition, in this figure we
included a non-periodic homothetic unit cell (Fig. 3b), which is known as Chang’s unit cell
(Chang 1983). This type of unit cell represents an approximation of its periodic homothetic
counterpart (i.e., Fig. 3a) and admits an analytic solution. In Chang’s unit cell, the periodic
condition at the inlets and outlets of the unit cell is replaced by a homogeneous Dirichlet-type
boundary condition. Interestingly, the solution of the closure problem in the unit cell depicted
in Fig. 3b leads to the classic result from Maxwell (Maxwell 1881; Ochoa-Tapia et al. 1994)
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Fig. 3 Examples of three-dimensional unit cells for the closure problem solution. The porosity values are 0.8
for unit cells (a) and (b); whereas for unit cells (c) and (d) porosity values are 0.56 and 0.84, respectively

for dilute spheres in an infinite medium, and from Rayleigh (1892) as a first approximation
to a periodic array of spheres

εw D̂

D̂Aw

= 2εw

3 − εw
. (30)

Although analytical solutions are possible for simple geometries, they are generally not
practical for complex ones. We solved the microscale problem given by Eqs. (29a)–(29e)
numerically for the periodic unit cells shown in Fig. 3a, c and d using the finite element
software COMSOL Multiphysics® 5.1. We performed standard convergence analyses for
the spatial mesh in order to guarantee that the results were grid-independent. In all cases
we noted that the off-diagonal components of the effective diffusivity tensor turned out to
be negligible with respect to their diagonal counterparts. This means that, for the particular
geometries considered in Fig. 3, we can approximate the diffusivity tensor as being isotropic,
so that D̂ = D̂I.

In Table 1, we compare the predictions of the diagonal components of the diffusivity
tensor for the random distributions with those resulting from the closure problem solution
for the simple unit cells in Fig. 3. We observe that the largest differences between the predic-
tions of the effective diffusivity are found for the porosity value of 0.56, in particular those
resulting from using Chang’s unit cell. Nevertheless, the relative error values are below 10%.
Furthermore, when compared to the predictions resulting from representing the solid phase
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Table 1 Predictions of the
components of the effective
diffusion tensor resulting from
solving the closure problem in
the three-dimensional unit cells
depicted in Fig. 3

Random
unit cell

Single spherical
obstacle

Chang’s
unit cell

εw = 0.56

εw D̂xx/D̂Aw 0.462 0.448 0.461

εw D̂yy/D̂Aw 0.430 0.448 0.461

εw D̂zz/D̂Aw 0.471 0.448 0.461

εw = 0.84

εw D̂xx/D̂Aw 0.786 0.781 0.780

εw D̂yy/D̂Aw 0.787 0.781 0.780

εw D̂zz/D̂Aw 0.790 0.781 0.780

as a spherical obstacle with those from the random geometry, we observe that the relative
errors are smaller than 5% in all cases considered here.

The above results show that, despite the simple nature of the unit cells in Fig. 3, they
may be used to provide parameter estimates. The level of agreement between predictions
made with simple unit cells and real porous media will depend upon the model. For example,
more complicated situations such as highly convective mass transport, where the geometry
is known to play a crucial role in the predictions of the dispersion tensor, would require more
complex unit cells to provide reasonable estimates of model parameters. In any event, the
unit cell concept allows the inclusion of actual three-dimensional porous medium images to
evaluate model parameters, which illustrates how this direct evaluation approach could be
applied for arbitrarily complex media.

5.2 Anisotropic Unit Cells

Tocompute the effective diffusion tensor for anisotropic structures, one follows essentially the
same scheme as described in the previous section. For anisotropic systems, both the diagonal
and off-diagonal components of the tensor have potentially non-negligible values. In Fig. 4,
we provide an example REV geometry for two anisotropic systems. As for isotropic unit
cells, these results were obtained using the finite element package COMSOLMultiphysics®

5.1. Standard grid refinement techniques were used to ensure convergence. Due to the orien-
tation and shape of the obstacles considered in the unit cells depicted in Fig. 4, the diagonal
components of the effective diffusivity tensor exhibit more differences between themselves
compared to the predictions shown in Table 1. Furthermore, for the unit cell containing
fiber-shaped obstacles, we observe that, as porosity decreases, the values of the off-diagonal
components of the diffusivity tensor are comparable to their diagonal counterparts. Hence,
the unit cells considered in Fig. 4 are anisotropic with respect to the diffusion process.

