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Abstract For a non-isothermal reactive flow process, effective properties such as perme-
ability and heat conductivity change as the underlying pore structure evolves. We investigate
changes of the effective properties for a two-dimensional periodic porousmedium as the grain
geometry changes. We consider specific grain shapes and study the evolution by solving the
cell problems numerically for an upscaled model derived in Bringedal et al. (Transp Porous
Media 114(2):371–393, 2016. doi:10.1007/s11242-015-0530-9). In particular, we focus on
the limit behavior near clogging. The effective heat conductivities are compared to common
porosity-weighted volume averaging approximations, and we find that geometric averages
perform better than arithmetic and harmonic for isotropic media, while the optimal choice
for anisotropic media depends on the degree and direction of the anisotropy. An approximate
analytical expression is found to perform well for the isotropic effective heat conductivity.
The permeability is compared to some commonly used approaches focusing on the limiting
behavior near clogging, where a fitted power law is found to behave reasonably well. The
resulting macroscale equations are tested on a case where the geochemical reactions cause
pore clogging and a corresponding change in the flow and transport behavior at Darcy scale.
As pores clog the flow paths shift away, while heat conduction increases in regions with
lower porosity.
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1 Introduction

Geothermal reservoirs may encounter porosity changes induced by geochemical reactions in
the pores. The injected water and the in situ brine have different temperatures and chemical
composition, triggering mineral precipitation and/or dissolution. These chemical reactions
cause reservoir rock properties to develop dynamically with time due to the porosity changes.
When porosity is altered, the flow conditions are affected and the permeability of the medium
will change. Also, as the volume contribution of fluid and rock change, effective properties
such as heat conductivity are affected. For a geothermal reservoir, where subsurface heat
transport and fluid flow are of high importance for the heat production performance, changes
in such properties are important to model accurately to account for their possible impacts on
operating conditions.

As reported from field studies and simulations, porosity and permeability changes due to
precipitation and dissolution of minerals as silica, quartz, anhydrite, gypsum and calcite can
occur when exploiting geothermal reservoirs (Libbey and Williams-Jones 2016; McNamara
et al. 2016; Mielke et al. 2015; Mroczek et al. 2000; Pape et al. 2005; Sonnenthal et al. 2005;
Taron and Elsworth 2009; Wagner et al. 2005; White and Mroczek 1998; Xu et al. 2009).
These fluid–rock interactions can alter and possibly clog flow paths, potentially affecting
the performance of the geothermal plant significantly. Modeling of the mineral precipitation
and dissolution is important to understand the processes and to better estimate to which
extent the chemical reactions can affect the permeability and other effective properties of the
porous medium. However, reactive transport affecting flow properties and heat transport can
be particularly challenging to model due to the processes jointly affecting each other.

When investigating porosity and permeability changes, understanding the underlying pro-
cesses at the pore scale is essential for highly coupled problems. The pore geometry affects
the reaction rates as the reactive surface develops, while the permeability depends on how
the geometry changes. Also, ion diffusivity and heat conductivity can be affected by the
grain shape and can be anisotropic. Hence, using a Darcy scale model based on an upscaled
pore-scale model can give a better representation of the effective properties than common
porosity-weighted average approaches. Pore-scale models incorporating mineral precipita-
tion and dissolution have been studied earlier in van Duijn and Pop (2004) and van Noorden
et al. (2007), and the corresponding Darcy scale models have been investigated both ana-
lytically and numerically further in van Duijn and Knabner (1997), Knabner et al. (1995),
Kumar et al. (2013a, 2014). The rigorous derivation of upscaled model starting from the
pore-scale model in van Duijn and Pop (2004) has been performed in Kumar et al. (2016)
using two-scale convergence framework. These papers assume the pore geometry to be fixed,
which is a valid assumption if the mineral layer is not changed much compared to the pore
aperture. Upscaled pore-scale models honoring porosity changes are found in Kumar et al.
(2011, 2013b), van Noorden (2009a, b). In these papers, the position of the interface between
grain and void space is tracked, giving a problem with a free boundary. Similar models can
also be obtained for biofilm growth (van Noorden 2010), for drug release from collagen
matrices (Ray et al. 2013), and on an evolving microstructure (Peter 2009). These models do
not include any temperature dependence in the reaction rates nor any heat transfer.

The present work builds on the pore-scale model for coupled heat transport and reactive
transport in a thin strip first formulated by Bringedal et al. (2015). Later, this model was
formulated for a periodic porous medium and upscaled to Darcy scale by Bringedal et al.
(2016). The freely moving interface between the mineral layer and the void space is modeled
through a level set function at the pore scale. The authors derive two-dimensional effective
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equations honoring the pore-scale dependence through cell problems. The geometry is the
same as considered by van Noorden (2009a), where Bringedal et al. (2016) also include
heat transport as well as temperature effects in the fluid flow and in the chemical reactions.
Including heat transport introduced a coupled cell problem at the pore scale with energy
conservation in the void space and in the grain space, allowing for a more realistic transport
of the conductive heat transfer through the pore. For geothermal systems, modeling the
temperature dependences and heat transport correctly is crucial. We will build upon the
upscaledmodel derived in Bringedal et al. (2016) by solving the cell problems and investigate
the behavior of the resulting effective properties. Further, to test the model we consider an
idealized case study where clogging occurs. The model by Bringedal et al. (2016) does not
allow phase change, but we mention that (Duval et al. 2004) upscaled decoupled two-phase
flow with phase change using volume averaging.

The effective model in Bringedal et al. (2016) is derived for a two-dimensional domain,
but Schulz et al. (2016) recently derived an effective three-dimensional model for an isother-
mal reactive model without flow. The extension from two to three spatial dimensions could
be performed by defining a tangent plane for the fluid–grain interface in the upscaling proce-
dure, while the resulting effective model has the same appearance as in the two-dimensional
case. The present paper deals only with the two-dimensional case, but a three-dimensional
interpretation of the results is possible.

Our interest in this work stems from developing efficient computational techniques for
deformable porous medium, in particular, in the limit case of clogging. As the upscaled
equations in Bringedal et al. (2016) (see Sect. 2) show, the Darcy scale model is coupled to
cell problems (pore-scale processes) via their coefficients depending upon the grain geometry.
The latter is described by a level set and is in turn impacted by the Darcy scale variables
such as pressure and temperature. In terms of discretization, in the upscaled two-scale model,
there is a cell problem at each spatial mesh point. To obtain the effective parameters at the
Darcy scale, the grain geometry at the cell problem needs to be updated at each time step
and the corresponding problems need to be solved. Therefore, solving the upscaled model
implies that at each time step and at each spatial mesh point, we need to solve as many cell
problems as there are spatial mesh points to obtain the corresponding effective parameters.
Assuming the Darcy scale domain to be a 2D domain, the upscaled model is a 4-dimensional
model (2-dimensional for the cell problem and 2-dimensional for the Darcy scale domain).
Even if these cell problems can be solved in parallel, the computational efforts involved are
quite huge. Our approach here can be seen as a simplification of this full fledged approach.
We assume that the geometry at the pore scale can be characterized by a single parameter
and hence, the level set equation becomes an ordinary differential equation. Next, instead of
solving the cell problems at each time step, we develop relationships (e.g., polynomial law)
of the effective parameters based on the geometry parameter. As a result, solving the upscaled
model requires simply using these fitted polynomials for the parameters drastically reducing
the computational costs. Our approach should be contrasted with the prevalent approaches of
treating porosity as an unknown, defining an ordinary differential equation for its evolution
and using engineering correlations for the effective parameters such as permeability, heat
conductivity, and diffusion coefficient (see, e.g., Chadam et al. 1986, 1991; Zhao 2014). In
contrast to using the heuristic correlations, we use the homogenization approach to provide
the polynomial fit.Moreover, even thoughwe simplify the situation here by characterizing the
geometry by only one unknown, this approach can be extended to include more parameters
for characterizing the geometry and higher-order fits for the effective parameters.

