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Abstract A simulation framework is proposed to simulate multicomponent multiphase flow
in porous media at the pore scale. It solves equations for the species concentrations in the
framework of the volume-of-fluid approach including thermodynamics equilibrium at the
fluid/fluid interface. Particular attention is paid to the derivation of the boundary condition
for the concentration at the solidwalls. Themethod is validated by comparisonwith analytical
solutions of simple setups. Then, the approach is used to investigate and upscalemass transfer
across interfaces in different configurations, including the drainage of water in a tube by a
gas carrying a contaminant, mass transfer in thin films, and mass transfer in complex porous
structures under various flow conditions.

Keywords Multiphase · Pore scale · Multicomponent · Simulation · Mass transfer

1 Introduction

Interphase mass transfer in porous media involving multiple fluid phases is a fundamental
process that appears in a large number of situations of applied science and engineering includ-
ing the injection and sequestration of CO2 into the subsurface, the aquifer contamination by
non-aqueous phase liquids (NAPL), and the primary migration of bitumen in petroleum
reservoirs. In all these processes, two immiscible phases share the pore space. The phases
distribution in the domain is process dependent involving complex configurations such as the
entrapment of one of the phase by the flowing phase or the formation of thin films. Molecules
may cross the interface that separates the different fluid phases. For example, the migration
of bitumen produces important changes in composition and crude oils become progressively
more paraffinic with increasing distance of migration (Waples 1981). This mass transfer may
have different consequences, ranging from a simple change in the composition of the fluids
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Fig. 1 a Illustration of the mass
transfer between two immiscible
phases in a porous medium. b
The thermodynamics equilibrium
at the interface is described by
Henry’s law

to stronger impacts on the flow properties both locally and at very large scales. For exam-
ple, once the supercritical CO2 is injected into the Earth’s subsurface, it flows as a separate
phase forming an immiscible interface with the brine already in place. Complex capillary
mechanisms, mostly governed by the wettability of the mineral surface, lead to the trapping
of CO2 ganglia in the pore space. The CO2 from the supercritical phase dissolves in the
aqueous phase to form carbonic acid which lowers the pH of the brine as the carbonic acid
dissociates to the bicarbonate ions (Steefel et al. 2013; Cohen and Rothman 2015). The acid
ions are then transported by advection and diffusion to the mineral surface where the disso-
lution and precipitation of the minerals might occur (Molins et al. 2014). These pore-scale
processes associated with the injection and sequestration of CO2 into deep saline aquifer can
completely reorganize the pore space, which means that the rock permeability and porosity
evolve and consequently impact the flow properties at larger scales (Soulaine and Tchelepi
2016).

Significant efforts have been made to model the interphase mass transfer for subsurface
processes. In particular, the most recent developments were related to the contamination of
the water tables from the NAPL dissolution (Khachikian and Harmon 2000; Agaoglu et al.
2015). As it is commonly practiced for flow and transport in porous media, the interphase
mass transfer can be investigated with different approaches, with a pore-scale modeling
approach where the solid skeleton of the porous structure and all the interfaces between the
fluids are explicitly described (see Fig. 1), or with a physics based on macroscale equations
averaged over a representative elementary volume (REV) of the porous medium. Although
physical mechanisms are the same for the two approaches, the mathematical tools used to
represent the physics at these different scales may differ significantly. On the one hand, at the
pore scale, the thermodynamics equilibrium of the system is defined as the equality of the
chemical potentials for each species at the interface between the phases. When this condition
is violated, there is mass flux from one phase to one another to reach a new thermodynamics
equilibrium state. With REV-based approaches, on the other hand, non-local equilibrium
models are often used to describe the multicomponent multiphase mass transfer and an

123



Pore-Scale Simulation of Interphase Multicomponent Mass… 289

exchange coefficient is introduced to quantify the mass exchange in the REV (Soulaine et al.
2011). These two modeling approaches are intrinsically related to each other, and upscaling
techniques such as volume averaging have been used to derive the macroscale equations from
the pore-scale physics (Quintard and Whitaker 1994; Kechagia et al. 2002; Coutelieris et al.
2006; Soulaine et al. 2011). Although the theoretical framework is now established to link
the two different descriptions of the interphase mass transfer physics, many challenges arise
to derive a general expression for this interphase mass exchange coefficient.

Clearly, the mass exchange coefficient is a function of the interfacial area because it char-
acterizes the rate of mass transfer of the compounds across the interface. This is a difficult
data to assess since it depends on many factors including solid topology, mineral wettability,
and boundary conditions of the REV (Lenormand et al. 1988). Indeed, the phase distribution
may form very different patterns like fingering instabilities, ganglia of the non-wetting phase
trapped by capillarity, or thin films formed by the wetting phase. The macroscale expression
of the interphase mass transfer may vary a lot according to these different situations. Hence,
under thin films conditions, most of the mass transfer occurs from the film area. Various
correlations developed based on ideal situations like the double film theory that postulates
that the local mass transfers occur in a thin layer on each side of the interface (Lewis and
Whitman 1924), like the penetration model (Higbie 1935) or like the surface renewal theory
(Danckwerts 1970) usually failed to predict the mass transfer across interfaces in subsur-
face processes, mostly because of the complexity of flow in natural porous media. Hence,
process-dependent correlations have been proposed from one-dimensional column exper-
iments (Miller et al. 1990). If the interfacial area is probably one of the most influential
parameters on interphase mass transfer, many other parameters influence the process. It has
been shown that the interphase mass transfer coefficient increases significantly with velocity
because it affects the rate of renewal of the compounds at the interface. However, no universal
law has been proposed yet to quantify this dependency.

