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Abstract Comparisons of experimental observation of heat and moisture transfer through
porous building materials with numerical results have been presented in numerous studies
reported in the literature. However, some discrepancies have been observed, highlighting
underestimation of sorption process and overestimation of desorption process. Some studies
intend to explain the discrepancies by analyzing the importance of hysteresis effects as well
as carrying out sensitivity analyses on the input parameters as convective transfer coefficients.
This article intends to investigate the accuracy and efficiency of the coupled solution by adding
advective transfer of both heat and moisture in the physical model. In addition, the efficient
SCHARFETTER and GUMMEL numerical scheme is proposed to solve the system of advection—
diffusion equations, which has the advantages of being well-balanced and asymptotically
preserving. Moreover, the scheme is particularly efficient in terms of accuracy and reduction
of computational time when using large spatial discretization parameters. Several linear and
nonlinear cases are studied to validate the method and highlight its specific features. At the
end, an experimental benchmark from the literature is considered. The numerical results
are compared to the experimental data for a pure diffusive model and also for the proposed
model. The latter presents better agreement with the experimental data. The influence of
the hysteresis effects on the moisture capacity is also studied, by adding a third differential
equation.
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List of Symbols
Latin Letters

a,, Moisture advection coefficient (s/m)

a;  Heat advection coefficient (J/(K m?s))

agm Heat advection coeff. under vap. press. grad. (W s2/ (kgm))
b Volume ratio (-)

cm  Moisture storage capacity (kg/(m?> Pa))

¢q  Volumetric heat capacity (J/ (m>K))

c Specific heat (J/(kg K))

g Liquid flux by rain (kg/(s m2))

h Specific enthalpy (J/kg)

1 Volumetric capacity of source/sink (kg/ (m?s))
Ja  Moisture flux by advection (kg/(s m?))

Ja  Moisture flux by diffusion (kg/(s m?))

Jjq Heat flux (W/m?)

L Length (m)

k Vapor or liquid permeability (s)

kn  Moisture permeability (s)

ks  Thermal conductivity (W/(mK))

kym Heat transf. coeff. under vap. press. grad. (W s2/kg)
P.  Capillary pressure (Pa)

P;  Saturation pressure (Pa)

P,  Vapor pressure (Pa)

rio  Latent heat of evaporation (J/kg)

R, Water gas constant (J/(kg K))

T Temperature (K)

t Time coordinate (s)

by Space coordinate (m)

\Y Mass average velocity (m/s)

\% Volume (m?)

w  Volumetric concentration (kg/m?)

Greek Letters

o, Convective vapor transfer coefficient (s/m)

ay  Convective heat transfer coefficient (W/ (m?K))
¢ Relative humidity (-)

P Specific mass (kg/mS)
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1 Introduction

Models to represent physical phenomena of heat and moisture transfer in porous media have
been carried since the fifties, with the works of Philip and Vries (1957) and Luikov (1966).
In the area of building physics, a detailed review of numerical models has been reported in
Woloszyn and Rode (2008) and Mendes et al. (2016).

Since the robustness of a model relies on its accuracy to predict the physical phenom-
ena, several studies report on the comparison of the results of the numerical model with
experimental data. In James et al. (2010), gypsum boards with an initial moisture content is
submitted to an adsorption phase during 24 h and then to a desorption phase during 24 h also.
Several building materials have been considered for similar investigations: spruce plywood
and cellulose insulation in Talukdar et al. (2007a, b), hemp concrete in Lelievre et al. (2014),
calcium silicate in Belleghem et al. (2011), wood fiberboard in Perré et al. (2015). Interested
readers may consult (Busser et al. 2017) for a complete review on such comparison within
the context of building physics.

However, these studies highlight some discrepancies when confronting the numerical
predictions with the experimental data. Particularly, results of numerical simulations under-
estimate the adsorption process and/or overestimate the desorption process. In other words,
the experimental moisture front rushes faster than the simulation predicts. To reduce the
discrepancies, some studies improved the physical model by incorporating the hysteresis of
the moisture sorption material capacity as for instance in Kwiatkowski et al. (2009), Lelievre
et al. (2014) and Colinart et al. (2016). In Rouchier et al. (2017) the authors estimate new
material properties to reduce the discrepancies. Nevertheless, the estimated properties have
no physical sense since the estimated vapor resistance was lower than one. In Olek et al.
(2016) a non-FICKIAN moisture diffusion model was developed for wood-based materials.
In these studies, it is important to note that the physical model considers only the diffu-
sion process in the moisture transfer. Thus, these models neglect the moisture transfer by
advection, which corresponds to the transport of moisture due to an air velocity occurring
through the porous matrix. Within the context of transfer phenomena in soils, many models
include advective phenomenon, e.g.Simunek et al. (2009), Sun et al. (2015) and Assouline
and Mualem (2003).

In building materials, advection of moisture may also occur. Indeed, a difference of air
pressure is observed between the inside and outside parts of a building facade and induces an
air velocity through the porous materials. In the case of the above mentioned experimental
studies, the air velocity is probably induced by a difference in the boundary vapor pressure.
In Berger et al. (2017), the physical model was improved by considering moisture transfer by
diffusion and advection. However, the coupling with heat transfer through porous material
was neglected. This assumption certainly needs to be reconsidered, particularly in the context
of building physics, where the temperature has daily and seasonally variations. Therefore, the
first objective of this work is to improve the physical model proposed in Berger et al. (2017),
by including the energy conservation equations, and analyze the effect of this improvement
when comparing it to the experimental data from James et al. (2010).

When dealing with nonlinear advection—diffusion equations, it is of capital importance to
obtain an accurate solution at low computational costs. An accurate and fast numerical method
may be particularly advantageous when it is required to solve inverse problems or perform-
ing the sensitivity analysis, where numerous computations of the direct problem are needed.
Indeed, when using the unconditionally stable implicit EULER or CRANK—NICOLSON schemes,
several sub-iterations are necessary at each time step to treat the nonlinearities of the problem
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(Gasparin et al. 2017b). To address this issue, the second objective of this work is to explore
the use of the innovative SCHARFETTER—-GUMMEL numerical scheme for a system of coupled
parabolic differential equations. This scheme was studied in Berger et al. (2017) and inter-
esting results were shown with a very accurate solution obtained at a low computational cost.
Since these results were obtained for a single nonlinear equation, it is necessary to extend
them for the case of a system. The analysis will be performed by comparing the results to
analytical solutions and to the one obtained using a commercial software (Comsol1 ™).

Therefore, the paper, in Sect. 2, presents a mathematical model of coupled heat and mois-
ture transfer in porous material, considering both diffusion and advection mechanisms. Then,
in Sect. 3, the SCHARFETTER—-GUMMEL numerical scheme is briefly recalled for the scalar
case and validated introducing analytical solution considering nonlinear material properties.
A comparison with the result of a commercial software, widely used in Building Physics
community, will be realized. The properties of the numerical scheme to solve a system of
coupled advection—diffusion equations are provided in Sect. 4, while Sect. 5 shows the results
of the numerical model confronted with the experimental data to discuss the importance of
advection in porous building materials. Section 6 addresses the final remarks.

2 Heat and Moisture Transfer in Porous Materials

The physical framework involves heat and moisture transfer in porous material. The moisture
includes vapor water, denoted by index 1, and liquid water, denoted by index 2. The porous
matrix of the material is indexed by 0. We assume that the temperature is much greater than
the freezing point and therefore liquid solid phase change is not considered.

2.1 Moisture Transfer

The transfer of moisture in the porous matrix is driven by a convective flow j_ (kg/(s m?)),
including both diffusive j4 and advective j, fluxes:

Je =Ja T+ Ja
The advection flux occurs due to the air motion through the pores. The differential equation
describing liquid or vapor transport can be formulated as:

aw,'
ot

==V (jai + jui) + L. i =1{1.2), )

where ; (kg/(s m?)) is the volumetric term of source (I; > 0)orsink (/; < 0)and w; (kg/m3)
is the volumetric concentration of substance i. On one hand, the quantity /; defines the source
term of liquid water occurring by condensation of vapor water into liquid. On the other hand,
the quantity /; defines the source term of vapor water appearing by evaporation of liquid
water. Since it is assumed that water is not present in its solid phase, by definition we have:

LI + L =0.