Our contributions in thiswork are in studying the evolution of effective quantities, specially
near the critical porosity limit, by solving the cell problems for certain grain geometries.
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This work may also be interpreted as an extension of similar studies as (van Noorden 2009a)
to a non-isothermal case and a focus on the near-clogging scenario. Additionally, we also
provide an approximate closed form analytical solution for the cell problem and show its
accuracy by comparing it to the detailed numerical simulations. In practice, there are several
correlations used in engineering literature coupling porosity and effective quantities (see,
e.g., Verma and Pruess 1988, Eq. 6 below). We enrich this study by comparing some of
these correlations to homogenization approach for evolving geometry. The cell problem, as
obtained from the homogenization theory, is solved to provide the effective parameters for the
different geometries providing us plots for the effective parameters versus the geometry. We
can interpret our approach as a derivation of these correlation-type relationships. Moreover,
the changes in the geometry at the pore scale may not always be symmetric. Our approach
allows the flexibility of characterizing the geometry in more than one variable and then
studying this variation. Naturally, the more variables we take for characterizing the geometry
at the pore scale, we get the flexibility of describing more complex geometries, but the
offline computational costs increase. We also report a numerical study showing the impact
of pore-scale geometry changes on the Darcy scale flow and transport.

The structure of this paper is as follows. In Sect. 2, we present the effective equations
with corresponding cell problems, while in Sect. 3 we solve the cell problems numerically.
Section 4 compares the numerical solution of the cell problems with analytical solution of
approximate cell problems, before considering a macroscale case study with clogging in
Sect. 5. The paper ends with a summary with some comments on applications together with
some concluding remarks.

2 Effective Equations and Cell Problems

The non-dimensional upscaled model by Bringedal et al. (2016) considers coupled reactive
flow with heat transport and varying porosity. We state here the resulting upscaled model and
refer to Bringedal et al. (2016) for the derivation and underlying assumptions, and references
therein for justification of model choices. In the general formulation, still using a level set
function to describe the pore structure, the model consists of the five (non-dimensional)
unknowns S(x, y, t), u(x, t), T (x, t), q̄(x, t) and p(x, t), which are the level set function,
macroscopic ion concentration, temperature, flow rate and pressure, respectively. All but the
first depend only on time t and spatial variable x , which is defined for all x = (x1, x2) ∈ Ω ,
Ω being the macroscopic, i.e., the Darcy scale, domain. The level set function S(x, y, t) also
depends on the microscopic variable y = (y1, y2) ∈ [− 1

2 ,
1
2 ]2, where y is as a zoomed-

in variable resolving the pore structure at a specific macroscopic point x ∈ Ω . The five
non-dimensional upscaled equations are (x ∈ Ω, t > 0)

∂t

(
ρS(x, y, t)

)
= f (T, u, y)|∇y S(x, y, t)|,

∂t

(
|Y0(x, t)|u(x, t) + |G0(x, t)|ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(x, t)∇xu(x, t)

)
,

∂t

(
|Y0(x, t)|ρ f (T )T (x, t) + |G0(x, t)|ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ fA f (x, t)∇x T (x, t) + κgAg(x, t)∇x T (x, t)

)
,
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∂t

(
|Y0(x, t)|ρ f (T ) + |G0(x, t)|2ρ

)
+ ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0,

q̄(x, t) = − 1

μ f (T )
K(x, t)∇x p(x, t).

In the above equations, ρ is the constant molecular density of the mineral, while ρ f and μ f

are the molecular density and viscosity of the fluid and are allowed to depend on temperature.
Further, D is the molecular diffusivity of the fluid, while κ f and κg are the heat conductivities
of fluid and grain, respectively. These are considered properties of the fluid/grain and are
constant. The reaction rate f describes the mineral precipitation and dissolution and is given
by

f (T, u, y) = ke−α/T
(

u2

Km(T )
− w(dist(y, B), T, u)

)
,

where k is the Damköhler number, and α = E/RTref where E is the activation energy, R the
gas constant and Tref a reference temperature. Further, Km(T ) is the solubility of the mineral
in question, and the function w(dist(y, B), T, u) is defined by

w(d, T, u) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if d < 0,

min
(

u2
Km(T )

, 1
)

if d = 0,

1 if d > 0,

(1)

where the distance corresponds to thewidth of themineral layer. The spacesG0(x, t),Y0(x, t)
and Γ0(x, t) refer to the microscopic grain space, void space and the interface between them,
inside the unit cell y ∈ [− 1

2 ,
1
2 ]2, see Fig. 1. These spaces are defined implicitly as where the

level set function is positive, negative and zero, respectively. The notation | · | refers to the
area (volume) of the space. The effective coefficientsAu ,A f ,Ag , andK represent the porous
medium’s ability to transmit ions through diffusion, heat through conduction in fluid/grain,
and fluid through fluid flow. The effective coefficients are tensors with components

aui j (x, t) =
∫

Y0(x,t)
(δi j + ∂yi v

j (y))dy, (2a)

a f
i j (x, t) =

∫

Y0(x,t)
(δi j + ∂yi 


j
f (y))dy, (2b)

agi j (x, t) =
∫

G0(x,t)
(δi j + ∂yi 


j
g(y))dy, (2c)

ki j (x, t) =
∫

Y0(x,t)
ω

j
i (y)dy, (2d)

respectively, for i, j = 1, 2. The functions v j (y), 
 j
f (y), 


j
g(y) and ω j (y) are solutions of

the cell problems (x ∈ Ω, y ∈ [− 1
2 ,

1
2 ]2, t > 0)

∇2
yv

j (y) = 0 in Y0(x, t) and n · (e j + ∇yv
j (y)) = 0 at Γ0(x, t), (3a)

∇2
y


j
f (y) = 0 in Y0(x, t) and ∇2

y

j
g(y) = 0 in G0(x, t) where

κ f n0 · (e j + ∇y

j
f (y)) = κgn0 · (e j + ∇y


j
g(y))

and 

j
f (y) = 


j
g(y) at Γ0(x, t), (3b)

e j + ∇y�
j (y) = − ∇2

yω
j (y) and ∇y · ω j (y) = 0 in Y0(x, t)
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Fig. 1 Model of microscopic
pore, with fluid space Y0(x, t),
grain space G0(x, t) and the
interface between them Γ0(x, t),
which has unit normal n pointing
into the grain. Note that the grain
consists of both a reactive mineral
layer (dark gray) surrounding a
non-reactive part B (light gray)

and ω j (y) = 0 at Γ0(x, t), (3c)

together with the periodicity in y for v j (y), 

j
f (y), � j (y) and ω j (y), j = 1, 2. The

periodicity assumption comes from the macroscopic domain being filled with microscopic
cells, as the one seen in Fig. 1, lying adjacent to each other. Hence, the periodic boundary
condition is due to the proximity of the neighboring cells. However, the neighboring cells do
not have to be equal; hence, inhomogeneities are allowed.