During the last decades, there have been important improvements in the experimental
and numerical techniques to get more insight, directly from the pore scale, about the mul-
ticomponent multiphase mass transfer mechanisms. The use of glass bead or micromodel
experiments combined with image analysis allows a direct visualization of the different pro-
cesses involved (Kennedy and Lennox 1997; Powers et al. 1998; Jia et al. 1999; Sahloul
et al. 2002; Chomsurin and Werth 2003). Particle image velocimetry techniques allow high-
resolution measurement of the velocity profile in micromodels and offer new possibilities to
investigate the pore-scale processes (Roman et al. 2016). Dye is often used to map the con-
centration evolution of a component in the system. Powers et al. (1992), however, reported
that this could modify significantly the interfacial tension by 10–30% and may affect mass
transfer rates as well. Moreover, magnetic resonance imaging is also used to acquire three-
dimensional images of NAPL blobs during dissolution from columns packed with angular
silica gel grains or spherical glass beads (Johns and Gladden 1999; Zhang et al. 2002).

The use of numerical models to simulate interphase mass transfer at the pore scale is
not new. The advances in pore-scale simulators have closely followed the progress of small-
scale experimental techniques and image analysis. The numerical models can be divided into
the direct modeling approaches where Navier–Stokes or Boltzmann equations are directly
solved in the void of the porous structure and into the pore network models (PNM) in which
the porous medium is represented as a network of pore bodies and pore throats where the
flow is ruled by Poiseuille’s law. Most of the early progress for the pore-scale simulation of
interphase mass transfer was related to NAPL dissolution using PNM (Jia et al. 1999; Dillard
and Blunt 2000; Dillard et al. 2001; Held and Celia 2001; Zhao and Ioannidis 2003, 2011). In
these works, all the displacement mechanisms were not covered since it was assumed that the
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dissolving phase was immobile, trapped in the pore throats or bodies. Because in the case of
NAPL dissolutionmost of themass transfer occurs from the film area, the cylindrical bonds of
the PNMwere replaced by throats of rectangular cross section to account for the stagnant film
residing in angular pores. Mass transfer models for pore-scale corner flow were developed
from analytical solutions (Dillard and Blunt 2000; Zhou et al. 2000; Sahloul et al. 2002)
or finite-element simulations (Zhao and Ioannidis 2007) and input to the PNM with various
success. The direct modeling approaches, on the other hand, can relax the restrictions of the
PNM. In particular, the approximation of the pore space geometry and the hypothesis that the
dissolving phase is immobile. Lattice Boltzmann methods (LBM) have been proposed for
the simulation of multiphase mass transfer and reaction of dilute species (Martys and Chen
1996; Swift et al. 1996; Knutson et al. 2001; Riaud et al. 2014).

The direct solution of Navier–Stokes equations is performed using interface capturing
methods, such as level set (LS) (Sussman et al. 1994) or volume of fluid (VOF) (Hirt and
Nichols 1981; Brackbill et al. 1992). Although these methods have great potential to simulate
complex multiphase processes such as drainage or imbibition in complex pore space (Hoang
et al. 2013; Horgue et al. 2013; Ferrari and Lunati 2013; Ferrari et al. 2015; Raeini et al.
2014; Santiago et al. 2016; Roman et al. 2017), multiple challenges remain. One of them
is the apparition of parasitic velocities at the vicinity of the interface due to an inaccurate
computation of the curvature. This issue is still a topic of active research for two-phase flow at
low capillary numbers (Abadie et al. 2015). Another difficulty is to transport a concentration
field in the system while insuring flux continuity and the concentration jump due to the
thermodynamics equilibrium at the interface (Yang et al. 2005). This second point has been
addressed by Haroun et al. (2010b) who proposed a robust formulation recently referred
to as Continuum Species Transfer (CST) formulation (Marschall et al. 2012; Deising et al.
2016) to treat the jump discontinuity consistently with the VOF approach while satisfying the
continuity of the mass flux across the interface. This technique has been applied with success
to simulate the mass transfer in liquid film flowing along corrugated surfaces (Haroun et al.
2010a, 2012). The approach, however, excluded the presence of triple lines at the solid walls.
In this work, we implement and extend the CST technique to simulate subsurface processes
with moving contact line such as the injection of supercritical CO2 into saline aquifers.

The paper is organized as follows. In Sect. 2, we describe the volume-of-fluid approach
combined with the CST formulation and its extension to solid boundaries. Then, in Sect. 3,
we present some simulation results to illustrate the potential of this technique to investigate
and upscale mass transfer in complex porous media from the pore scale.

2 Mathematical Model

In this section, we describe the methodology used to solve a two-phase multicomponent
mass transfer in porous media at the pore scale. First, the volume-of-fluid formulation for
the multiphase flow is described. Then, we discuss the implementation of the concentration
equation in a two-phase system with a mass transfer at the fluid/fluid interface and the
extension of the formulation at the solid boundary.

2.1 Volume-of-Fluid Formulation

The Navier–Stokes equations for multiphase system are solved with a volume-of-fluid for-
mulation. Even though it is valid for all kind of fluid pairs, we consider a gas/liquid system for
the rest of the paper. This approach works with an Eulerian grid where the physical quantities
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Fig. 2 Volume-of-fluid representation of the gas/liquid interface. Numbers represent the numerical value of
α in each cell

are averaged over the volume of a grid cell. We note β̄p = 1
V

∫
Vp

βpdV the average of a
quantity βp defined in the phase p = l, g, where V is the cell volume and Vp is the volume
occupied by this phase in the cell. The volume fraction of liquid in every cells denoted α

describes the phase distribution in the void space as illustrated in Fig. 2.
If α = 1 (respectively α = 0), then the cell is occupied by liquid (respectively gas) only.