Moreover, if we assume that the mass of vapor is negligible compared to the liquid one
(w1 < wy), then the time variation of w; can also be supposed to vanish:

)

ot
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Thus, by applying i = 1 to Eq. (1), we obtain:
0=-V-(ja1 + Ja1) + 11,

which is equivalent to

I =V-(ja1 + Ja1)- 2)

The diffusive fluxes are given by:

jd,l = _kIVPW
jd,z = _k2VPC5

where k; (s) and k, (s) are the vapor and liquid permeability of the material, respectively.
Both depend on the saturation degree of the material. It should be noted that the unity of the
vapor permeability is in (s) since it is expressed considering the vapor pressure P, gradient
(and not the vapor mass content wi). In addition, the dispersion effects on the moisture
transport, inducing a modification of the diffusion coefficient due to variation of the velocity
in the pores (Marsily 1986), is neglected. This hypothesis will be confirmed in Sect. 5. The
quantities Py, and P in (Pa) are the vapor and capillary pressure. In order to use the vapor
pressure as the driving potential (Funk and Wakili 2008), we consider the physical relation,
known as KELVIN’s equation, between P, and P:

P R,T1 B

= n s
c 02 Ky P(T)
dP.  R,T

o, = P P

where py (kg/ m?) is the liquid water density and R, (J/(kgK)) is the water vapor constant.
Thus, neglecting the variation of the capillary pressure with temperature, we have:

9P aP. 0Py oP. 0T R, 9Py

ox _op, ox T ax R ax’
The diffusive flux of liquid water can then be written as:
. R,T
Jap = —kopo ; VP,.

v
The total diffusive flux of moisture can be expressed as:
jd,m = jd,l + jd,2 = —knVPy,
def . . . . .
where ky, i= ki + ko 02 R;;VT (s). The advective fluxes of moisture in the capillary material
are expressed as:

Ja1 = WiV, Jag = W2V,

where vV (m/s) is the molar average velocity (Whitaker 1986a,b). It is assumed that the
velocity is equal for both water and vapor phase. Parameters wy; and woy, in (kg/m?>), are
the volumetric concentration of moving vapor and liquid mass, respectively. It is assumed
that the air motion has no influence on the liquid substance, j, , = 0 (kg/(s m?)). Moreover,
the quantity of vapor wy; can be expressed as:

wi

Wik = —,
by
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where by (—) is the ratio of the volume of vapor V; (m?) to the total volume of capillaries
V. Thus, we have:
def V
bl :; 71

1%
It is also assumed that there is no variation of the capillaries volume, meaning that the
shrinkage and expansion effects, due to variation of the moisture content, are neglected.
Using the perfect gas law, we obtain:

. . . def . . .
Defining the advection coefficient a,, := R"T (s/m), the moisture advective flow is given
v

by:

ja,m = ja,l + ja,QZja,l = amnPby.

We define the total moisture content as w,, :d;f wy + wy (kg/m3). It can be related to
the relative humidity using the material sorption curve w, = f(¢). It is assumed that
the material sorption curve is almost invariant with the temperature (Rouchier et al. 2013).
Therefore, we can write:

dwn _ f'(@) IPy
at P, 0t

def ¢/
where Pg(Pa) is the saturation pressure. We denote the moisture capacity ¢, = f;% (kg/
(m? Pa)). By summing Eq. (1) fori = {1, 2}, knowing that 21‘2:1 I; = 0, we obtain the
differential equation of moisture transfer in porous material:
Py,
at

= V.(knVP, — anP,).

Cm
2.2 Heat Transfer

The heat transfer equation is obtained from the first law of thermodynamics. The volumetric
concentration of the total enthalpy 4 (J/kg) equals the divergence of the enthalpy flux, heat
conduction and heat advection, expressed as:

2 2
0 . X .
% <h0,00 + ;hiwz) =-V. (Jq + ;hi (Jai + Jd,i)) , (€)

where pg (kg/ m?) is the material dry-basis specific mass. The heat flux j W / m?) is driven
by the conduction and advection phenomena:

Jg = —kgVT + a,T,

where k; (W/(mK)) is the thermal conductivity of the material depending on the mois-

def
ture content and a, = pacaV (J/(K mZs)) is the heat advection coefficient. Parameters
pa (kg/m?) and ¢, (J/(m3 K)) are the density and specific heat capacity of the dry air, cor-
respondingly. It should be noted that the heat capacity of the vapor phase is included in the
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term 711 j, ;. Assuming a constant total volume, Eq. (3) becomes:

2

2 2
oT ow;
(co,Oo + :c,-w,-) SR jhi—;‘;’ = —Vejg— D hiV(jai + Jai)

i=1 i=1 i=1

2
= Y (VR (G + Jai)- )

i=1
Then, by summing Eq. (1) (i < 1), multiplied by 41 and Eq. (1) (i <— 2), multiplied by
ha, we get:

2 2 2
ow; . .
;hi—at' = —ZhiV . (Ja’,' + jd’i) + ;hib.

i=1

def
We denote by r» = h1 — hy (J/kg) the latent heat of evaporation. We also denote

def
by ¢, = poco + Z?:l ciw; I/ (m? K)) the total volumetric heat capacity, including the
contributions of the material, the liquid water and the vapor phase. Consequently, using
Egs. (2), (4) becomes:

2
= =Vejg—mV-(ar +da1) = D V@T) (joj + dai)-

i=1

P
T ¢

The last term is assumed negligible (Luikov 1966). This assumption is verified in Sect. 5.
Considering the expression of the fluxes, we obtain the following differential equation of
heat transfer in porous material:
oT
g5y =V (kgVT — ayT) + rioV - (kiVPy — anPy).
def
For the sake of clarity, we introduce the coefficients @, = riod, (W §2 /(kgm)) and
def
kgm = ri2k1 (W/(mK)). Then, the energy governing differential equation becomes:

oT

¢ =V (kyVT — ayT) + V « (kynV Py — agnPy).

2.3 Initial and Boundary Conditions

At the interface of the material with the ambient air, the vapor flux at the interface is propor-
tional to the vapor pressure difference between the surface and the ambient vapor pressure
P

Jaa + Jag = om (Py = PX) -n, ®)

where o, (s/m) is the surface moisture transfer coefficient.
For the liquid phase, within building physics applications, the flux at the interface is
imposed by the ambient air conditions:

Ja2 = 8co- (6)

If the bounding surface is in contact with the outside building air, then goo (kg/(sm?))
corresponds to the liquid flux from wind driven rain (Mendes et al. 2016). If the bounding
surface is in contact with the inside building air, then go, = 0.
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672 J. Berger et al.

By summing Eqgs. (5) and (6), we obtain the boundary condition for the moisture transfer
equation:

ja,m +jd,m :am(PV - P\/OO)'n+goo'

For the heat transfer, the heat flux j, (W/ m?) occurring by diffusion and advection is
proportional to the temperature difference between the surface and the ambient air 7°°:

Jq :“q(T - Too)'”v

where a, is the surface heat transfer coefficient. Using this, the total heat flux, including the
transfer by diffusion, advection and latent phase change, can be written as:

Jqtr2(jar + ja1) =g (T = T%)-n
+ rioom (Py — P°) - n + ringe,

As the initial condition, the temperature and vapor pressure distributions within the mate-
rial are considered to be uniform:

Py = P, T =T
2.4 Dimensionless Representation

While performing a mathematical and numerical analysis of a given practical problem, it
is of capital importance to obtain a unitless formulation of governing equations, due to a
number of good reasons. First of all, it enables to determine important scaling parameters
(B10T’s numbers for instance). Henceforth, solving one dimensionless problem is equiva-
lent to solve a whole class of dimensional problems sharing the same scaling parameters.
Then, dimensionless equations allow to estimate the relative magnitude of various terms, and
thus, eventually to simplify the problem using asymptotic methods (Nayfeh 2000). Finally,
the floating point arithmetics is designed such as the rounding errors are minimal if com-
puter manipulates the numbers of the same magnitude (Kahan and Palmer 1979). Moreover,
the floating point numbers have the highest density in the interval (0, 1) and their density
decreases when we move further away from this interval. So, it is always better to manipulate
numerically the quantities of the order of O(1) to avoid severe round-off errors and to likely
improve the conditioning of the problem in hands.