We will consider a simplified version of this formulation by imposing constraints on the
pore space geometry. By assuming the grains to have a specific shape described through a
single variable, the level set equation can be replaced by an equation for that variable.Here,we
show how the model equations change when using circular grains, but the approach is more
general and can be used as long the grain shape can be described through one free parameter.
For circular grains, we introduce the level set function S(x, y, t) = R2(x, t) − y21 − y22 ,
where R(x, t) is the radius of the grains. Note that the grain radius is a function of position
(and time) as the grain radius can vary between unit cells, allowing non-homogeneous media.
The upscaled equations will depend on grain radius R(x, t) instead of the level set function.
This simplification was also made by van Noorden (2009a), but places severe constraints on
the pore structure and should be interpreted as a choice made for visualization purposes. We
mention that Frank et al. (2011) and Frank (2013) implemented other choices of the level
set function for a Stokes–Nernst–Planck–Poisson system, and in the following section, we
also solve the cell problems for elliptic grains to indicate the effect of anisotropy. Using the
circular geometry, the Darcy scale model equations now become, for (x ∈ Ω, t > 0)

∂t

(
ρR(x, t)

)
= f (T, u, R), (4a)

∂t

(
(1 − πR2(x, t))u(x, t) + πR2(x, t)ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(R)∇xu(x, t)

)
, (4b)

∂t

(
(1 − πR2(x, t))ρ f (T )T (x, t) + πR2(x, t)ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ fA f (R)∇x T (x, t) + κgAg(R)∇x T (x, t)

)
, (4c)
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∂t

(
(1 − πR2(x, t))ρ f (T ) + πR2(x, t)2ρ

)
+ ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0, (4d)

q̄(x, t) = − 1

μ f (T )
K(R)∇x p(x, t). (4e)

The reaction rate f uses the distance between R and Rmin, where Rmin is the radius of the
non-reactive solid, to calculate thewidth of themineral layer. ThematricesAu ,A f ,Ag andK
depend only on grain radius R(x, t) as the integration area is determined by the radius alone.
The cell problems are defined as before, but where the unit cell spaces are now defined using
the grain radius. Hence, the pore space is Y0(x, t) = {y ∈ [− 1

2 ,
1
2 ]2 | y21 + y22 > R2(x, t)},

grain space is G0(x, t) = {y ∈ [− 1
2 ,

1
2 ]2 | y21 + y22 < R2(x, t)} and the interface between

them is Γ0(x, t) = {y ∈ [− 1
2 ,

1
2 ]2 | y21 + y22 = R2(x, t)}. The tensors Au , A f , Ag and K

defined in Eq. (2) will now be cheaper to compute, and are due to the symmetric grain shape
scalars.

3 Numerical Solution of Cell Problems

The cell problems are decoupled from the macroscale equations and solved beforehand. For
various fixed values of grain radius R, the cell problems (3) can be solved, hence providing
effective quantitiesAu ,A f ,Ag andK that are functions of R. Note that the cell problems are
second-order linear elliptic problems. The permeability and diffusion tensors cell problems
are defined in the pore space with appropriate boundary conditions on the grain geometry,
whereas the thermal problem is defined in the whole cell geometry together with interface
conditions across the grain-pore space boundary. To solve these elliptic problems, we adopt
standard approaches. We write down a weak formulation for these cell problems and use
standard finite element techniques as implemented in the Finite Element package COMSOL
multiphysics (COMSOL Inc. 2011). The coupled cell problems for effective heat conductivity
coefficients A f and Ag have not been considered earlier. We will in this paper focus on
circular grains, which represents an isotropic medium. However, in this section we also
solve the cell problems for elliptic grains to sketch the effect of anisotropy on the effective
quantities. For solving these cell problems, we use Finite Element Method with triangular
elements using P1-basis functions. Since we consider a sequence of pore-scale geometry, the
corresponding mesh also changes. For example, as shown in Fig. 2, for the case of thermal
conductivity computations, elliptic grain shape, with major axis diameter 0.4 and minor
axis diameter of 0.1 (contrast of 4), the number of triangular elements is 1602. We use the
automatic meshing and solution approach as implemented in COMSOL Inc. (2011). The
post-processing of the solution to obtain the effective quantities is also performed using the
available tools there. Note that the effective quantities are all non-dimensional according to
the non-dimensionalization in Bringedal et al. (2016).

3.1 Circular Grains

As the resulting effective quantities Au , A f , Ag and K are known to be scalars when the
grains are circular due to isotropy, it is only necessary to solve Eqs. (2, 3) for i = j = 1. The
resulting effective diffusion coefficientAu is identical as the one considered by van Noorden
(2009a), and the results are not presented here.

The heat conductivity coefficients can be interpreted as a weighting of the relative impor-
tance of the void space and grain space, as a more accurate alternative to the usual porosity
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Fig. 2 Mesh of a microscopic
pore geometry with elliptic grain
space with major axis 0.4 and
minor axis of 0.1 (contrast of 4).
Also, see Fig. 1 showing a
representative unit cell geometry
and Fig. 7 showing an elliptic
grain geometry
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Fig. 3 Effective heat conductivity coefficients for fluid (left) and grain (right). Increasing grain radius R
corresponds to less void space. When κ is larger than 1, the grain heat conductivity is larger than in the fluid

weighting since the actual heat transfer within and between fluid and grain is taken into
account. The sum of A f and Ag is always 1. Figure 3 shows the effective heat conductivity
coefficients as a function of grain radius R, for various values of κ = κg/κ f . The case κ = 1
corresponds to when the heat conductivities in fluid and grain are equal. In this case, the cell
problem is trivial and A f = φ = 1 − πR2 and Ag = 1 − φ = πR2, which corresponds
to the usual porosity weighting. The figures only display values for radii between 0.2 and
0.5. A radius of 0.5 corresponds to the porous medium being clogged (although there is still
void space caught between the circular grains), while we have not considered radii less than
Rmin = 0.2 even though the cell problems are well defined for radii down to 0.

Figure 4 shows the effective heat conductivity of the medium that is defined as

κeff = κ fA f + κgAg.