Intermediate values of the phase indicator function, i.e., 0 < α < 1, correspond to cells
that contain the gas/liquid interface. We call the phase indicator function a global variable
because it is defined in every cell of the computational domain. Likewise, combining the cell
average quantity β̄p defined in the phase p = l, g only, and the phase indicator function, the
global variable β̄ for any physical quantities such as pressure, velocity, density, and viscosity
is defined over the entire computational grid as,

β̄ = αβ̄l + (1 − α) β̄g. (1)

Hence, a unique field describes this quantity regardless the nature of the phase that occupies
the cell. The VOF formulation solves partial differential equations that govern these global
variables.

Under isothermal conditions, assuming the fluids are incompressible, and neglecting the
contribution of gravity effects, the velocity, v̄, and pressure, p̄, satisfy the following Navier–
Stokes equations describing multiphase flow in the VOF method (Hirt and Nichols 1981),

∇.v̄ = 0, (2)

and,

ρ

(
∂ v̄
∂t

+ v̄.∇v̄
)

= −∇ p̄ + ∇.μ
(∇v̄ +t ∇v̄

) + Fc, (3)

where the density and viscosity are defined with ρ = αρl + (1 − α) ρg and μ = αμl +
(1 − α) μg, ρp and μp(p = l, g) being the physical properties per phase. The last term of
the right-hand side of the momentum equation, Eq. (3), describes interfacial forces. It is
evaluated numerically with the classical continuum surface forces (CSF) model (Brackbill
et al. 1992) using the phase indicator, α, to compute the normal to the interface and the
curvature,

Fc = σ∇.

( ∇α

‖∇α‖
)

∇α. (4)

Finally, the phase indicator function is tracked with the following relation,

∂α

∂t
+ ∇.

(
v̄α

) + ∇.
(
α (1 − α) v̄r

) = 0, (5)
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where v̄r is the relative velocity between the two phases at the interface, also called compres-
sive velocity (Rusche 2003). Equation 5 results from the volume averaging of the continuity
equations for the two phases (Graveleau 2016). The last term in this expression controls the
sharpness of the interface. The relative velocity is normal to the interface, and its value is
estimated according to the maximum velocity magnitude in the transition region (Rusche
2003).

2.2 Concentration Equation

The last ingredient of the model concerns the transport of the chemical components in the
fluid phases. In amultiphase system, the species are present in both fluid phases. For instance,
there is CO2 in the gas phase and dissolvedCO2 in the aqueous phase. The system is described
using the concentration Cl,A (resp. Cg,A) of the species A in the liquid (resp. gas). In each
phase p, the concentration is governed by the classical advection–diffusion equation,

∂Cp,A

∂t
+ ∇.

(
vpCp,A

) = ∇.
(
Dp,A∇Cp,A

)
, with p = l, g, (6)

where Dp,A is the molecular diffusion coefficient of A in phase p. At the gas/liquid interface,
there is continuity of mass fluxes and chemical potentials. The latter condition is usually
described by a partitioning relation such as Henry or Raoult laws (see Fig. 1), that states that,
at the interface, the concentration in the liquid phase is proportional to the partial pressure
of the species in the gas phase. The two boundary conditions at the interface become

nlg.
(
Cl,A (vl − w) − Dl,A∇Cl,A

) = nlg.
(
Cg,A

(
vg − w

) − Dg,A∇Cg,A
)
, (7)

and

Cl,A = HACg,A, (8)

where nlg is the normal at the interface, w is the velocity of the interface, and HA is the
partitioning coefficient or Henry’s constant. When this condition is not fulfilled, there is
mass transfer between the fluid phases in order to reach the thermodynamics equilibrium.

As mentioned in the first part of the mathematical description of the problem, with the
VOF formulation the quantities of interest in the model are the global variables. For the
species A, it is defined as,

C̄A = αC̄l,A + (1 − α) C̄g,A. (9)

Haroun et al. (2010b) derive a partial differential equation that governs the evolution of the
global variable C̄A, while satisfying simultaneously Henry’s law at the gas/liquid interface
and the continuity of fluxes across the interface. This formulation, recently referred to as
Continuum Species Transfer (CST) model (Marschall et al. 2012; Deising et al. 2016), is
fully consistent with the VOF approach, i.e., a single equation holds for the evolution of
species concentration in both phases including interfacial effects. We have,

∂C̄A

∂t
+ ∇.

(
v̄C̄A

) = ∇.
(
DA

(∇C̄A + �A
))

, (10)

where DA is the diffusion,�A is the ContinuumSpecies Transfer (CST) term. This additional
flux in Eq. (10), �A, results from the concentration jump at the gas/liquid interface. It trans-
forms the solubility condition, Eq. (8), into a volumetric term, CST, under the framework of
the VOF formulation (Haroun et al. 2010b). It reads,

�A = − C̄A (HA − 1)

HAα + (1 − α)
∇α. (11)
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It is responsible for the concentration jump at the interface while the flux continuity across
the interface remains always insured. It is somehow reminiscent of the continuum surface
force (CSF) used for the modeling of the surface tension between two fluids Brackbill et al.
(1992). Note that if HA = 1, then �A = 0 and the jump condition vanishes and that for the
large values of HA, the concentration of acid in gas tends toward zero.