In this way, we define following dimensionless quantities for the temperature and vapor
pressure fields:

P, P> T T
U=— u®="2 yv=_— v>®= ,
P? P? T T°

where Py and T° are the reference values of the fields. The time and space domains are also
scaled with characteristic values:
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where L is the length of the material sample. All the material thermo-physical properties are
scaled considering a reference value, denoted by the super script ° for each parameter:

c a k Cm
o = 7‘]’ a* = 7‘]’ k= l’ & = My
q c° q a® q ko m c©
q q q m
Cl* _ @ * kf”" a* _ aqm * _ kqm
m ’ m ’ qm ’ qm .
ap ke, Agm kgm

Then, dimensionless numbers are introduced. The FOURIER number characterizes the impor-
tance of the heat and mass transfer through the material:
040
kqt k2 t°

Fo, = —, Fo, = —.
q 27 m 2
ch co L

The PECLET number translates the importance of the advection relative to the diffusion in the
total transfer:

a’ a® ag,, L

Pe, = 4_ Ppe, = 2=, Peyn = am
o ko ko

q m qm

The parameter y quantifies the coupling effects between moisture and heat transfer:
kgm PV
kgT®

y:

The BIOT number appears for the boundary conditions, quantifying the transfer from the
ambient air to the porous material:
. oy - L . o, - L Agm + L
Bi, = n , Big = d =4 =

In one space dimension, the unitless system of partial differential equations of heat and
mass transfer is therefore formulated as:

d d d
o2 Fo,, — | k& ‘o Peatu |,
o ax* \ " ox* "

av a av
C;% FOqﬁ <k;§ — Peqa;v>
a , ou N
+ Foqy—ax* kqm—ax* — Peqmaqmu ,

together with the boundary conditions:

, ou . .
2~ Py = B (1 — ).
* av * * au * . .
T Pejazv +y < amy Peqmaqmu> = Biy (v — v™) + yBign (u — u™).

It can be noted that the dimensionless coefficients a*, d* translate the nonlinearity (or the
distortion) of the diffusion and advection transfer, relatively to the reference state. Using
data from Abadie and Mendonca (2009), the moisture FOURIER and BIOT numbers for
the spruce and the brick are reported in Table 1. The True Moisture Penetration Depth
(TMPD) from Abadie and Mendonga (2009) and the Moisture Buffer value (MBV) from
Rode et al. (2007) are also given. The brick has a higher FOURIER number than spruce.
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Table 1 FOURIER and BIOT numbers

Material kS, (s) o, (s2/m?)  Foy, Bi,x  TMPD(cm) MBV (g/m?)
Brick 2x 1071 6 x107* 29x1073 100 5 0.4
Spruce (vertical 5% 10712 9 x 1073 5x 1073 400 15 1.2

fiber)

Parameter used for computation: L = 0.2m,° = 1h, o, = 108 s/m, T = 23°C

Therefore, the moisture diffusion through this material is predominant, explaining why
the TMPD observed in Abadie and Mendonca (2009) is more important. In addition, the
BIOT number is higher for the spruce. It implies that under an increase of absolute humid-
ity, moisture will penetrate easier in the spruce than in the brick. Combined with a lower
FOURIER number, it explains why the MBV value is higher for the spruce (Rode et al.
2007). This analysis highlights that the dimensionless numbers, appearing in the formu-
lation of the equations of heat and moisture transfer, enable to understand the material
behavior.

3 Numerical Methods

The material properties varies along the space coordinates (and sometimes with the time)
and with moisture contents and temperature. Moreover, the boundary conditions are defined
according to climate data driven boundary conditions. Therefore, the use of analytical solu-
tion is limited and numerical approaches are necessary to compute the approximate solution
of the problem. It introduces a discretization of the time and space with a local difference
approximation of the derivatives when using the TAYLOR expansion approach. The important
aspects of a numerical scheme are (i) it global error and (ii) the appropriate (qualitative and
quantitative) behavior of the solution to represent the physical phenomenon. The former is
quantified by the accuracy of the method, related to the order of truncation when approximat-
ing the derivatives. The latter is associated with the absolute stability of the scheme. A stable
scheme avoids to compute an unbounded solution. Moreover, a numerical scheme converges
if and only if it is stable (LAX—RICHTMYER theorem). It should be remarked that even with
a stable scheme, attention should be paid to the choice of the time and space discretization
parameters. A stable scheme does not necessarily imply that a physically realistic solution
will be computed. Some examples of such cases can be found in Gasparin et al. (2017b)
and Patankar (1980). Moreover, a critical aspect of a numerical scheme is the CPU time to
compute the solution of the given problem. Interested readers are invited to consult Mendes
et al. (2016), Hairer et al. (1993) for more details.

For the description of the numerical schemes, let us consider for simplicity a uniform
discretization of the interval. The discretization parameters are denoted with Ax for the

space and with At for the time. The spatial cell C = |:x 1, xH_ 1 ] is represented in Fig. 2.
-2 JT2
def
The values of function u(x, t) in discrete nodes will be denoted by u;' = u (xj, ") with
jef{l,..., Ntandn = 0, 1,2, ..., N,.
For the sake of simplicity and without losing the generality, the upper-script * standing for
dimensionless parameters, is dropped out. In addition, the numerical schemes are explained
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for the one-dimensional linear convection equation written in a conservative form as:

d aJ

L0, >0, xelo1],

at ox
ad

J:au—dl, @
ax

where u(x, t),isthe field of interest, d the diffusion coefficient and a the advection coefficient,
both considered to be constant. The boundary conditions are also written using a simplified
notation:

j— ’, — =
d—ax — au = Bi (u u® ), X 0, (8a)
—da—u—i—au—Bi'(u—u ) x =1 (8b)
o = ), ,

where u is the field in the ambient air surrounding the material. It should be noted that
since we consider 1-dimensional transfer, :I:g—ﬁé plays the role of normal derivatives.

3.1 The SCHARFETTER-GUMMEL Scheme

The straightforward discretization of Eq. (7) yields the following semi-discrete difference

relation:
du 1
— — |\ = I = 0.
a T Ax [ its /—%]

SCHARFETTER and GUMMEL assumes that the numerical flux is constant on the dual cell
cr = [x jh X j+1]. Thus, it can be computed giving the following boundary value problem
(Scharfetter and Gummel 1969; Gosse 2013; Gosse and Natalini 2017):

ou

J;’Jrl = au —d——, Vx € [xjxjp1],  Vie{2,...,N -1}, (9a)
2
u=ul, X = xj, (9b)
u = ”?+17 X = Xj41. (9¢)

Equation (9) is a first-order differential equation with two boundary conditions and the
two unknowns u and J" . The solution of Eq. (9) corresponds to the expression of the

ity
POINCARE-STEKLOV operator, S : (u;’., u’]’ +1) > J" | and can be written as:
./+§
alAx
n n
ui —ul e d

J" =a . 10
= alx (10)

l1—e¢ d

The last equation can be rewritten also as:
d

n e n _ n

@ Springer



676 J. Berger et al.

Fig.1 Plot of the BERNOULLI 6 T
function B(©)

where the BERNOULLI function 5(-) and the ratio ® are defined as:

def O def alAx
B(O®) = —, O =
© e® — 1 d
The behavior of the BERNOULLI function is illustrated in Fig. 1. It can be noted that we
have the following limiting behavior:

1.1“ B @ == 1 1']“ B @ = 0 113
1 ( ) ’ 1 ( ) ’ ( )
1.]|l l; —0) = 1 1.1“ l; —-0) = +(>O. lll)
@1%0 ( ) ’ ("')*)1 (o) ( ) ( )

For the nodes at the boundary surface, j € {1, N}, the flux J; is the solution of

2
" :au—da—u Vxe[Ox”]
% ax’ b
da—u—au:BL(u—uoo), x =0,
0x

and J_ |:
N+§

a
J' | = au —dZ, Vx € [x}, 1],
N+5 dx

u=uy, x =xy,
ou L o _
—da—f-au—Bl-(u u ), x = 1.
Solving these two systems, we get:
. aBi (u°°e® — u'l') n _ aBi (uoo - u’]’\,e@)
% (Bi(e® — 1) + ae®)’ N+% (Bi(l —e®) —a)
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material cell cell
face cell face
1l
: l uj l L ognl
: dual cellhiC* i
J P8 ! Jni
3 noiJgn N3
: J J+3 '
' ! ! AL
x=0 =4 z;j T+l  Tj4l TN z=1
cell dual cell
center center

Fig. 2 Stencil of the SCHARFETTER—-GUMMEL numerical scheme

def dAt
We define A ‘= Al When using the EULER explicit approach to approximate the time
X
derivative from Eq. (7), the SCHARFETTER-GUMMEL scheme finally yields to:

At

W™ =l + = = A[-B(®©)ul + B(—O)ul]
Ax 2

u;{+1 =u} + A[B O ujy — (B(=0) + BO)uj + B(—6) ”7—1]’

Vie{2,...,N — 1},
n+1 n n n At n
W =y + A [-BO) Uy + B(=O)uy_ ] - EJN%.
The stencil of the scheme is illustrated in Fig. 2. The scheme is first-order accurate in time and
space O(Ax + At). It should be noted that the flux is approximated to the order O(Ax) as
well (Gartland 1993). This is a remarkable property of the scheme since a derivation usually
provokes the loss of one order in accuracy.