In Fig. 4 κ f = 1, hence the value of κ = κg/κ f corresponds to the value of κg . Hence, all
lines approach 1 if extending the plot to R = 0. Figure 5 compares two of the effective heat
conductivities with the usual volume averaged heat conductivities
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Fig. 4 Effective heat
conductivities for the porous
medium. In all cases, κ f = 1,
hence κ reflects the value of the
heat conductivity in the grain κg
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Effective heat conductivities

κ  = 0.1
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κ  = 0.5
κ  = 1
κ  = 2
κ  = 5
κ  = 10

κeff,ar = κ f (1 − πR2) + κgπR2, (5a)

κeff,geo = κ
(1−πR2)
f κ(πR2)

g , (5b)

κeff,har = 1
1−πR2

κ f
+ πR2

κg

, (5c)

which are the arithmetic, geometric and harmonic averages, respectively. As seen in the
figure, the effective heat conductivities calculated from the cell problems always give a
smaller value than the arithmetic averaged value, which is the one usually employed for
porous media (Nield and Bejan 2013). The overestimation of the effective heat conductivity
by the arithmetic averaging can be understood as follows: Consider a case where the heat
conductivity is much larger in grain than in fluid, corresponding to an extreme case of κ = 2
shown in Fig. 5. The unit cell would still experience a relatively low heat conductivity for low
grain radii, as the grains are isolated from each other by the low-conductive fluid. However,
when the grain radius is so high that the medium almost clogs and the distance between the
highly conductive grains is smaller, the heat conductivity will increase substantially. This
behavior is captured by the cell problem solutions, as illustrated by the line for κ = 10
in Fig. 4, while an arithmetic averaging based on porosity will not be able to capture such
behavior and instead overestimates the importance of the highly conductive phase. The cell
problem solution is best approximated by the geometric mean, which is the known as the
more suitable solution for random porous media (Woodside and Messmer 1961). Also for
such an extreme case of κ = 10, the geometric mean is the best choice (not shown). The case
with κ f = κg is trivial and gives equal results for all methods.

The permeabilityK is identical as the one found by van Noorden (2009a), and is displayed
in Fig. 6. As grain radii close to 0.5 correspond to being close to clogging, the permeability
quickly approaches zero for growing grain radius. From the logarithmic plot of the perme-
ability, we can estimate that the permeability approaches zero as the grain radius approaches
0.5 with an inclination number corresponding to approximately O

(
(R − 0.5)5/2

)
.
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Fig. 5 Effective heat
conductivities for the porous
medium. The solid curves arise
from the cell problem
formulation, the dotted are the
arithmetic means, the dashed are
the geometric means, and the
dashed-dotted are the harmonic
means. The four top curves are
for κ = 2, while the four lower
are for κ = 0.2
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Fig. 6 Permeability of the porous medium. The right plot shows a log–log plot for the permeability as a
function of (0.5 − R), as the permeability approaches zero when the grain radius approaches 0.5. Note that
the permeability values are non-dimensional, but dimensional (m2) values can be obtained by scaling with l2,
where l is the typical pore size, i.e., the scaling such that the cell in Fig. 1 has side lengths 1

3.2 Elliptic Grains

The level set formulation can also be applied to investigate other grain shapes than the
isotropic circular shape, and we mention here the differences when going into an anisotropic
regime using elliptic grains. We assume the grain in each unit cell being elliptic with a fixed
ratio between the semi-major and semi-minor axis. When the grain grows and shrinks due to
mineral precipitation and dissolution, the grain would not preserve its elliptic shape due to the
underlying assumption of even growth/dissolution arising from the upscaling and derivation
of the cell problem (Bringedal et al. 2016). However, making physical arguments through
the grain shape itself locally allowing for higher or lower reaction rates, we could argue that
the elliptic shape should be maintained, and hence the shape of the grain can at all times be
explained through the parameter M , the length of the semi-major axis. See Fig. 7 for a sketch
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Fig. 7 Model of microscopic pore with elliptic shape with ratio of 2 between the semi-major and semi-minor
axis. The unit cell has fluid space Y0(x, t), grain space G0(x, t) and the interface between them Γ0(x, t),
which has unit normal n pointing into the grain

of the unit cell, where the ratio between the semi-major and semi-minor axis of the grain is
2.

The formulation of the upscaled equations would be similar as in Eq. (4), replacing the
radius R(x, t) with the semi-major axis M(x, t), and taking into account the fluid volumes
and grain volumes changing. Now, |Y0(x, t)| = 1− πM2/2 and |G0(x, t)| = πM2/2 when
the ratio between semi-major and semi-minor axis is 2. As earlier, we assume there is some
part of the grain that will not dissolve and choose this to be for Mmin = 0.2. This minimum
choice of M corresponds to a different porosity than Rmin = 0.2. The maximum semi-major
axis is M = 0.5, corresponding to clogging. Note, however, that M = 0.5 resembles a
layered medium with no flow in the y2-direction, but still allowing flow in the y1-direction.
The porosity is significantly higher than in the circular case with R = 0.5.

Due to the anisotropy of the grain shape, the resulting effective permeability, diffusivity
and heat conductivities in Eq. (2) will no longer be scalars, but 2 × 2 matrices. The cell
problems (3) are solved using elliptic grain shape with M ∈ [0.2, 0.5) using COMSOL
multiphysics (COMSOL Inc. 2011). For the heat conductivities, we only consider the two
cases κ = 0.2 and κ = 2 as our goal is only to sketch the effect of anisotropy arising from the
cell problem geometry. Although the cell problems provide 2× 2 matrices, the off-diagonal
terms are effectively zero due to the orientation of the grain shape; the anisotropy is aligned
with the grid. Hence, we only focus on the diagonal terms. These diagonal values are also the
eigenvalues of the matrices, which are important for characterizing the anisotropic medium.

Figure 8 shows the heat conductivity coefficients for the fluid and grain as a function of
semi-major axis M , using κ = κg/κ f either equal to 0.2 or 2, and ratio between the semi-
major and semi-minor axis being either 2 or 4. These plots should be compared to Fig. 3 for
circular grains. There are several interesting findings for the anisotropic heat conductivities.
Firstly, the differences between the y1- and y2-coefficients are significantly different already
for a relatively small ratio between the semi-major and semi-minor axis, which becomes
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Fig. 8 Comparison of the effective heat conductivity coefficients for fluid (left) and grain (right). Increasing
M corresponds to more grain space, while ‘ratio’ refers to the ratio between semi-major and semi-minor axis
of the elliptic grain. When κ is larger than 1 (black lines), the grain heat conductivity is larger than in the fluid.
Oppositely for κ smaller than 1 (green lines)

more visible when the grain is larger (corresponding to the anisotropic feature becoming
more relevant), and these differences are important both for when heat conductivity is largest
in the fluid and in the grain. Whether the heat conductivity coefficient is largest in the y1- or
y2-direction depends on the value of κ , and phase: When κ = 2, the horizontally elongated
shape of the grain makes the grain heat conductivity coefficient larger in the y1-direction
than in the y2-direction, and oppositely for the fluid. Hence, the contribution from grain on
heat conduction is more important for the y1-direction than in y2 in this case, contributing to
a larger medium heat conductivity in the y1-direction as the grain heat conductivity is larger
than in the fluid. From Fig. 8, we see how the grain heat conductivity coefficient is larger in
the y2-direction than in the y1-direction when κ = 0.2. Hence, the grain heat conductivity
gives a larger to contribution to the effective heat conductivity in the y2-direction than in
the y1-direction. However, this contribution is a “negative” one as the heat conductivity in
the grain is smaller than in fluid when κ = 0.2. Hence, the grain conductivity hampers the
mediumheat conductivity to a larger extent across the layers. The effective heat conductivities
seen in Fig. 9 show how the heat conductivity is always larger in y1-direction for both values
of κ . Hence, heat conductivity of the medium is always more efficient along the layers than
across, independently of whether the fluid or grain has the largest conductivity.