5.3 Direct Numerical Simulation Validation

As a validation of the direct parameter evaluation method developed in this work, we com-
pared the macroscopic flux computed using the computed value of the macroscale diffusivity
tensor resulting from solving Eqs. (28) and (29), with the average of the microscale flux
that was obtained by performing direct numerical simulation (DNS). The cases shown in
Fig. 3a–c and Fig. 4 were all simulated in this manner. The results agreed in every case to

123



630 C. T. Miller et al.

x
y

z

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

D
w

ˆw
ij

D̂

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

D
w

ˆw
ij

D̂

x
y

z

Fig. 4 Computed components of the effective diffusion tensor for two anisotropic geometries. (Left) Ellipsoid
with an aspect ratio of ∼ 1.8 tilted at 45◦. (Right) A bidisperse bundle of fibers titled at 45◦ with a diameter
ratio of∼ 1.8. Here, D̂i j represents the i j- component of the effective diffusion tensor D̂, and D̂Aw represents
the molecular diffusion coefficient for species A

2–3 significant figures. The difference between the direct evaluation and the DNS decreased
as the grid resolution of the numerical simulations increased. The close agreement in the
results and pattern of decreasing errors with grid refinement for all cases was concluded to
be a thorough validation of the method developed.

6 Discussion and Conclusions

In this work we have provided a means for a priori parameter estimation for macroscopic
models developed using the TCAT approach. Since several entropy inequalities have been
derived using the general TCAT approach, hierarchies of models can be derived for single
and two-fluid-phase systems, fluid flow alone or fluid flow and species transport, energy
transport, and the transition between a two-fluid porous medium system and single-fluid-
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phase domain. TCAT models can be derived relatively simply for a wide range of systems
using available results to guide the formation of closure relations that can be combined with
existing conservation equations to form complete closed models. To illustrate how these
archival results can be used to accomplish such a model formulation, an available entropy
inequality was used to formulate a closure relation and closed model for a case involving
diffusion through a porous medium system. A similar approach could be used to formulate
many other models.

TCAT models are typically formulated in a closed form that includes closure relation
parameters. It is left that these parameters can be obtained for a given system by comparing
experimental observations, or microscale simulations, with the TCATmacroscale model and
solving an inverse problem. An attractive feature of the MVA is that it provides a priori
estimates of parameter values for certain model systems. Borrowing from the general MVA
approach, we developed a direct parameter evaluation approach for TCAT models. This
approach was illustrated for the simple case of passive species diffusion in rigid and homo-
geneous porous media, and we derived an explicit expression for determining the effective
diffusivity in terms of the concentration deviations. These deviations can be computed in a
number of ways, such as from microscale simulations or experimental data. In this work, we
derived, and formally solved, an initial and boundary value problem for the concentration
deviations firstly under transient conditions and secondly under quasi-steady conditions.

The a priori parameter estimation approach was used to evaluate the macroscale diffusion
tensor for several different types of porousmedia geometries. This advancement is not isolated
to the case considered here, rather it can be applied more generally for a variety of cases,
such as heat and or momentum transfer in porous media. The details of the derivation of
this TCAT extension illustrates certain important differences between the MVA and TCAT
approaches. One of these differences deals withway inwhich deviations are computed, which
is central to the parameter evaluation approach. This difference for TCAT, where the mean
of the deviations vanish over an REV, proves to be a useful attribute for parameter evaluation
leading to exact results for certain identities arising in the formulation. The framework for
parameter evaluation proposed here constitutes a convenient addition to the, already robust,
TCAT modeling approach.
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