3.2 Specific Features of the Scheme

The important feature of the SCHARFETTER—GUMMEL numerical scheme is well balanced as

def
well as asymptotically preserved !. Using the definition of parameter © = aﬁx , when the

advection coefficient is much greater than the diffusion one, a > d, we have ® — oo0.
Inversely, when the advection coefficient is smaller than the diffusion one, a < d, we obtain
® — 0. Thus, considering the results from Eq. (11), the limiting behavior of the numerical
fluxes is correct independently from grid parameters:

u o —u" n <0
. 1 . us, a s
lim J" =—M, lim J" | = é =
a=0 j+5 Ax d—0 j+5 Uiy a > 0.
Furthermore, the computation of J" | is exact and it gives an excellent approximation
Jj+3
of the physical phenomena. The only hypothesis was done when assuming J" | constant in
it
the dual cell [x js X j+1]. In addition, when the steady state is reached, the solution computed

! The term asymptotically preserved is used nowadays in applied mathematics community. However, the first
hystorical term was uniformly accurate, which is much clearer to our opinion
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with the scheme becomes exact (Jerome 1991). Interested readers may consult Patankar
(1980), Gosse (2013) and Gosse and Natalini (2017) as recent works on the SCHARFETTER—
GUMMEL scheme. The approximation of the dispersion relation by the scheme is discussed
in “Appendix A”. In particular, it reveals that the phase velocity is second-order accurate.

The numerical scheme has other advantages that may be more interesting when applying
to physical case studies. First, an explicit form of the solution is obtained. Therefore, no sub-
iterations are required to treat the nonlinearities of the problem as it is the case when using
CRANK-NICOLSON approach for instance. This feature may reduce significantly the CPU time
of the algorithm (Berger et al. 2017; Gasparin et al. 2017b,a). When using a fully implicit
approach, as for instance in Simunek et al. (2009), a special iterative approach (e.g. the PICARD
one) is required to treat the nonlinearities at each time iteration. Other comments on the advan-
tages of the SCHARFETTER—-GUMMEL scheme compared to the CRANK—NICOLSON approach
are discussed in Duffy (2004).

Itis true that when using explicit approaches, the so-called COURANT-FRIEDRICHS-LEWY
(CFL) stability condition must be respected. For a classical EULER explicit approach, it is
a strong restriction since it implies a fine spatial grid. However, in the linear case, the CFL
condition of the SCHARFETTER—GUMMEL scheme is given by (Gosse 2016):

-1

alAx

Ata tanh < Ax.
2d

It can be noted that, if the spatial grid is refined, the TAYLOR expansion of the hyperbolic
tangent gives:

alAx

O(AxY).
2d + O(Ax7)

an)l 2d alAx

— 0, tanh| —— = +
2d alAx 6d

Thus, the CFL condition starts to become quadratic At < Cj - AxZ. 1t brings us to the

standard CFL condition of the explicit EULER approach. Nevertheless, if the spatial grid is
alA

large, tanh (de> = O(1) and the CFL condition is improved to At < C; - Ax. The
values of Ax have to be in a closed interval, depending on the material properties. It is not
necessary to use a fine spatial grid for this approach.

Moreover, a useful point is that, considering Eq. (9), the exact interpolation of solution

u(x) can be computed:
PR
Wx) = —Jn 4~ T/

a
g e P <E (x — xj)), x € [xj,xjm]. (12)

Therefore, when using a large spatial grid, one can compute the exact expression of u(x) on
the point of interest using Eq. (10). When using the classical methods, an interpolation (e.g.
linear or cubic) is required. If the solution is steady, Eq. (12) provides the exact solution of
the problem.

In terms of implementation, it has been highlighted in Berger et al. (2017) that the SCHAR-
FETTER—GUMMEL approach is particularly efficient, in terms of reduction of the CPU cost,
when using an adaptive time stepping. In Sect. 3.1, the scheme was presented using an
EULER explicit approach for the sake of simplicity. In further sections, the algorithm is
implemented using the Matlab™ function odel13, based on the ADAMS—BASHFORTH—
MOULTON approach (Shampine and Reichelt 1997). It is possible to use a RUNGE-KUTTA
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Table 2 Synthesis of the SCHARFETTER—-GUMMEL numerical scheme advantages

Well balanced

Asymptotic preserving

Explicit form of the solution, no sub-iterations required to treat the nonlinearities
CFL stability condition scaling with Ax for large spatial grid

Reduced CPU with an adaptive time step algorithm

Exact interpolation of the solution u (x)

scheme (function ode45 for instance). However, this approach requires intermediate compu-
tations between two time iterations. The ADAMS—BASHFORTH-MOULTON scheme computes
directly u”*! as function of the computations at the previous time steps. It is less expen-
sive in terms of computational cost, and it was therefore used in the next case studies. The
advantages of the SCHARFETTER-GUMMEL numerical scheme are synthesized in Table 2.

3.3 Extension to Nonlinear Cases

When the coefficients a and d of Eq. (7) are nonlinear, i.e.dependent on u, we apply the
approximation of frozen coefficients on the interval. Hence, the coefficients a and d are
constant on the dual cell [x JrXj4l ] The flux at the interface is computed using the boundary
value problem given in Eq. (9), and the solution yields to:

n

o1

jt+3
In,o=-—*tl-Ble" " +B<—®” m, 13
j+3  Ax [ < j+§)u’“ ey ()

where the coefficients are computed according to:

J+s
e" | = 2 Ax, a"lza(u"1>,
. n . .
ity 4 its it3
)
1
n _ n n _ - n n
dj+% = d(uHé), uj+% = Z(MJ +u]+1).

When dealing with nonlinearities, we reiterate that the SCHARFETTER—GUMMEL scheme
does not require any sub-iterations at each time iteration ¢”, since it is explicit. Indeed, the
scheme is written in an explicit way, enabling to compute directly the coefficients a and d.
On the other hand, the CFL condition of the scheme has to be respected, which is given by
(Gosse 2016):

a. 1 Ax -1
e
Atmax | a. | tanh -2 < Ax.
j i+3 2d .
ity

3.4 Comparison of the Numerical Solution
To compare and validate the scheme implementation, the error between the solution

u™™ (x, t), obtained by the numerical method, and a reference solution uf(x, 1), is com-
puted as a function of x by the following discrete ¢, formulation:
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def | 1 2
&(x) == ﬁz Z (u‘}“m(x,t) — u?ef(x,t)) ,
j=1
where N; is the number of temporal steps. The global uniform error e, is given by the
maximum value of &(x):

def
oo 1= Ssup &2(x).
x€[0,L]

As detailed in further sections, the reference solution u™f (x, ) can be given by an ana-
lytical solution in exceptional cases, by a numerical pseudo-spectral solution obtained with
the Matlab™ open source toolbox Chebfun (Driscoll et al. 2014) or even by experimental
data. The pseudo-spectral solution employs the function pde23t of Chebfun to compute
a numerical solution of a partial derivative equation based on the CHEBYSHEV polynomials
representation.