Comparing the effective heat conductivities with corresponding arithmetic, geometric and
harmonic averages based on (5) reveals some different behavior for the elliptic case as seen
for the circular grains in Fig. 5. Figure 9 shows how the different effective behaviors in the y1-
and y2-directions are approximated by the arithmetic, geometric and harmonic averages for
the two choices of κ . While the circular grain effective heat conductivities were always closer
to the geometric mean, the effective heat conductivity in the y1-direction (along layering)
is best approximated by the arithmetic mean (low κ) or by the geometric mean (high κ

and low M), and the effective heat conductivity in the y2-direction (across layering) is best
approximated by the harmonic mean (high κ) or by the geometric mean (low κ and low
M). These findings were to some extent expected as harmonic mean is known to be more
suitable for series distributions and arithmetic mean for parallel distributions (Woodside and
Messmer 1961). However, as seen from Fig. 9, the geometric averages can still be the best
alternative for lower values of M and especially for small ratio between the semi-major and
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Fig. 9 Comparison of the effective heat conductivities for the porous medium for when the ratio between
semi-major and semi-minor axis is 2 (left) and 4 (right). The five top curves are for κ = 2, while the five lower
are for κ = 0.2

Fig. 10 Comparison of the
effective ion diffusivity
coefficients for circular and
elliptic grains, as a function of
either grain radius R or the
semi-major axis M . Increasing R
or M corresponds to more grain
space, while ‘ratio’ refers to the
ratio between semi-major and
semi-minor axis of the elliptic
grain
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semi-minor axis, corresponding to when the anisotropic effect is not so strong. Hence, using
arithmetic mean along the layering and harmonic mean across the layering is important when
there are strong anisotropic effects in the porous medium.

For the ion diffusivity, the question of which type of averaging is not so relevant as the
ion diffusivity in the grain is zero, and hence only the arithmetic mean would be applicable.
In practice, the resulting diffusivity coefficient is then the porosity, which is often used when
modeling diffusivities with varying porosity. However, as Fig. 10 shows, the porosity is a
poor approximation for the effective diffusivity coefficient, even for circular geometries. The
porosity approximates the diffusivity in the y1-direction (along layers) quite well, especially
when anisotropic effects are strong, but gives a poor approximation for the y2-direction
(across layers), which is zero when M is 0.5 due to clogging in the y2-direction, while the
porosity is still large.

The permeability is also a tensor when considering elliptic grain shapes. The off-diagonal
terms are effectively zero due to the orientation of the grain, and hence we only need to
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Fig. 11 Comparison of the permeabilities for the porous medium for circular and elliptic grains, as a function
of either grain radius R or the semi-major axis M . The right plot shows a log–log plot of the permeabilities as
a function of (0.5− R) or (0.5−M), as clogging occurs when R or M approaches 0.5. A ratio of 4 means that
the grain is more elongated. The red stars in the right plot indicate the estimated permeability values based on
an upscaled thin strip model (Bringedal et al. 2015)

consider the two diagonal terms. Here, the y2-term will approach zero when M approaches
0.5 due to clogging, while the y1-term will still have a large permeability when M is 0.5.
Figure 11 shows the diagonal components of the permeability tensor for the elliptic grain as
a function of the semi-major axis M . For comparison, the circular grain permeability is also
included.

As seen from Fig. 11, the permeabilities in the y1-direction do not approach zero when M
approaches 0.5. Due to the elliptic grain shape, the medium is not blocked in the y1-direction
but forms channels. For channels, it is shown earlier (Bringedal et al. 2015) that the non-
dimensional permeability should behave as K = d3/12 where d is the aperture. If we use
the minimum distance between two adjacent grains as a measure of the aperture in the y1-
direction of the channel-like medium, the cubic relationship estimates a (non-dimensional)
permeability of K = 0.0105 and K = 0.0352 for when the ratio between the semi-major
and semi-minor axis are 2 and 4, respectively. These two values are marked with red stars in
the right part of Fig. 11. The k11 permeability values calculated from the cell problems when
M is close to 0.5 are k11 = 0.0145 and k11 = 0.0406 for these two ratios. Hence, the cubic
relationship slightly underestimates the calculated along-channel permeabilities, which is
possibly due to the channel not being straight but is generally wider than the minimum value
used here. Also, the cell problems are not solved for M = 0.5, as the flow cell problem is
undefined in this case, and hence the comparison is made for M = 0.499.

The circular grain permeability and elliptic grain k22-permeabilities all approach 0when R
or M approach 0.5, although at slightly different speeds. Due to the anisotropy, the clogging
happens at different critical porosities. The critical porosity is defined as the remaining
porosity when clogging (in the y2-direction) occurs and will be φcrit = 1 − π0.52 for the
circular grain, and φcrit = 1 − π0.52/2 and φcrit = 1 − π0.52/4 for the elliptic grain for
ratio equal to 2 and 4, respectively. TOUGHREACT (Xu et al. 2012) incorporates a power
law for the permeability based on Verma and Pruess (1988) when there is a known critical
porosity, namely

K = K0

(
φ − φcrit

φ0 − φcrit

)n

, (6)
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Fig. 12 Comparison of the
permeability, or permeability in
the y2-direction when the
porosity approaches the critical
porosity. The green lines are the
least-square fitted versions of
Eq. (6) based on Verma and
Pruess (1988)
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where K (φ0) = K0 at some other porosity φ0 > φcrit. The power n is, as the critical porosity,
medium dependent and needs to be estimated. Using the permeabilities at Rmin, Mmin = 0.2
and the known critical porosities, we can estimate n through a least-square approach.We find
n = 2.82 for the circular grain, while n = 2.68 and n = 2.53 are the powers best estimating
the elliptic grain cases for when the ratio between semi-major and semi-minor axis is 2 and
4, respectively. See Fig. 12 for illustration of these three cases. Due to fitting of the entire
interval, the resulting approximated permeabilities are slightly too steep when approaching
the critical porosities, but do a fairly good job in capturing the behavior of the permeability
near clogging.

4 Comparison with Approximate Solutions

The cell problems (3) can be solved numerically for discrete values of grain radius R, but
when implementing the macroscale Eq. (4), it is more efficient if the effective quantities can
be known through analytical expressions instead of solving the cell problems for each time
step as the radius will vary with both time and space. Oneway to get around this is to solve the
cell problems beforehand for a large number of discrete R values and create a lookup-table,
but we here investigate the possibility of approximating the cell problem solutions with either
solving a related cell problem analytically, or by solving the cell problems numerically for
discrete values of R and use polynomial interpolation.