For the diffusion coefficient, we have,

DA = Dl,ADg,A

αDg,A + (1 − α) Dl,A
. (12)

Haroun et al. (2010b) and Deising et al. (2016) have demonstrated that this harmonic formu-
lation is more robust than a simple mixing rule, DA = (

αDl,A + (1 − α) Dg,A
)
.

The local mass flux ṁ A from the liquid phase to the gas phase can be directly calculated
as,

ṁ A = (
C̄A(v̄ − w) − DA∇C̄A

)
.∇α − DA�A.∇α. (13)

2.3 Boundary Conditions at the Solid Walls

The model is completed by a set of boundary conditions to specify the wettability and
concentration conditions at the solid walls in the presence of triple lines.

Classically for the two-phase flow, at the solid boundary, the fluid/fluid interface and the
solid surface form a contact angle, θ . During the displacement of the interface, this condition
is satisfied by enforcing, at the solid surface, the orientation of the vector, nα , normal to the
fluid/fluid interface. This is achieved numerically through the relation,

nα = ∇α

‖∇α‖ = ns cos θ + ts sin θ, (14)

where the ns is the unit normal to the solid surface pointing to the solid and ts is the unit
vector tangent to the solid pointing to the wetting phase. In this study, we consider that the
contact angle, θ , is constant and its value is specified by the user. More sophisticated models
involving dynamic contact angles such as the Cox–Voinov model (Voinov 1976; Cox 1986)
can be considered following the same procedure.

The CST model was initially developed to simulate mass transfer in the case of liquid
films in the absence of partial wetting at the solid walls. Here, we derive a boundary condition
for C̄A at the solid walls to extend the VOF–CST model to more complex cases where triple
lines can occur. We assume no interaction and no chemical reaction of the component at the
solid surface. Hence, locally, the concentration of A in each phase at the wall has a zero mass
flux condition ns .∇Cp,A = 0 (p = l, g), where ns is the normal to the surface of the solid.
This does not mean, however, that the boundary condition for the global variable, C̄A, is also
a zero gradient boundary condition. Indeed, using the definition of the global variable Eq. (9)
and the zero flux condition for local variables, we have,

ns .∇C̄A = ns .α∇Cl,A + ns . (1 − α) ∇Cg,A + ns .
(
Cl,A − Cg,A

) ∇α,

= ns .
(
Cl,A − Cg,A

) ∇α. (15)

Note that at the triple point (ns .∇α �= 0) the right-hand side of Eq. (15) is nonzero because of
the partitioning relationEq. (8). Tobe fully closed,Eq. (15)must involve only global variables.
This is achieved following Haroun et al. (2010b) guidelines who combined Eqs. (9) and (8) to
form the relation, Cl,A − Cg,A = (HA−1)

αHA+(1−α)
C̄A, valid at the gas/liquid interface (∇α �= 0).
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Finally, the boundary condition with the solid for the global variable of concentration of the
species A becomes,

ns .∇C̄A = ns .
(HA − 1)

αHA + (1 − α)
C̄A∇α. (16)

2.4 Numerical Implementation

The mathematical model formed by Eqs. (2)–(5), Eqs. (10)–(12), and Eq. (16) is imple-
mented in the open-source computational fluids dynamics software, OpenFOAM (www.
OpenFOAM.org). The multiphase multicomponent mass transfer problem is implemented
on top of OpenFOAM’s internal VOF solver, the so-called interFoam (Rusche 2003). inter-
Foam solves Eqs. (2)–(5) on a collocated Eulerian grid with a predictor-corrector strategy
based on the Pressure Implicit with Splitting of Operators (PISO) (Issa et al. 1985) algorithm.

The concentration equation is discretized with a finite-volume method and solved sequen-
tially after the PISO loop with fixed pressure, velocity, and phase indicator function. The
advection term ∇.

(
v̄C̄A

)
and the CST additional flux �A are discretized with Gauss Van

Leer scheme, a total variation diminishing (TVD) scheme to insure sharp front propagation.
The diffusion term∇.

(
DA∇C̄A

)
is discretizedwith aGauss linear limited corrected scheme,

which is second order and conservative.
In “Appendix A,” we present simulation results of simple cases where analytical solutions

exist. These simulations validate the numerical implementation of the concentration equation
with the CST flux in OpenFOAM.

3 Simulation Results

We present three examples to illustrate the potential of the proposed VOF–CST simulation
framework and how simulation results can be upscaled to the REV scale. The first example
deals with mass transfer during drainage in a capillary tube. In the second example, the
VOF–CST formulation is used to investigate mass transfer in case of thin films. The third
example demonstrates the ability of the framework to simulate multicomponent two-phase
systems in complex porous structures.