3.5 Numerical Validation

In this section, the validation of the numerical scheme for a single advective—diffusive equa-
tion is proposed. For this purpose, Eq. (7) is written in the form:

ou ﬂ

5+8x =0, r>0, xe€y, (14a)
3

J = au — dw)2, (14b)
dx

a() = ap + aiu + ai’, (14c)

dw) = dy + diu + doui®. (14d)

The functions for diffusion and advection coefficients have been exclusively used for the
validation of the numerical algorithm and the analysis of the accuracy of the SCHARFET-
TER—-GUMMEL numerical solution. They may not be appropriate for material coefficients
experimentally determined. The boundary conditions and the numerical values are specified
for each of the three cases. The first two compare the numerical solution with an analytical
one. As illustrated in Fig. 3a, they consider a material with an initial profile u(x, 0) in the
material. A DIRICHLET conditions is imposed at the boundaries of the material. For the last
case, the reference is the Chebfun pseudo-spectral solution. As illustrated in Fig. 3b, a uni-
form initial condition is considered in the material with time variable boundary conditions
in the ambient air surrounding the material.

3.5.1 Case 1

First, we set ag = dop = d» = 0. In this case, an analytical solution to Eq. (14) can be
obtained by direct substitution:

1 1
u(x, 1) = —=Atanh (k (x + xp — c1)) — =L,
2 2ap
where
def _d def @ def 1 5 55
=200y, k= S2A o= —— (a? — d2A?),
! 2, € 4ay (a1 — a347)
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u(z, 0)
u(x, t)
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: 1
r=—1L z=0 r=1L
(a)
U
oco,L t A DC,Rt
" (¢) material “ (t)
u(z,0)
r=20 =1L
(b)

Fig. 3 Tllustration of the case studies 1 and 2 (a) and of the case 3 (b)

and Cj is an arbitrary constants and xo defines the initial position of the front.
The asymptotic values of u(x, t = 0) provide the DIRICHLET type boundary conditions
that will be used to compute the numerical solution:

x—l}I-&I-loou(x’ 0) = u

lim u(x, 0) = u®r
X—>—00

1
- (GZA + al)a
2a;

1
— A — .
a3 (a2 ap)

For the numerical application, we take into account the following values:

x=0, Ci =1, a = —14,

And as consequences, we have:

a = 0.2, di = 0.5.

The domains are defined as x € [—10, 10]and ¢ € [0, 5]. The numerical solution is computed
using the SCHARFETTER—-GUMMEL scheme, with following spatial discretization Ax = 0.01
and an adaptive time step At using Matlab™ function ode113 (Shampine and Reichelt
1997) with an absolute and relative tolerances set to 107°.

Figure 4a, b give the variation of the field as a function of time and space. A very good
agreement can be noticed among the SCHARFETTER—-GUMMEL, Chebfun pseudo-spectral
and analytical solutions. As shown in Fig. 4c, the £, error is lower than O(10~2), which is

consistent with the scheme accuracy O(Ax).
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Fig. 4 Variation of the field u as a function of x (a) and ¢ (b). £; error as a function of x (¢)

3.5.2 Case 2

We set as null the coefficients ay = d; = d» = 0. For these conditions, by direct substitu-
tion in Eq. (14), one can check that an analytical solution can be expressed:

1 1
u(x,t) = ——Atanh (k (x + x9 — ct)) — —— (Crag + C3),
2 2C1ay
where
def _d| def def C
A:; 2—0C1, k:; Cq, C:; _72’
ag Cl

where C and C; are arbitrary constants and xg is the initial position of the front.
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The asymptotic values of u(x, t = 0) give the DIRICHLET type boundary conditions that
will be used to compute the numerical solution:

1

: _ ,00,R _ LYol > N _
im u(x, 0) = " = 2anC (=2Cidy — Crap — C2),
1
. _ 00, L __ 2 _ _
Jim u(x, 0) = ut = e (2Cido — Ciag — C3).

The following values are used for numerical applications:
Ci =0, Cb =1, C3=-2, ap=0.1, a =03, dp =0.2.
And therefore,
u®R =125, u*t =383

The time domainisdefined as ¢ € [0, 3]. For the numerical solution, the space domain needs to
be defined. Since, V¢ € [0, 3], [u(— 10, 1) — u®L| <3 x 107 and [u(10, 1) — u™R| <
3 x 1079, the space domain is set as x € [—10, 10]. As for the previous case, the solution
is computed using the SCHARFETTER—-GUMMEL scheme, with a spatial discretization Ax =
1072 and an adaptive time step At with tolerances set to 107>,

Results are shown in Fig. 5a—c. An accurate agreement is observed between the three solu-
tions to represent the physical phenomena. The £ error is of the order O(10~3), highlighting
high accuracy of the solution computed with the SCHARFETTER—GUMMEL scheme.

Remark on the analytical solution
Other analytical solutions can be derived. By direct substitution in Eq. (14), one can check
that, for the particular case a; = dyp = d» = 0, we have:

1
u(x, t) = —EAtanh (k (x + x0 — ct)),
where
def _d def 1 def 4
A= 2—]C1, k= fa—zA, ci= -
ap 2.dy @ A% + 4ag
and C is arbitrary real constants. The asymptotic values are:
1
lim u(x, 1) = u®R = —— A,
xX—00 2
1
lim u(x, t) = u®™t = = A.
X——00 2

However, due to the functions tanh (k x), the last solution u takes positive and negative
values in the interval x € IR. It can be noted that u®® < 0 and u®L > 0, for A > 0 (or
vice versa). It implies positive and negative values for the diffusion coefficients d, that has
no physical meaning. For this reason, this analytical solution was not used for comparison
with the numerical one. However, it can be used to validate the solvers.

In the particular case ap = ap = dy = d» = 0, another two analytical solutions can be
derived:

—1
ui(x, t) = 4d,Cy I:a% (tanh <C2[ — 2071)6 + C1> + 1)i| ,
1

—1
ur(x, 1) = 4diC [a% (tanh <sz + %x + c1> - 1)} ,
1
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Fig. 5 Variation of the field u as a function of x (a) and ¢ (b). £> error ¢ as a function of x (¢)

and C; and C, are arbitrary constants. It can be pointed that the asymptotic values are:

oo, R oo, R

lim wuyi(x,t) =u = —00, Iim wur(x,t) =u = 00,
x—+ 00 1 ) 1 x—+ 00 2( ) 2
. . d
im0 = u0h =250, lim w0 = w3t = 2510,
X—>—00 a X—>—00 al

1

One asymptotic value of both analytical solutions tends to infinity, having no physical
meaning. This solution can be used for validation purpose only on a finite domain.

3.5.3 Case 3

The previous comparison cases considered only DIRICHLET boundary conditions. Here, a
nonlinear case of transfer with ROBIN boundary conditions is investigated. The time and
space domains are defined as x € [0, 1] and ¢ € [0, 6], respectively. The material properties
are fixed to:

ay = 0.5, ap =03, ap =0, dyp =09, dy =0.1, d» = 0.
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Fig. 6 Variation of the field u as a function of x (a) and ¢ (b). £> error ¢ as a function of x (¢). Time variation
of the residual R (¢) of the conservation law Eq. (15)

The initial condition is set to u(x, t = 0) = 0. Moreover, in accordance with Eq. (8),
we have:

2
t
At x = 1: Bif = 1.3, u®®@) = 1.9sin <2”6> )
At x = 0: Bi* = 0.5, u®L@) = 0.3(1 — cos(7w1))>.