4.1 Approximate Heat Conductive Cell Problems

The cell problem (3b) used to calculate the heat conductivity coefficients A f and Ag can
be approximated by solving a related cell problem analytically. The cell problem is formu-
lated through the unknown functions 
 f (y1, y1) and 
g(y1, y2), that should fulfill Eq. (3b)
together with periodicity across the external cell boundaries:


 f (y1 = −1/2) = 
 f (y1 = 1/2), 
 f (y2 = −1/2) = 
 f (y2 = 1/2).

Our approach involves using polar coordinates and separation of variables; hence, we assume
the solutions can be written on the form
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Fig. 13 Comparison of the
effective heat conductivities. The
three lower curves are for
κ f = 1, κg = 0.2, while the
three upper curves are for
κ f = 1, κg = 2
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 f (r, θ) = Fr (r)Fθ (θ), 
g(r, θ) = Gr (r)Gθ (θ).

However, as shown in the “Appendix”, our assumption of separation of variables together
with the resulting solution form in the azimuthal direction will lead to the periodicity require-
ment on the external boundary not being fulfilled. Instead, we search an approximate solution
through alternative boundary conditions for the external boundary. We consider two alter-
natives: Either dropping the external boundary, allowing 
 f to be defined for all r > R;
or, keeping the boundary, but use other means to obtain a unique solution. Redefining the
cell problem, makes it more similar to the conductive single-inclusion solutions handled
by Torquato (2013). Torquato (2013) also shows how to expand these solutions to effective
medium approximations of multiphase media. However, the two approaches lead to the same
solution, namely:

A f = (1 − πR2)
1 + κ

1 + κ + πR2(1 − κ)
, (7a)

Ag = πR2 2

1 + κ + πR2(1 − κ)
. (7b)

The full derivation of the solution using the two approaches are found in the “Appendix”.
Figure 13 compares the approximate effective heat conductivity from Eq. (7) with the exact
solution found from the cell problem (3b) and the volume weighted geometric average (5b).
The approximate cell problem does a better job than the volume averaging except for large
values of R.

4.2 Approximate Polynomials for the Cell Problem Solutions

Wehere try to estimate the effective quantitiesAu(R),A f (R),Ag(R) andK(R)with approx-
imate polynomials based on numerically found solutions of the cell problems (3), which have
been obtained for discrete values of R within our interval of interest: R ∈ [0.2, 0.5]. As van
Noorden (2009a), we use a polynomial with powers of R0, R1/2, R1, R3/2 and R2 for the
ion diffusivity coefficient and the heat conductivity coefficients. While van Noorden (2009a)
could use that the polynomial forAu was 1 when R = 0 and 0 when R = 0.5, the latter is not
the case for A f as there is still a large amount of conductive heat transfer in the fluid when
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the porous medium is clogged. However, the polynomial for Ag would be 0 for R = 0, and
the polynomials approximating A f and Ag should still fulfill that their sum is 1 for all R.

The polynomial found to approximate Au best in the least-square sense is

Au(R) ≈ 0.7232(0.5− R)1/2 −0.2166(0.5− R)+4.8785(0.5− R)3/2 −3.9439(0.5− R)2.

The coefficients of this polynomial are quite different than the ones found by van Noorden
(2009a), despite fitting within the same interval. The curves provide similar values. The
maximal error in the fitting points was 10−3 for van Noorden (2009a), which is also the case
here.

We approximate A f and Ag with polynomials only for κ = 2 and κ = 0.2, to indicate
the different behaviors for when κ is larger/smaller than 1. For κ = 2, the polynomials found
to approximate A f and Ag best in the least-square sense are

A f (R) ≈ 3.3481R1/2 − 19.5551R + 38.2452R3/2 − 27.33065R2 + 1.

Ag(R) ≈ −3.3433R1/2 + 19.5274R − 38.1923R3/2 + 27.2974R2.

For κ = 0.2, the polynomials found to approximateA f andAg best in the least-square sense
are

A f (R) ≈ 1.0282R1/2 − 4.3256R + 3.8254R3/2 − 3.2395R2 + 1.

Ag(R) ≈ −1.0317R1/2 + 4.3455R − 3.8638R3/2 + 3.2639R2.

The polynomials forA f are assumed to have a constant factor of 1 asA f (0) = 1 andAg(0) =
0, but are otherwise only fitted within the interval of interest. Due to numerical roundoff
error and as the least-square fitting have been done independently for the polynomials, the
approximating polynomials do not sum up exactly to 1 for all R, but deviate from 1with up to
10−4. The maximum error for the fitting points is 10−3 for the effective heat conductivities in
both cases. Plotting the effective heat conductivity calculated from the cell problems together
with the approximate effective heat conductivity from the above polynomials, reveals the two
curves being virtually equal. The two cases of high and low κ result in polynomials of similar
structure, but the higher-order coefficients are of relative higher importance for R-values close
to 0.5 when κ = 2, while the linear terms dominate for κ = 0.2. This behavior is due to the
more curved shapes of the high κ curves near R = 0.5 seen in Fig. 3.

The behavior of the permeability close to clogging is important to capture when modeling
precipitation and clogging as the flow pattern can change significantly as pores close (and
possibly reopen) and the relative permeability variations can vary within several orders of
magnitude close to clogging. In van Noorden (2009a), the permeability was fitted with a sum
of first-, second- and third-order powers of (0.5− R). Van Noorden did not focus on clogging
and fitted with the factors that would capture the behavior over his whole region of interest.
However, the sum of these three terms implies that the permeability should approach zero
as O(0.5 − R) as the first-order term will dominate the two others when R approaches 0.5.
Investigating the permeability values when R is close to 0.5, as seen in the right part of Fig. 6,
reveals that the permeability does not approach zero linearly when close to clogging. The
logarithmic plot indicates an inclination number of approximately 5/2 for R close to 0.5. This
means that to capture the behavior close to clogging, the approximating polynomial should
not contain termswith (0.5−R)-factors of power less than 5/2. The polynomial can, however,
contain higher-order terms as these will not dominate close to clogging. A polynomial that
is found to approximate the permeability values satisfactory, both away from clogging and
close to clogging, is
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K(R) ≈ 0.6191(0.5 − R)5/2 − 0.4892(0.5 − R)3 + 1.0441(0.5 − R)7/2.

The maximum error in the fitting points is 10−4 and is found for low values of R. The
maximum relative error is 0.08 and occurs when the radius is close to clogging. Approximate
polynomialswith terms containingfirst-order (0.5−R)-terms are found to have a relative error
larger than 1. An alternative approach to the above polynomial would be to approximate the
behavior of the permeabilitywith twopolynomials: one valid for lowvalues of R and one valid
for R close to 0.5, and tie these two polynomials together with continuity constraints in some
breaking point. This approach could, however, cause issues in a numerical implementation.
As the logarithmic plot in Fig. 6 does not indicate any obvious breaking points, using the
same polynomial for the whole fitting interval [0.2, 0.5) should be feasible in this case.