3.1 Mass Transfer and Drainage in a Capillary Tube

In the previous section, we used the VOF–CST framework for simple cases where mass
transfer and fluid flow were uncoupled and both fluids were immobile in the pore space.
Here, we illustrate the potential of the solver when the characteristic time scales of flow
and interphase mass transfer are of the same order of magnitude. The geometry is a 2D
0.1mm × 0.01mm tube meshed with a 200 × 30 Cartesian grid. The tube is initially filled
with a liquid that contains no species A. At time t = 0 s, the liquid is drained by a gas
injected from the left boundary and carryingCA = 1 kg/m3 of species A. The right boundary
is a free outflow condition. At the interface between the solid walls and the two fluids, we
impose a constant contact angle θ = 45◦. The fluids densities are ρl = ρg = 1000 kg/m3,
the viscosities μl = 6 × 10−2 kg/m/s and μg = 6 × 10−1 kg/m/s, and the surface tension
is σ = 0.097 kg/s2. The diffusivity of the species A in the gas and liquid phase is Dl,A =
Dg,A = 10−6 m2/s, and the partitioning coefficient at the interface is HA = 0.7. The
simulation is run up to t = 0.01 s, with a time step δt = 10−5 s.
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Fig. 3 Drainage of water in a tube by a gas carrying a contaminant. Top evolution of the concentration profile
in the tube at different time. The gas/liquid interface is represented in white. Bottom plot of the concentration
profile along the tube mid-plane at different times

Simulations results are presented in Fig. 3. The interface between the two fluids is rep-
resented in white, and we see that the liquid is pushed by the injected air. In the gas phase,
the concentration profile of A is linear. Because of the diffusion of A at the interface, the
concentration of A in the liquid phase increases progressively. We see that the concentration
jump at the interface is respected at every time steps. Note that this simulation can only
converge if the jump is also enforced at the triple point, i.e., using the boundary condition
Eq. 16 that has been derived in Sect. 2.3. This simulation demonstrates the ability of the
CST–VOF framework to deal with a mass transfer across interfaces in a pore structure in the
presence of triple lines. This allows us to investigate multicomponent two-phase flow such
as drainage or imbibition in complex pore structures.

3.2 Mass Transfer and Thin Films

In this part, we use the simulation framework to investigate and upscale at the REV scale
the flux of interphase mass transfer in case of liquid films deposited at the surface of a
capillary tube. The geometry consists in a l = 12mm long and 2R = 2mm width 2D tube
meshed with a 30 × 200 Cartesian grid, with refinement near the wall. To be consistent
with the notations adopted in this paper, the subscript “g” denotes the non-wetting fluid
and the subscript “l” denotes the wetting fluid. In this simulation, the two fluids have the
same density ρl = ρg = 1000 kg/m3. The fluid viscosities are μl = 6 × 10−2 kg/m/s
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Fig. 4 Top illustration of the injection of a gas in a viscous liquid, leading to a residual thin layer of liquid
on the walls. Bottom phases distribution during the injection of the non-wetting fluid in a tube (wetting fluid
is in red and non-wetting fluid in blue)

and μg = 6 × 10−5 kg/m/s. The surface tension is σ = 0.097 kg/s2. The top and bottom
boundaries arewall conditionswith a contact angle fixed to θ = 20°. Left and right boundaries
are inlet and outlet conditions, respectively. The simulation is performed in two successive
steps. First, a drainage is achieved by injecting the non-wetting and less viscous fluid at a
rate of U0 = 0.04m/s (“gas”) into the tube initially filled with the more viscous and wetting
fluid. At this stage of the process, the concentration equation is not solved. With theses
flow parameters, the capillary number Ca = μlU0

σ
that characterizes the ratio of the viscous

forces over capillary forces is Ca = 2.4 × 10−2. The simulation is run for 0.3 s until the
non-wetting fluid breakthrough. The liquid is pushed out of the tube which remains wet
behind the invading fluid front as illustrated in Fig. 4.

These results are reminiscent of Taylor’s experiments of deposition of a viscous fluid on
the wall of a tube (Taylor 1961). The film thickness obtained from simulation is in good
agreement with the semiempirical Taylor’s law proposed by Aussillous and Quéré (2000)
who extended Bretherton’s law (Bretherton 1961) for higher capillary number. Taylor’s law
relates the volume of liquid in the tube, described by the ratio of layer width h by the radius
R (see Fig. 4, top for notation), directly to the capillary number, Ca, with the relation,

h

R
= 1.34Ca2/3

1 + 3.35Ca2/3
, (17)

where the capillary number is the ratio of the viscous forces to the capillary forces Ca =
μl 〈Ug〉g

σ
in which 〈Ug〉g is the average velocity of the non-wetting fluid. In our setup, Eq. (17)

indicates R/h = 9.59 whereas simulation results give R/h = 9.36, a relative error of 2%.
In a second step, after the liquid film has been deposited along the solid surface and reach a

steady state,Cg,A = 1 kg/m3 of species A contained in the non-wetting phase is injected from
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Fig. 5 Simulation results for DA = 10−7 m2/s. a Evolution of the average concentration 〈Cg,A〉g and

〈Cl,A〉l , b red curve evolution of the concentration difference,
(
HA〈Cg,A〉g − 〈Cl,A〉l

)
and blue curve evo-

lution of the mass flux per interfacial area FA/a f , c the mass flux per interfacial area as a function of the
concentration difference, and a linear regression which gives k

the inlet boundary. Initially, both fluids that occupy the tube do not contain A(CA = 0 kg/m3).
The diffusion coefficient of A into the gas and liquid phase is Dg,A = Dl,A = DA ranging
from 10−9 to 10−3 m2/s and Henry’s coefficient is HA = 1. Because the thin film is stable
and has reached a steady state, the simulation of the concentration evolution is uncoupled
from the flow and only the conservation law for species A, Eq. (10), combined with the
boundary condition at the solid walls, Eq. (16), is solved numerically. The velocity field, v̄,
and the phase distribution, α, are taken from the first stage described in the former paragraph.