The SCHARFETTER—GUMMEL numerical solution is computed for a spatial discretization
Ax = 1072 and an adaptive time step with all tolerances set to 10™>. Moreover, in order to
confirm the analysis of the studied scheme accuracy, the commercial software Comsol1™ is
used to compute the solution (Comsol multiphysics user’s guide 2012). It is based on a
finite-element approach with a backward implicit time discretization. The same spatial mesh
Ax = 1072 is used. As no analytical solution was found, the reference solution is the one
computed with the Chebfun package. Figure 6a, b show that the physical phenomena are
perfectly represented by the SCHARFETTER—GUMMEL numerical solution. The field u follows
the variation of the boundary conditions. Once again, a very good agreement is observed
between the Comsol™., the SCHARFETTER—-GUMMEL and the Chebfun solutions. The ¢
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error is lower than O(1072) for both Comsol™ and SCHARFETTER-GUMMEL solutions.
It is important to note that the evaluation of the CPU time is not accomplished since the
SCHARFETTER—GUMMEL and Comsol™ algorithms are developed in different languages

and environments.
Another possibility to verify the accuracy of the solution is to verify the conservation law.
In this particular case (@ = d» = 0), a non-trivial conservation law can be derived:

9 _2ap (A 9 A 9 —(_ A
—|u-e dll( dlt) + — —u — (dp + dlu)l -e dll( "lt) =0, (15
at d ax

0x 1

. def . . .
with A ‘= apd; — 2a1dp. In order to verify the accuracy of the numerical solution computed,
the residual R is calculated according to:

Lra _2( A,
R(t)=/0 {E[M-e dl( d ):|

a A 0 _ (A
+— [(—u — (do + dlu)al> e 4 ( "lt)“dx,
X

0x dp

that can be rewritten in the following form:

1 2a
R(t) = 3[/ u-edl'(*'fl’)dx]
at | .Jo

A d _(_ A
+ —u — (dy + dlu)l e 4 (x dlt)
dl 0x x=1

A 0 (A
— || —u — (do + diu) o e @ (x dlt) .
dl dx x =0

Figure 6d shows the time variation of the residual of the conservation law. The conservation
law is verified by numerical solutions indicating a satisfying accuracy of the numerical
methods. Another remark concerns the symmetry point transformation. These symmetries
enables to translate physical observations (as space or time translations) and can be used in
further studies when exploring the equation solutions. Three symmetries have been identified:

X' =x + €
1. Space translation: {¢' = ¢t

u' =u

x'=x

2. Time translation: {t' = t + e

/ A —dye3
X =x- g (l —e )
3. Scaling symmetry: { ' = re~41€3

I pedies _ do (1 _ odi€3
u' = ue a (1 e )

The symmetry can be used when exploring the equation solutions. Knowing a solution and a
particular symmetry, an infinity of solution can be computed. An example has been included in
the manuscript for the scaling symmetry 3. Figure 7 shows the solution u (x, ¢) obtained using
the SCHARFETTER—GUMMEL numerical scheme. Adopting the scaling parameter e3 = —1.5,
the solution u’(x’, ¢’) can be obtained by applying the symmetry.
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Fig. 7 Illustration of the use of 1.5 T
the scaling symmetry to compute u(z,t=45)
u(x’, t') using u(x, ) and the -/ (2!, ' =52)
scaling parameter €3 = —1.5 1t 4
0.5 4
3
OF -
05 1
-1

-0.5 0 0.5

4 Numerical Method for Coupled Equations

For the sake of simplicity and without losing the generality, the numerical schemes are
described for the system of two coupled linear advection—diffusion equations, written as:

3 3
a—‘:+%=o, t>0, xel0,1], (162)
0 98 0 20, xelo1] (16b)
. — = ) > b X ) )
Jat ax
u
f = anu — dua—, (16¢)
X
v ou
g = anv —dpn— + au — dyj—, (16d)
ox x

where u(x, t) and v(x, t), x € K, t > 0, are the fields of interest, d;;, the diffusion
coefficients and, a;, the advection coefficients, both considered as constants (in this section).
The frozen coefficients are used here only to generalize the results obtained for the case of a
scalar linear advection—diffusion equation. At x = 0, the boundary conditions are:

a

d“l — dajju = Bi11 . (u — uoo)’ (1721)
ax
v u . 50 . 00

dzza — anv + d21£ — ayiu = Bin - (v — v™) + Biar - (u — u™),  (17b)

andatx = 1:

ou
dij— — = —Biy - (u — u™®), 18
g T anu i (u — u®™) (18a)
v au . 00 : 00
d2za — anv + d21a — ayu = —Bin - (v — v™°) — Biy; - (u — u™), (18b)

where ©*°(¢) and v°°(¢) are the field variables in the ambient air surrounding the material.
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4.1 Extension of the SCHARFETTER—-GUMMEL Scheme to the Case of a System

The discretization of Egs. (16) yields to the following semi-discrete difference equations:
du.] n n
- — =0,
dr Ax [fl +3 fl*
do; 1 [ . n
— + — g, — & = 0.
@ Ax [gﬁ% 8j-4

As for the scalar case, the SCHARFETTER-GUMMEL scheme assumes the fluxes f” | and

Nl—=

J+2
g" | tobe constant on the dual cell [x;, x ;41 ]. The flux f” , is the solution of the following
J+2 2
boundary value problem:
n ou .
o =anu — dii—, Vxe[x;,xj+1], Vief{2,..., N — 1}, (19a)
jt3 0x ’
u = u;?, X = xj, (19b)
u = u?_’_l, X = Xj41. (19¢)

While g" , is given as the solution of:
/+§

n

v ou .
" | =anv —dyn— +ayu —dy—, Vxe[xjxjp]. Vie{2 ..., N -1}, (20a)

i+ ax ax
v = v';, x = xj, (20b)
v = ”;’l+l’ X = Xj4. (20c)
def ap;Ax . . .
We define Oy := ) . Then, the computation of f" | from Eq. (19) is straightforward:
kl it3
o :d“[ B@©m)u",, + B(—© )u”]
j+% Ax 1)U 11

Using results from Eq. (12), the solution u(x) can also be computed exactly as well:

1 ui — uf 1
) = <ff+)exp<au

o J+1 + G d—ll(x —xj)>, xe[xj,xj_,_l]. (21)
For the computation of g;'+l from Eq. (20), the solution u(x) from Eq. (21) is used. For
2

the sake of notation compactness, the expression of the flux g;_’+ , 1s provided in the Maple
2

sheet provided as a supplementary material.

All specific features of the SCHARFETTER-GUMMEL scheme mentioned in Sect. 3.2 are
still valid for the system of differential equations (18). The scheme is well-balanced and
asymptotic preserving. An exact computation of solutions # and v can be computed in the
interval [x;, x;41]. The CFL condition is extended as:

-1
A
At max di max %tanh drax < Ax.
1<kI<2 T 1<j<EN | dig 2dy
The treatment of nonlinear problems, where coefficients a; and d; depend on u and v,
is completely analogous to Sect. 3.3 with the approach of the frozen coefficients on the dual
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cell. The problem of heat and mass transfer formulated in Sect. 2 corresponds to a weakly
coupled system of differential equations. When considering highly coupled equations, the
SCHARFETTER—GUMMEL approach can be applied for each equation by assuming the flux as
constant and computing the latter by solving the associated boundary value problem.

4.2 Numerical Validation

To validate the numerical SCHARFETTER-GUMMEL scheme for a system of coupled differ-
ential equations, two cases are considered. The first one, which considers constant material
properties, is used to undertake a convergence study on the discretization parameter Ax and
At. The second case, with material properties depending on the fields, will highlight the
accuracy of the scheme to treat a nonlinear problem.

4.2.1 Case 1

In this case, the material properties do not depend on the fields and they are fixed to:
ajp = 0.02, dj; = 0.09, ay = 0.03, dyy = 0.07, ap = 0.01, dp; = 0.03.

The initial condition is set to # = v = 0. For the ROBIN type boundary conditions, the
BIOT numbers are equal to:

x =0: Bij; = 1.5, Bip = 0.6, Biy = 0.2,
x =1: Bi]] = 1.3, Bizz = 1.1, Bi21 = 0.8.

In the ambient air, the fields vary according to sinusoidal variations:

2
x=0: u®@) = 02sin’(xr), v™¥@) = 0.6sin> <fm>,

2 2
x=1: u®@F) = 09sin’ <8 n't), v (1) = 0.5sin’ <§7rt>.

The simulation final time is + = 3. The discretization parameters used for the com-
putation are Ax = 1072 and Ar = 10~*. These parameters respect the CFL conditions:
At < 5% 10~%. The variation of the fields u (x, ) and v(x, t) as a function of time and space
is illustrated in Fig. 8a—d. It follows the variation of boundary conditions and physical phe-
nomena, which are well reflected. Moreover, a very good agreement can be noticed between
the solution computed with the SCHARFETTER-GUMMEL scheme and the reference one. For
both fields, the £, error is less than 5 x 10~ as shown in Fig. 9. A convergence study has
been carried out by varying At or Ax and fixing the other one. Figure 10b shows the variation
of the error as a function of At for a fixed spatial discretization Ax = 1072, The error is
invariant and equals to the absolute error of the scheme for the range of At considered. The
scheme is not able to compute a solution when the CFL condition is not respected. Figure 10a
gives the error & as a function of Ax for a fixed Ar = 10~*. It can be noted that the error
{5 as a similar behavior for both fields. In addition, the SCHARFETTER—GUMMEL scheme is
first-order accurate in space O(Ax). For this parametric study, the computational time of the
scheme has been compared for two approaches: (i) with a fixed time step A = 10~% and
(ii) with an adaptive time step using the Mat1ab™ function ode113 and two tolerances set
to 107>, As shown in Fig. 11b, using an adaptive time step enables an important reduction
of the computation time when Ax is relatively large without losing any accuracy. Figure 11a
gives the variation of the error as a function of the discretization parameter Ax. Thanks to
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Fig. 8 Variation of the fields as a function of x (a, b) and 7 (¢, d)

the time adaptive feature of the algorithm, it enables to respect the CFL condition for any
value of space discretization parameter Ax.