5 Case Study: Clogging

To investigate the behavior of the upscaled effective Eq. (4) in a numerical implementation,
we create a case study with initial and boundary conditions, mineral solubilities and rock
properties such that clogging will occur at some distance away from the well. The Darcy
scale domain is assumed to be filled with microscopic pores as Fig. 1 next to each other,
in line with the periodic assumption in deriving the upscaled model in Bringedal et al.
(2016). The microscopic cells are not explicitly visible in the Darcy scale domain, as they in
the homogenization limit are assumed infinitesimally small, but contribute through the cell
problem solution for effective quantities, e.g., permeability, at each macroscopic point in the
domain. The goal of this case study is to see how the upscaled model equations behave close
to clogging and how the heat transport is affected by the clogging.

5.1 Case Study Formulation and Implementation

Note that all parameters and numbers specified in the following are non-dimensional accord-
ing to the non-dimensionalization given in Bringedal et al. (2016). Temperatures are also
shifted to lie between 0 and 1. Themacroscale domain is a two-dimensional square x ∈ [0, 1]2
with injection and production wells operating at constant pressure. The injection well is
located in (x1, x2) = (0.2, 0.2), and the production well in (x1, x2) = (0.8, 0.8). External
boundaries are impermeable and insulated. The domain is initialized with a temperature of
1 and with an ion concentration such that the fluid is fully saturated with ions, in this case a
concentration of

√
0.75. We mimic a reservoir with two types of rock that are such that the

temperature drop due to injecting fluid of temperature 0 triggers mineral dissolution near the
injection well and mineral precipitation further away. The two types of rocks meet along the
line x1 = 0.5. The injected fluid has the same ion concentration as the initial to resemble
reinjection of produced fluid, but mineral dissolution will occur near the injection well due to
the temperature drop. As fluid flows toward the production well, minerals start precipitating
when crossing x1 = 0.5, both due to the incoming fluid having a larger ion concentration
from the upstream mineral dissolution, but also caused by the gradual temperature decrease.

The Darcy scale model Eq. (4) is modeled fully coupled with Euler forward in time and
the control volume method on a square grid with two point flux approximation in space.
The injection wells are handled through a mass conservative implementation as described in
Bringedal et al. (2014). As clogging is a difficult process tomodel due to the degenerate nature
of the transport equations, we use a time step constraint when one or more cells are close to
clogging. Also, we consider a cell clogged when the grain radius exceeds R = 0.4997.When
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a cell clogs, pressure is undefined in this cell and is no longer solved for. Heat conduction and
chemical reactions are still solved for in the clogged cells, the latter to allow for any reopening
at a later time. The dissolution rate, which has a discontinuity from (1), is regularized.
We mention there are more sophisticated ways of dealing with both mineral dissolution
(containing a discontinuous reaction term) and precipitation possibly leading to clogging,
and refer to Agosti et al. (2015a, b) for details on event-driven implementation of this aspect.
Despite using Euler forward for time stepping, the resulting system of equations is nonlinear
due to the nonlinearities in the time derivatives. The nonlinear system of equations is solved
with Newton iterations, using the solution from the previous time step as initial guess.

The effective quantities Au(R), A f (R), Ag(R) and K(R) arising from the cell problems
are implemented with their approximating polynomials found in Sect. 4.2. Hence, the cell
problems do not need to be solved at each mesh point at each time step, but pore-scale
effects are included through the approximate polynomials of the effective quantities arising
from cell problem solutions. We have used κ f = 1 and κg = 2, which is a representative
correspondence between heat conductivity in fluid and grain formany soils/rocks. The porous
medium is initializedwith R = 0.3, and the amount ofminerals that cannot dissolve is chosen
to correspond to Rmin = 0.2. Note that this choice of homogeneous initial condition (and
minimum radius) for the rock is not a necessity for the model formulation and only chosen
for convenience. Other parameters appearing in the model Eq. (4) are given by

D = 1, ς = 1, k = 1, α = 1, ρ = 1,

βρ = 0.01, βμ = 0.01, ρ0 = 2, μ0 = 1,

where the fluid density is ρ f (T ) = ρ0 − βρT and viscosity is μ(T ) = μ0 − βμT . The
injection pressure is 100, and production pressure is 0.5, which induces a pressure difference
in the domain giving flow rates around 1 initially, and hence advective and diffusive processes
occur at about the same time scale, which is one of the assumptions in the derivation of the
upscaled model by Bringedal et al. (2016).

5.2 Numerical Results

When injection starts, the fluid flows toward the production well and brings along lower
temperatures and larger ion concentrations as theminerals close to the injectionwell dissolves.
Upon reaching the other rock type at x1 = 0.5 minerals precipitate, resulting in gradually
lower porosities and permeabilities behind this line. Also, as the minerals dissolves close
to the injection well, the effective heat conductivity decreases due to κ f being lower than
κg . Although one would expect clogging to first occur in (x1, x2) = (0.5, 0.2), this being
the point closest to the injection well where clogging can occur; the clogging first occurs
at (x1, x2) = (0.5, 0). This is caused by the point (x1, x2) = (0.5, 0) being cooled faster
than (x1, x2) = (0.5, 0.2), despite being further away from the injection point, triggering
larger precipitation rates. The differences in cooling (and initiating of clogging) are small,
but this faster cooling in (0.5, 0) is a result of the heat conductivity being larger in regions
where lessminerals have dissolved. The convective cooling is (initially) focusedmainly along
the band between injection and production well, and hence conductive cooling dominates
between the injection well and the line x1 = 0.5 for low x2-values. As the dissolving occurs
slower, along x2 = 0 the heat conduction is faster than for x2 = 0.2. The fact that clogging
occurs first at (x1, x2) = (0.5, 0) instead of in (0.5, 0.2) is a nice example of the effect of
the interplay between heat transfer and reactive transport. Clogging gradually occurs along
increased values of x2 as these cells are being cooled, and at the same time the flow is forced
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Fig. 14 Pressure distribution (colors) 1 time unit after injection starts. Clogged cells are marked as white as
the pressure is undefined. Black lines are (instantaneous) stream lines. The flow trajectories are not smooth
across x1 = 0.5 as the grain radius R and hence also permeability K are discontinuous here

Fig. 15 Effective heat conductivity distribution (left) and temperature distribution (right) 1 time unit after
injection starts. Temperature is still well defined in the clogged cellwhere the highest effective heat conductivity
values are found. The increased heat conductivity is the reason for the relatively smooth temperature field
despite flow paths being clogged

to follow trajectories further away from the clogged region. Due to heat conduction still
playing a role in the blocked region, clogging still occurs behind the line x1 = 0.5. Figure 14
shows the pressure distribution, and some flow trajectories some time after clogging have
started near (x1, x2) = (0.5, 0).