The evolution of the concentration of A in the wetting and the non-wetting phases for
DA = 10−7 m2/s is presented in Fig. 5a in terms of phase average concentrations 〈Cg,A〉g
and 〈Cl,A〉l averaged over Ω (see Fig. 4) that corresponds to a REV. Different regimes are
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Fig. 6 Mass exchange coefficient k in function of the Péclet number for the thin film in a tube case

observed. First for early times, the chemical component has not reached the central part (Ω)
of the tube yet and the average concentrations are equal to zero. It propagates by advection
and diffusion in the flowing non-wetting fluid and reaches the areaΩ around t = 0.4 s. Then
it crosses the interface and accumulates in the thin film until the thermodynamic equilibrium
at the interface is satisfied (here it corresponds to the equality of 〈Cg,A〉g and 〈Cl,A〉l since
HA = 1). The total flux of mass transfer across the interface per interfacial area at the
REV scale, FA/a f , is plotted in Fig. 5b, blue curve. There, the flux FA is obtained by
the integration of the local mass flux, ṁ A, computed with Eq. (13) over Ω . As for the
effective interfacial area, a f , defined as the area of the fluid/fluid interface in the REV
divided by Ω , it is numerically assessed by averaging the magnitude of the gradient of the
phase indictor function, ‖∇α‖, over Ω . The difference of average concentrations in both
phases,

(
HA〈Cg,A〉g − 〈Cl,A〉l) (red curve), is also plotted in the same graph. We note that

the two curves are strongly correlated. Actually, most of the REV-based models for mass
transfer use a non-local equilibrium formulation that estimate the average flux ofmass transfer
across the fluid/fluid interface as a linear driving force (Soulaine et al. 2011),

FA = a f k
(
HA〈Cg,A〉g − 〈Cl,A〉l

)
, (18)

where k is the mass exchange coefficient. In Fig. 5c, FA/a f is plotted as a function of(
HA〈Cg,A〉g − 〈Cl,A〉l). We note that after a certain period that corresponds to the travel
time across the domain Ω (here, t = 0.6 s), the flux can be approximated linearly in function
of the concentration difference. The slope corresponds to value of the exchange coefficient
estimated to k = 0.21m.s−1 for this value of the diffusivity.

Next, themass transfer dependencywith Péclet number is investigated. The Péclet number

defined as Pé = R〈Ug〉g
DA

quantifies the transport by advection with regards to the transport by
diffusion. The same procedure described above is adopted for several values of the diffusion
coefficient corresponding toPéclet numbers ranging from10−2 to 104. For each case, themass
exchange coefficient k is computed and the results are shown in Fig. 6. The curve is linear
with a slope equal to −1, meaning that the exchange coefficient is inversely proportional
to the Péclet number. This result is reminiscent of the theoretical results by Quintard and
Whitaker (1994) and Soulaine et al. (2011) for stratified flows in a tube.
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3.3 Mass Transfer in Complex Pore Spaces

In this part, the VOF–CST simulation framework is used to investigate the multiphase mass
transfer phenomena during the drainage of water in complex porous media under various
flow conditions. The domain size is 900µm× 487µm. To mesh the computational domain,
a 800 × 400 Cartesian background grid is generated, then all the cells containing solid are
removed, and tetrahedral cells are introduced to perfectly match the shape of the solid grains.
The final grid has 177,180 cells. For upscaling purpose, this pore space is considered as aREV
and the data are averaged over the entire volume of the sample. Porosity and permeability of
the REV are numerically estimated to φ0 ≈ 0.55 and K0 = 9.85 × 10−12 m2, respectively.
Top, bottom, and grain boundaries are impermeable fixed walls with a constant contact angle
set to θ = 45◦. A non-wetting fluid denoted “g” is injected from the left boundary at a constant
velocity U0 = 0.01m/s. The right boundary is an outlet condition. Initially, the domain is
saturatedwith water (viscosity isμl = 6×10−2 kg/m/s and density is ρl = 1000 kg/m3). The
surface tension is set to σ = 0.097 kg/s2. As for the thin liquid film example, the simulations
are performed in two step: First the flow is established and the mass transfer is investigated.

Three different cases of drainage are performed. In the first case, the fluid properties are
the same, μg

μl
= 1 and ρg

ρl
= 1. In the second case, the viscosities are still the same μg

μl
= 1

but the non-wetting fluid injected in the domain has a smaller density than the water in place,
ρg
ρl

= 0.1. Finally in the third case, water is pushed by a more viscous fluid, μg
μl

= 10, and

both fluids have the same density, ρg
ρl

= 1. Simulation results of those drainages are presented
in Fig. 7 for different time steps. For each case, the last time step corresponds to the steady
state, i.e., when the non-wetting fluid has percolated through the domain and the phase
distribution is fixed. For the three cases, we observe different values of residual saturation,
namely Sw = 35%, Sw = 51%, and Sw = 21%, respectively. Likewise, the interfacial area

(b)(a) (c)

Fig. 7 Results of the drainage of water in a complex pore space for different ratios of viscosity and density.
a

μg
μl

= 1 and
ρg
ρl

= 1, Sw = 35%, a f = 1.4 × 104 m−1, b
μg
μl

= 1 and
ρg
ρl

= 0.1, Sw = 51%,

a f = 1.1 × 104 m−1 and c
μg
μl

= 10 and
ρg
ρl

= 1, Sw = 21%, a f = 2.2 × 104 m−1
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Fig. 8 Concentration field over time in the pore space for the first drainage case, with HA = 1. White plain
lines correspond to the fluid/fluid interface