4.2.2 Case 2

The material properties are now depending on the fields # and v:

aj] = 0.02 + 0.3u + 0.6v%, dj; = 0.09 + 0.54% + 0.5v,
a»n = 0.03 + 0.2u + 0.1v, dap = 0.07 + 0.6u% + 0.502,
a = 0.01 + 03u + 0.5v, do; = 0.03 4+ 0.1u + 0.3u> + 0.5v.

The initial condition and BIOT numbers are similar to the ones from the previous case. The
boundary conditions are:

0, u™®(r) = 02(1 — cos’ (1)), v™(t) = 0.6sin* (n1),

2 2
0.9 sin? (8 m), v™>®(t) = 0.5sin’ (gm).

X

1, u®™@)

X
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Fig. 12 Variation of the fields as a function of x (a, b) and 7 (c, d)

The simulation final time is 7 = 6 and the solution is computed with Ax = 0.01 along
with an adaptive time step with both tolerances set to 107>, A perfect agreement between
the reference and SCHARFETTER—GUMMEL solutions can be seen in Fig. 12a—d. The absolute
error is lower than 4 x 1073 as shown in Fig. 13, validating the scheme for this nonlinear
case.

5 Experimental Comparison
5.1 Description of the Case Study

As the advantages of the SCHARFETTER—-GUMMEL scheme were highlighted in previous test
cases, an important step in the validation of a physical model is its capacity to represent
the physical phenomena. For this, results from the numerical model are compared with
experimental data from James et al. (2010), which enables to investigate both advective and
diffusive effects on the moisture front. A gypsum board, of length L = 37.5mm and initially
conditioned at the relative humidity ¢ = 0.3, is submitted to an adsorption—desorption
cycle (30-72-30) for 48 h. The temperature is maintained almost constant during the whole
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Fig. 13 ¢ error for the two 102 r T T T
fields u(x, t) and v(x, t)
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Fig. 14 Moisture permeability (a) and, adsorption and desorption curves of the moisture content for the
gypsum board (b) (see James et al. (2010) for more details)

test at T = 23.5°C. The constant surface transfer coefficient is equal to o, = 3.45 x
1078 W/m?/K and a,, = 2.41 x 10~% s/m. The material properties are recalled in Fig. 14
and can be found in James et al. (2010). The sorption moisture equilibrium curve with its
hysteresis characteristic is reminded and illustrated in Fig. 14b.

The problem is solved with the SCHARFETTER-GUMMEL numerical scheme considering a
large spatial discretization parameter Ax = 0.1, an adaptive time step and both tolerances
set to 1073, Before analyzing carefully the numerical prediction and the experimental data,
it is important to verify the hypothesis that was done in Sect. 2.2. In Eq. (4), the term
21'2:1 vV (T) - ( Jai tJ d,i) has been neglected according to the suggestion of (Luikov
1966, chapter 6). The sensitivity of this assumption is verified by evaluating the contribution
of this term compared to the others:

5 — max Y VT (joi + Jai)
= A . . B . A
PVegg+ 2V (a1 + Ja1) + Zica V@) s (Gai + Jas)
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Fig. 15 Verification of the 0.3 T T T T
assumption made in the
derivation of the equations
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The variation of § is given in Fig. 15. It can be noted that this term contributes to the sum,
at most, 0.25%. This simplifying hypothesis is therefore acceptable.

5.2 Results and Discussion

The purpose is now to compare the numerical predictions with the experimental data. The
experimental data are given at x = {12.5, 25} mm. The numerical solution is obtained at this
point using the exact interpolation by Eq. (21), also provided in the Map1le™ supplementary
file. The experimental facility is illustrated in Fig. 16. At the top of the material, an airflow is
used to impose the temperature and relative humidity conditions. Due to this imposed airflow,
it is supposed that there is an non-null velocity profile within the material. A probable profile
of the velocity is shown in Fig. 16. However, the physical model does not take into account
the momentum equation. Thus, the velocity is supposed to be constant and equal to its spatial
average taken along the material height, as a first-order approximation. For each simulation,
the velocity is estimated using an interior-point algorithm by minimizing the residual with
the experimental data at each measurement point. Results are reported in Table 3. Figure 17a,
b illustrate the variation of the vapor pressure at measurement points for a physical model
considering only diffusion mechanism and another one taking into account both diffusion and
advection phenomena. First, it can be noted that the model with only diffusion underestimates
the adsorption phase and overestimates the desorption phase. By considering the advection
transfer in the material, there is a better agreement between the experimental data and the
numerical results. Similar conclusion can be drawn for the temperature evolution, shown in
Fig. 18a, b. The model with diffusion and advection slightly overestimates the temperature
at x = 25mm. Using the interior-point optimization algorithm only for this measurement
point, a lower velocity is estimated v. = 2.5 x 1072 mm/s. As illustrated in Fig. 18b,
the numerical results have a better agreement with the experimental measurements. This
analysis illustrates that considering the mass average velocity as constant in space is a first-
order approximation as discussed in Wang (2000). In addition, the velocity may also vary in
time. For instance, at t = 10h, the numerical model overestimates vapor pressure, which
might be explained by an overestimation of velocity. It should be remarked that considering
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Fig. 16 Illustration experimental

facility ¢( t ) , Rad air flow
r(t) ¢
‘\
\\
\\\ T =
- — — possible BN %
assumed v(z) g
Table 3 Residual with experimental data and estimated velocity
Model Residual & Estimated velocity (mm/s)
Vapor pressure (Pa) Temperature (°C)
Diffusion 0.19 34 x 1073 -
Diffusion and advection, no 0.065 1.5 x 1073 5% 1073
hysteresis
Diffusion and advection, 0.13 1.6 x 1073 4 x 1073
hysteresis model 1
Diffusion and advection, 0.039 1.4 x 1073 4.2 x 1073

hysteresis model 2

this velocity, the PECLET number is of order 0(10,_2) for moisture transport, validating the
hypothesis neglecting the dispersion effects in the moisture transport.

However, some discrepancies still remain for the model considering both diffusion and
advection mechanisms, particularly for the measurement pointx = 25 mm, for¢ € [28, 48].
As mentioned in James et al. (2010), these discrepancies may be due to the hysteresis effect on
the moisture sorption curve. Therefore, the physical model has been improved by considering
the hysteresis effect on the coefficient c,,. The first approach considers only the adsorption
and desorption curves illustrated in Fig. 14b. In control literature, it is referred as the bang—
bang model. The second verifies a differential equation that is solved at the same time as
the coupled heat and moisture problem and that enables smoother transition between both
curves. The computation of the coefficient ¢, for both approaches can be summarized:

ads. 99 0
Hysteresis model 1: Cm = C?es’ gq’b =
Cm s or = 0.
d 0
Hysteresis model 2: % = B -sign ({Tf) (em — c;a,?s') (em — c?nes') ,
1, X >0,
sign (X) = {0, X =0,
-1, X <O.

where cfrfs' and cﬂfs' are, respectively, the adsorption and desorption curves. These curves

depend on the relative humidity ¢ and are experimentally determined. Analytical functions
of the experimental curves provided in James et al. (2010) and James (2009) are fitted. The
coefficient 8 is a numerical parameter which controls the transition velocity between the two
curves.
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Fig. 17 Evolution of the vapor pressure at x = 12mm (a, ¢) and x = 25mm (b, d)