There is still heat conduction in the clogged cells. In fact, the clogged cells encounter an
increased effective heat conductivity as the grain heat conductivity is larger than fluid heat
conductivity. Hence, the temperature distribution is not strongly affected by the clogged flow
paths in this case study. Figure 15 shows how the effective heat conductivity and temperature
distributions are at the same time as the pressure distribution in Fig. 14.
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6 Summary and Conclusion

In this paper, we have shown how the effective behavior of heat conductivity and perme-
ability performs in a porous medium where porosity changes due to mineral precipitation
and dissolution. The heat conductivity coefficients and permeability is calculated through
cell problems derived from a pore-scale formulation based on Bringedal et al. (2016), using
circular and elliptic grains as illustrative examples. We have shown how the effective behav-
ior for the heat conductivity differs from the usually applied porosity-weighted averaging
between fluid and grain, where the geometric averaging performs better in the isotropic case
and harmonic, geometric or arithmetic averaging is the better approximation depending on
degree of and direction of anisotropy.

We have solved the heat conductivity cell problems numerically, but approximate versions
can be solved analytically. The resulting solutions for circular grains capture the effective
behavior well and generally better than the geometric averaging. Hence, for practical use
in simulators, one can either apply the approximate analytical solutions, or approximate
polynomials based on least-square fitting of discretely solved cell problems. When doing
least-square fitting for the cell problems, one has to decide which order terms to include in the
polynomial, and this can potentially alter the behavior of the resulting effective parameters,
especially near critical points as clogging represents. As the permeability can vary with
several orders of magnitude near clogging, approximating with suitable terms and factors is
especially important in this case.

As we are particularly interested in the behavior of the effective model near clogging, a
case study where clogging would occur was designed. The case study mimics a geothermal
reservoir where cold fluid is injected, and where composition of different rock types leads
to mineral precipitation at some distance away from the well. The reduced permeability and
gradual clogging of the medium lead to the injected water being forced through new flow
paths further away from the production well, and at the same time increasing the effective
heat conductivity through the medium.
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Appendix

Section 4.1 deals with analytical solutions of an approximate heat conductive cell problem,
andwe here give the derivation of these solutions.We seek the unknown functions
 f (y1, y1)
and 
g(y1, y2) that should fulfill Eq. (3b) together with periodicity across the external cell
boundary:


 f (y1 = −1/2) = 
 f (y1 = 1/2), 
 f (y2 = −1/2) = 
 f (y2 = 1/2).

We use polar coordinates and assume separation of variables; hence, the solutions can be
written


 f (r, θ) = Fr (r)Fθ (θ), 
g(r, θ) = Gr (r)Gθ (θ).

Then, the model equations from (3b) are
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1

r

d

dr

(
r
dFr
dr

)
Fθ + 1

r2
d2Fθ

dθ2
Fr = 0, y ∈ Y0(x, t);

1

r

d

dr

(
r
dGr

dr

)
Gθ + 1

r2
d2Gθ

dθ2
Gr = 0, y ∈ G0(x, t),

while the interior boundary conditions can be written as

cos θ + F ′
r (R)Fθ = κ cos θ + κG ′

r (R)Gθ at r = R, (8a)

Fr (R)Fθ = Gr (R)Gθ at r = R, (8b)

and for all θ . The model equations for Fθ and Gθ reduce to F ′′
θ = −λFθ for some number

λ, which, together with the interior boundary condition (8a), suggest that

Fθ (θ) = Gθ (θ) = cos θ.

The model equations for Fr and Gr are then reduced to r2F ′′
r + r F ′

r − Fr = 0, which have
the general solutions

Fr (r) = b1r + b2
1

r
, Gr (r) = b3r + b4

1

r
,

where b1, b2, b3, b4 are integration constants. However, our assumption of separation of
variables together with the solution in θ leads to the periodicity requirement on the exter-
nal boundary not being fulfilled. There is periodicity across the horizontal boundaries, but
periodicity across the vertical boundaries is not met. We instead search an approximate solu-
tion through alternative boundary conditions for the external boundary and consider two
approaches: either dropping the external boundary and allowing 
 f to be well defined for
all r > R; or, keeping the boundary, but neglecting the boundary conditions and using other
means to determine the constants b1, b2, b3, b4.

Alternative I: Infinite Domain

We allow 
 f to be defined for all r > R; hence, we require it to be finite as r → ∞. Also,
as 
g must be well defined as r → 0, the general solutions in r are

Fr (r) = b2
1

r
, Gr (r) = b3r.

Applying the internal boundary conditions (8) results in b2 = R2(1 − κ)/(1 + κ) and
b3 = (1 − κ)/(1 + κ). Hence, the solutions of the approximate cell problem are


 f (r, θ) = R2 1 − κ

1 + κ

1

r
cos θ,


g(r, θ) = 1 − κ

1 + κ
r cos θ.

The approximate heat conductivity coefficients are then

A f =
∫

Y0(x,t)
(1 + ∂x
 f )dy = 1 − πR2,

Ag =
∫

G0(x,t)
(1 + ∂x
g)dy = πR2 2

1 + κ
.
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Although 
 f is now defined for all r > R, the original integration area for A f is used. As
we made an error by allowing
 f to exist as r → ∞, and as we know the sum ofA f andAg

should be 1 when in the finite pore space domain, our above approximation can be improved
by scaling the above coefficients with the same number such that their sum is 1. Hence,

A f = (1 − πR2)
1 + κ

(1 + κ)(1 − πR2) + 2πR2 , (9a)

Ag = πR2 2

(1 + κ)(1 − πR2) + 2πR2 . (9b)

Alternative II: No Periodic Boundary Condition

In this approach, we keep the external boundary but do not require periodicity across it. We
still require 
g to be well defined as r → 0, and hence b4 = 0 and the three remaining
constants must be such that they fulfill the two internal boundary conditions (8):

1 + b1 − b2
R2 = κ + κb3,

1 + b1R + b2
R

= b3R.

Expressing b2, b3 as functions of b1 leads to

b2 = R2 1 − κ

1 + κ
(1 + b1),

b3 = 1 − κ

1 + κ
+ 2b1

1 + κ
.

The solutions of the (approximate) cell problem are then


 f (r, θ) =
(
b1 + R2

r2
1 − κ

1 + κ
(1 + b1)

)
r cos θ,


g(r, θ) =
(
1 − κ

1 + κ
+ 2b1

1 + κ

)
r cos θ,

where the constant b1 is to be determined later. The heat conductivities are then

A f =
∫

Y0(x,t)
(1 + ∂x
 f )dy = (1 − πR2)(1 + b1),

Ag =
∫

G0(x,t)
(1 + ∂x
g)dy = πR2 2(1 + b1)

1 + κ
.

We now require the sum A f + Ag to be 1 and use this to determine b1. This way,

A f = (1 − πR2)
1 + κ

1 + κ + πR2(1 − κ)
, (10a)

Ag = πR2 2

1 + κ + πR2(1 − κ)
. (10b)

Although this derivation uses different assumptions than Alternative I, the resulting approx-
imate heat conductivity coefficients A f and Ag found in (9) and (10) are identical.
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