Fig. 9 Concentration field over time in the pore space for the first drainage case, with HA = 1.5.White plain
lines correspond to the fluid/fluid interface

per volume for the different setups is estimated to a f = 1.4×104 m−1, a f = 1.1×104 m−1

and a f = 2.2 × 104 m−1, respectively, which emphasizes that the fluids properties have a
strong impact on the mass transfer across the fluid/fluid interface.
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Fig. 10 Simulation results for the first case of drainage with DA = 6 × 10−5 m2/s. a Evolution of
the average concentration 〈Cg,A〉g and 〈Cl,A〉l , b red curve evolution of the concentration difference,(
HA〈Cg,A〉g − 〈Cl,A〉l

)
, and blue curve evolution of the mass flux per interfacial area FA/a f , c the mass

flux per interfacial area as a function of the concentration difference

The steady-state flow and phase distribution are then used to transport a species A injected
from the left boundary with a concentration Cg,A = 1 kg/m3. The diffusion coefficient in
both phases is DA = Dl,A = Dg,A = 10−7 m2/s. The evolution of the concentration of A in
the domain for the first case of drainage (fluids with same densities and same viscosities) is
presented in Figs. 8 and 9, when HA = 1 and HA = 1.5, respectively. The white plain lines
correspond to the fluid/fluid interface. Species A is preferentially transported through the
percolating viscous fingers where the advection is stronger. Then it crosses the interface and
spreads mostly by diffusion in the less mobile area. When HA > 1, the species concentration
accumulates in the residual water.

123



302 M. Graveleau et al.

Fig. 11 Mass exchange coefficient in function of the Péclet number for the three different cases of drainage

Simulation results are then upscaled following the procedure introduced in Sect. 3.2.
We present only in Fig. 10 the results where HA = 1. The evolution of the phase average
concentrations is plotted in Fig. 10a, the mass flux per interfacial area, FA/a f , and the
concentrations difference,

(
HA〈Cg,A〉g − 〈Cl,A〉l), are plotted in Fig. 10b, and FA/a f is

plotted according to
(
HA〈Cg,A〉g − 〈Cl,A〉l) in Fig. 10c. As for the mass transfer in thin film

setting, we see in this last plot that for early times, the flux behaves nonlinearly with respect
to the concentration difference. Linearity is observed as soon as the chemical component
A reaches the outlet of the averaging domain (t = 0.1 s). From then, the mass exchange
coefficient, k, is obtained by computing the slope of the curve.

The same operation is repeated for the three different cases of drainage and for several
values of the diffusion coefficient ranging from DA = 10−5 to 10−8 m2/s. Results are
collected in Fig. 11. First, we notice that the flow conditions have a direct impact on the value
of the exchange coefficient. Indeed, for the three cases, the curves are shifted by an offset
that monotonously increases with the value of the saturation. Second, we observe different
regimes according to the value of the Péclet number as illustratedwith case 1:On the one hand,
for small Pé, the slope is −0.1 and on the other hand, for Pé > 1, the slope is −2/3, which
is in agreement with the correlations proposed in the chemical engineering literature based
on the boundary layer theory applied to a single sphere (Friedlander 1957) or experimental
measurements of mass transfer in packed beds of sphere (Wilson and Geankoplis 1966).
Interestingly, for large Péclet numbers, the cases 1 and 2 share the same slope while case 3
which have a ratio of viscosity non-equal to one has a slope of −1/2.

The VOF–CST numerical framework along with the upscaling methodology we propose
can help to investigate the interphase multicomponent mass transfer in different types of rock
under various flow conditions.

Conclusion

A simulation framework (VOF–CST) has been proposed to investigate multicomponent
multiphase flow in porous media at the pore scale. The VOF–CST is based on the volume-of-
fluid approach combined with the Continuous Species Transfer model used to solve partial
differential equations for the species concentration including thermodynamics equilibrium
condition at the fluid/fluid interface. We extended the method, originally proposed for thin
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films in the absence of dewetting by Haroun et al. (2010b), to simulate complex processes
such as drainage and imbibition where triple lines may appear at the solid boundary.

The method has been validated successfully for simple configurations where analytical
solutions exist. We illustrated the potential of the framework to simulate dynamically the
mass transfer during complex two-phase flow mechanisms such as drainage and imbibition.
Compared to other pore-scale approaches that rely on PNM, our method solves the multi-
component multiphase flow directly on the pore space of a rock sample and does need to
neither approximate the pore geometry nor average the governing laws.

The VOF–CST model has been used to investigate multicomponent mass transfer in a
two-phase flow and to upscale the rate of mass transfer at the REV scale. In the case of
thin films of water deposited on the wall of a straight tube, we showed, in agreement with
published theoretical results, that the mass exchange coefficient is inversely proportional to
the Péclet number. Then, we used the numerical framework to investigate multicomponent
interphase mass transfer in a complex pore space under various flow conditions. In this case,
the mass exchange coefficient exhibits different regimes according to the Péclet number with
slopes varying from −0.1 to −2/3. We also showed that the rate of mass transfer depends
not only on the effective surface area between the two fluids but also on the saturation.

This simulation framework altogether with the upscaling methodology proposed in this
paper can help to investigate and characterize the interphasemulticomponent mass transfer in
different types of rock under various flow conditions. In particular, the VOF–CST framework
can complement micromodel experiments where the use of dye to visualize the concentration
profile is challenging since, most of the time, it affects the interfacial conditions.
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Center under Contract number DE-AC02-05CH11231 and TOTAL STEMS project for financial support. We
thank Stanford Center for Computational Earth & Environmental Sciences (CEES) for computational support.