The results of the implementation of two hysteresis models are illustrated in Fig. 17c, d. The
first hysteresis model is not able to reduce the discrepancies. Indeed, the approach considering
only the adsorption and desorption curves is too minimalist. The second hysteresis model
provides a better agreement, particularly at x = 25mm. Figure 19 shows the variation of
the coefficients c;, that have been plotted as a function of the computed relative humidity.
For the model without hysteresis, the coefficient varies along only one curve. The hysteresis
model 1 switches between the adsorption and desorption curves without any interpolation
and without ensuring the continuity of the physical characteristic. Since, the coefficient ¢, is
proportional to the derivative g—w, adiscontinuity in the variation of the coefficient is observed
at ¢ = 0.7. Moreover, the magnitude of the coefficient c,, in the model 1 is higher than for
the other models, which explains the higher values of the vapor pressure shown in Fig. 17c,
d for r € [28, 48]. Oppositely, the variation of the coefficient is continuous for the second
hysteresis model, while the derivative is discontinuous. For a numerical parameter 8 = 0.02,
the numerical results have a satisfying agreement with the experimental data. The estimated
velocity equals tov = 4.2 x 1073 mm/s. The hysteresis effect does not show an important
impact on the temperature residual as noticed in Table 3.
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5.3 Local Sensitivity Analysis

To compare the relative importance of each mechanism among moisture advection, diffusion
and storage, a brief and local sensitivity analysis is carried out by computing the sensitivity
functions ®:
Py Py Py

.= kmm, O, = Cm 3c, Ope,, = Pey,

The sensitivity function evaluates, as its name clearly indicates, the local sensitivity of the
numerically computed vapor pressure field with respect to a change in the parameter. A
small magnitude value of ® indicates that large changes in the parameter yield to small
changes in the field. Here, it has been computed for the first order of material properties.
Figure 20a, b show the time evolution of each sensitivity function. For the diffusion and
advection parameters, the sensitivity increases during the transient regimes of the simulation
and then decreases as the simulation reaches the steady state. It can be noted that both
mechanisms have the same order of magnitude of sensitivity. Contrarily, the sensitivity to
the moisture capacity parameter c¢;, has higher variations. Moreover, the magnitude is higher
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Fig. 20 Sensitivity coefficients of parameters k;, ¢;; and Pe,,; at x = 12.5mm (a) and x = 25mm (b)

for the measurement point x = 25 mm. It indicates that the moisture capacity has higher
impact on the vapor pressure. It is related to the fact that the simulation performed with the
different hysteresis models have more impact on the measurement at this point, as noticed in
Fig. 17d. This local sensitivity analysis highlights the importance of each mechanism among
the advection and diffusion transfer, and the moisture storage, for this material and for the
range of temperatures and relative humidities used in the experiments.

6 Conclusion

When comparing measurements to numerical simulations of moisture transfer through porous
materials, discrepancies have been reported in several works from the literature (Busser
et al. 2017; Berger et al. 2017). Indeed, the numerical model is built considering only diffu-
sion transfer through porous materials as physical phenomenon. As a result, the simulation
underestimates the adsorption process or overestimates the desorption process. One possible
explanation is the absence of advection transfer in the governing equations. Therefore, this
paper investigated the influence of the advection and diffusion transfer in a heat and moisture
coupled model.

To solve efficiently the coupled advection—diffusion differential equations, an innovative
numerical scheme, the so-called SCHARFETTER—GUMMEL, has been considered. This scheme
has been proposed in 1969, for the first time for data analysis problems, and it is still studied
theoretically (with the latest theoretical results from 2016). It has the advantages of being
well-balanced and asymptotically preserving. In addition, the interpolation of the solution
on any spatial point is given by an exact expression. The numerical efficiency has been first
analyzed for nonlinear cases of a single scalar differential equation. Its accuracy has been
validated with two analytical solutions and with a reference solution computed using the
Chebfun package. The extension of the scheme for a system of weakly coupled differential
equations has been proposed. Consequently, the numerical scheme and its implementation
has been validated with a Chebfun reference solution for both linear and nonlinear cases.
A parametric study of the discretization parameters Az and Ax has also been carried out. As
expected, the SCHARFETTER—-GUMMEL scheme has a CFL stability condition. Nevertheless,
the approach is particularly interesting when using large spatial discretization and an adaptive
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time step to enable important computational savings without losing the accuracy of the
solution.

In Sect. 5, the numerical results have been compared to experimental data from James
etal. (2010). An adsorption—desorption cycle is performed for a gypsum board material. The
temperature and vapor pressure profiles within the material are provided. Comparative results
between a purely diffusive and the improved mathematical models have been presented. The
purely diffusive model underestimates the sorption phase and overestimates the desorption
phase. With the improved advective—diffusive model, there is a better agreement between
the numerical results and the experimental data. The momentum equation has not been
taken into account in the physical model. Thus, a constant mass average velocity within the
material porous structure has been estimated. Despite the inclusion of the advection transfer
mechanism provides a better agreement with the experimental data, some of discrepancies still
remain, particularly at the end of the desorption cycle, which might be due to the presence
of hysteresis effects in the moisture capacity of the material. Thus, the model has been
improved by adding also a third differential equation on the moisture capacity, enabling
to interpolate between the adsorption and desorption equilibrium curves. This hysteretic
diffusive—advective model provided the best results with a residual lower than 0.04 for the
vapor pressure and 1.4 x 1073 for the temperature.

The estimated velocity has been discussed highlighting that the velocity may decrease
with space and time. A constant velocity hypothesis remains as a first-order approximation.
Further research is needed to include the momentum equation in the physical model to have
a better calculation of the mass average velocity and hopefully provide better results in the
comparison with the experimental data.
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A Dispersion Relation

We consider the linear advection—diffusion equation (7) written as:

ou ou 9%u
— — —d—= = 0. 22
o T T e 22)

It admits plane wave solutions (Trefethen 1996):
u(x, 1) = e®x - (23)

where o is the frequency and k the wave number. Inserting solution u# from Eq. (23) into
Eq. (23) yields to the dispersion relation:

w = ak — idk>.

The semi-discrete formulation using central differences approach applied to Eq. (22) gives:

du ; a d
w Ay W) = g e = 2 ) = 0 (24)
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Fig.21 Dispersion relation for EULER and SCHARFETTER—-GUMMEL numerical schemes(a = d = Ax = 1)

The solution is assumed as:
u; (t) = e—ia)teijkAx. (25)

Inserting Eq. (25) in Eq. (24) gives:

—iw + Aix (] _ eflkAx> _ sz (elkAx — 24 eflkAx> — 0’

which can be rewritten as:

_ % —ikAx) cd o iar —ikAx)
“ T TAx (1 ¢ T2 (e 2+e - (26)
From Eq. (26) we obtain:
w 1

lim Re(—) = 1 — —k*Ax? Ax* 27
Jim Re () = 1= cRA 4 o(axt) e
fim I (Z2) = 1+ L9a0 - Li2ax? + ocaxh (27b)
m Im| —= = _— - .

Peki il 7% 2477 T 12" *

Substituting solution (25) to the semi-discrete formulation of the SCHARFETTER-—
GUMMEL approach applied to Eq. (22) gives:

d alAx\ ; alAx alAx alAx ;
. _B ik Ax B - B _Bf- —ikAx ) _ 0,
e < < d )e + a ) TP a )¢

which can be rewritten as:

—_‘L _ ﬂ ik Ax _HAX alAx B _ﬂ ik Ax
w = leQ(B(d)e +B< d>+B(d> B< d)e > (28)

Using (28), it appears that:

w 1
li R(—:]—szz AxY), 2
Jim Re ak) A + O(AxY) (292)
lim Im | —2 L4l @ _2) ax? + O(AxY (29b)
m m|{ — = —_— —_— — .
Ao T\ dk2 12\ a2 * o
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By comparing Eqgs. (27) and (29), it can be noted that the discrete approximation of both
approaches, central differences and SCHARFETTER—GUMMEL, has a similar tendency for the

def
real part of the phase velocity ¢ = % On the contrary, the imaginary part of the phase

velocity is second-order for the SCHARFETTER-GUMMEL scheme and only first-order for the
EULER one. The dispersion relation for both approaches is illustrated in Fig. 21a, b. For each
case, the dispersion relation has an accurate approximation for small values of the wave
number k. The accuracy of SCHARFETTER—-GUMMEL increases with k.
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