Appendix A: Validation of the Methodology

In this section, simulation results are compared with analytical solutions for simple cases to
validate the methodology and numerical implementation introduced in the previous section.
Two cases are presented where there is no flow and the mass transfer is purely driven by
diffusion. We consider a steady-state solution and a transient solution.

A.1 Steady-State Analytical Solution in a Tube

The objective of this test case is to validate the numerical implementation of the jump con-
dition at the gas/liquid interface. We consider a two-dimensional (2D) tube of dimension
1mm×0.2mmmeshed with a 300×60 Cartesian grid. The top and bottom are fixed imper-
meable wall conditions. The first half of the tube is occupied by the liquid phase and the
second part by the gas phase (see Fig. 12). We assume that the two phases form a contact
angle of 90° with the solid surface. Therefore, the gas/liquid interface is orthogonal to the
walls. The phase distribution is described by initializing the phase indicator function with
α = 1 in the first half of the tube and α = 0 and the other half. Initially, the concentration
of species A in the tube is 0 kg/m3. The left and right boundary conditions are set up to
Dirichlet conditions with CL = 1 kg/m3 and CR = 0 kg/m3, respectively. The diffusivity of
A in liquid and gas is Dl,A = 2m2/s and Dg,A = 1m2/s, respectively, and the partitioning
coefficient is H = 2.
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Fig. 12 Top finite tube (1mm × 0.2mm) with two phases, fixed concentration at the boundaries (red dots),
and initial conditions (red line). Bottom comparison of the concentration profile for the analytical solution
(line) and the simulation results (dots) at steady state

Since there is no flow in this example, only the concentration evolution, Eq. (10), combined
with the boundary condition at the solid walls, Eq. (16), is solved numerically. The simulation
is runwith a time step of δt = 10−7 s until t = 100 s,where a steady state is observed.Because
there is no flow and the interface is perfectly vertical, the concentration profile is invariant
along the y axis. The concentration profile obtained numerically along the horizontal axis is
plotted in Fig. 12. As we observed, the concentration jump at the interface is well captured
by the simulation.

This simulation result is then compared with the analytical solution of the concentration
profile at steady state. Because the concentration is vertically invariant, we look for a one-
dimensional (1D) solution equation. At steady state and within each phase, the concentration

of A is driven by diffusion only,
∂2Cp,A

∂x2
= 0 (p = l, g). The solution is closed with the values

of concentration at the left, right, and interfacial boundaries. We finally obtain,

Cl,A(x) = 1

HA + Dl,A/Dg,A

[
Dl,A

Dg,A
(HACR − CL)

x

l
+ HACL + HA

Dl,A

Dg,A
CR

]

,

Cg,A(x) = 1

HA + Dl,A/Dg,A

[

(HACR − CL)
x

l
+ CL + Dl,A

Dg,A
CR

]

.

(19)
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where l = 5×10−4 m is half the length of the tube. The analytical solution of the concentration
is plotted in Fig. 12 and compared with the simulation results at steady state. The match
between the two curves is very good, and the relative error is inferior to 1.5%.

A.2 Transient Analytical Solution in a Tube

In this example, we look at the transient solution of the concentration propagation in a 2D tube
filled with half liquid and half gas in the absence of flow. Tube dimensions are 12mm×1mm,
and it is meshed with a 12000 × 40 Cartesian grid. As in the previous section, the contact
angle between the two fluids and the solid walls is 90° so the gas/liquid interface is strictly
vertical. At time t = 0 s, the concentration of species A is C0

g = 1 kg/m3 in the gas and

C0
l = 0 kg/m3 in the liquid (see Fig. 13). Left and right boundaries are free outlet fluxes.

The diffusion parameters are set to Dg,A = Dl,A = 10−4 m2/s m and the Henry’s constant
is H = 2. The time step is δt = 10−7 s. Simulation results for the concentration evolution
along the horizontal axis are plotted in Fig. 13 for t = 0.1ms, t = 0.2ms , t = 0.5ms and
t = 1ms.

As for the previous test case, we look for a 1D solution of the problem. The tube is
considered infinite because of the free outlet left and right boundaries. This is a fair assumption
if we only look at the early times when the change in concentration is located very close

to the interface and far from the boundaries. In each phase, we have
∂Cp,A

∂t = Dp,A
∂2Cp,A

∂x2
where p = l, g. The analytical solution is,

Fig. 13 Top initial conditions of the concentration in the tube (red lines) (12mm×1mm). Bottom comparison
of analytical solution (straight lines) and simulation results (markers) for very early times (zoom in)
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CA (x) =
{

β0erf(ηg/2) + β1 in the gas, x > 0,

γ0erf(ηl/2) + γ1 in the liquid, x < 0,
(20)

whereηp = x√
Dp,At

,γ0 =
√

Dl,A
Dg,A

HAC0
g,A−C0

l,A

HA+
√

Dl,A
Dg,A

, γ1 = HA

√
Dl,A
Dg,A

C0
g,A+C0

l,A

HA+
√

Dl,A
Dg,A

, β0 = HAC0
g,A−C0

l,A

HA+
√

Dl,A
Dg,A

and β1 =
√

Dl,A
Dg,A

C0
g,A+C0

l,A

HA+
√

Dl,A
Dg,A

. Analytical and numerical solutions are presented in Fig. 13. As

expected, the concentration jump at the interface is always satisfied. Moreover, we observe
a very good agreement between simulation and analytical results which validate the imple-
mentation of the concentration equation for multiphase systems.
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