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Abstract In this paper, we discussed a mathematical model for two-layered non-Newtonian
blood flow through porous constricted blood vessels. The core region of blood flow contains
the suspension of erythrocytes as non-Newtonian Casson fluid and the peripheral region
contains the plasma flow as Newtonian fluid. The wall of porous constricted blood vessel
configured as thin transition Brinkman layer over layered by Darcy region. The boundary
of fluid layer is defined as stress jump condition of Ocha-Tapiya and Beavers–Joseph. In
this paper, we obtained an analytic expression for velocity, flow rate, wall shear stress. The
effect of permeability, plasma layer thickness, yield stress and shape of the constriction on
velocity in core & peripheral region, wall shear stress and flow rate is discussed graphically.
This is found throughout the discussion that permeability and plasma layer thickness have
accountable effect on various flow parameters which gives an important observation for
diseased blood vessels.

Keywords Non-Newtonian flow · Porous media flow ·Constricted blood vessels ·Brinkman
region · Darcy region

1 Introduction

Porous medium is defined as materiel volume consisting of solid matrix with an intercon-
nected void. The main property of porous medium is characterised by its porosity which is
the ratio of void space to total volume of the medium and permeability, i.e. the flow con-
ductivity in porous medium. One of the earliest study of fluid flow in porous media is based
on Darcy’s law (Muskat 1937). Brinkman (1947) described extension of Darcy law by using
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the boundary condition. He found a relation between permeability and particle size density.
Brinkman (1949) extended hiswork in dense porousmedium.Whitaker (1986) gave a detailed
description about theoretical derivation of Darcy law. He analysed the stokes problem by vol-
ume averagingmethod through rigid porous medium and obtained expression for momentum
equation and mass conservation equation analytically in the form of volume averaging veloc-
ity and pressure. The flow of non-Newtonian fluid in porous media is also very interesting
phenomenon for researchers in these days. Odeh and Yang (1979) discussed power law fluid
in porous media and obtained a closed form solution for steady and unsteady flow. Mckinley
et al. (1966) also described the aspect of non-Newtonian flow through porous media.

There are various application based on the theory of non-Newtonian flow in biological
fluid flow system . The most important fluid of our body is blood, which is very complex in
nature. Blood exhibits both nature, Newtonian when it flow under high shear stress(flow in
large artery) non-Newtonianwhen it flowunder low shear stress (flow inmicro vessels). Sochi
(2010) reviewed the various aspects of non-Newtonian flow in porous media. He described
the time-dependent and time-independent model of non-Newtonian flow with methods like
bundle’s of beds, numerical. The water and other nutrients are carried by blood through
microvessels and these nutrients absorbed by permeable vessels wall surrounding by tissues.
The study of Pries et al. (1996) gives the overall description of blood flow in microvessels as
porous medium. Khaled and Vafai (2003) gave thoroughly reviewed discussion on various
aspect of heat and mass transfer in biological tissue by using Darcy and Brinkman models.
This study also described briefly the bioconvection, bioheat models and energy transport by
different models.

Blood vessels in human circulatory system exhibit the best example of porous media in
biological system. Tang and Fung (1975) gave the idea of fluid flow through permeable wall
using Darcy flow system which is covered by porous media in pulmonary circulatory system
of micro-blood vessels alveoli of human lungs. He found that larger value of permeability
gave the larger amount of fluid exchange between channel and porous layer. Goharzadeh et al.
(2006) experimentally investigated the existence of thin transition Brinkman layer between
fluid porous interface. This study shows the effect of transition Brinkman layer on velocity
profile. They found that the velocity decreases continuously downward from fluid in porous
layer. In a problem of two fluid layer porous medium, (Nield 1983) discussed the boundary
effect for Rayleigh–Darcy convection and found a relation between Brinkman equation and
Beavers Joseph boundary condition. Hill and Straughan (2008) and Straughan (2008) have
done remarkable work in this field by considering the three layer model of porous media
flow in a channel. They considered Newtonian flow overlying thin transition Brinkman layer
covered by Darcy layer. They discussed the stability of flow numerically for the depth of
Brinkman layer corresponding to fluid layer and found the significant effect of it on the
velocity profile, viscosity ratio and porosity etc. A non-Newtonian flow surrounded by New-
tonian fluid covered by cylindrical porous layer has been discussed by Sacheti et al. (2008).
A numerical simulation of coupled fluid flow system of Newtonian fluid with Brinkman and
Darcy porous medium has been discussed by Ehrhardt (2010).

A lot of work has been done in modelling of blood flow in various type of diseased blood
vessels. Shukla et al. (1980) have proposed a work on blood flow in small radius artery
with mild stenosis by assuming two-layered model of blood flow. The study explained the
effect of peripheral layer viscosity on flow rate and velocity. Shivakumar et al. (1986) have
modelled the arterial blood flow bounded by varying gap of porous layer. Chakravarty and
Datta (1992) discussed the pulsatile flow of blood in constricted artery by assuming the
arterial wall as porous and elastic. They configured the wall in Darcy layer (tunica media)
filled with Newtonian fluid. They considered blood as viscoelastic in nature which coupled
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with Newtonian fluid and found the effect of permeability on wall shear stress, velocity and
flow rate for different shape and size of constriction. Cardiovascular study says that the blood
flow in small radius blood vessels, i.e. under low shear stress behaves like non-Newtonian
fluid and hold satisfactorily the Casson model. Srivastava and Saxena (1994) have discussed
the blood flow in two-layered model as non-Newtonian Casson model in core region and
Newtonian in peripheral region with mild stenosis. Dash and Mehta (1996) studied the non-
Newtonian blood flow as Casson fluid in homogeneous porous medium. In this work, they
discussed the effect of constant permeability and variable permeability on velocity and flow
rate. Haldar and Anderson (1996) have proposed their work for two-layered model of blood
flow through stenosed artery. It was found that the yield stress which is an extra stress in
Casson fluidmade an affect on the flow in terms of velocity, flow rate in homogeneous porous
medium and permeability also (Dash et al. 1997). Ponalagusamy (2007) studied the effect
of shape of stenosis and slip velocity in two-layered model of arterial blood flow with mild
stenosis. Sankar (2009) andSankar andLee (2010) have discussed the problemof two-layered
Casson fluid model of blood flow in small catheterised artery and artery with mild stenosis.
Misra et al. (2011) discussed a mathematical model of double stenotic porous artery under
externally applying magnetic field. The study revealed that the pressure gradient increases
with rise in hematocrit. Ponalagusamy and Selvi (2011) proposed a theoretical study on
two-layered Casson model of blood flow through stenotic artery with axially variable slip
velocity on wall. Mehmood et al. (2012) applied the Numerical method of MAC and SOR
for multi-irregular porous stenotic artery. Boodoo et al. (2013) developed a theoretical study
of two fluid model for porous artery considering micro-polar fluid in core region as non-
Newtonian and plasma in peripheral region as Newtonian. The wall of the artery is classified
as porous medium consisting a thin transition Brinkman layer followed by a Darcy region.
They concluded that the rise in hydraulic resistivity gives slower velocity in both region.

In the present study, wemade an effort to develop an analytical solution for porous stenotic
artery. We considered the two fluid model approach of blood flow consisting a red blood cell
layer in core region as Casson fluid and Cell free layer of plasma fluid in peripheral region
as Newtonian. The blood vessels were taken as constricted porous media. The inner layer
(tunica intima) consists of a thin transition Brinkman Layer followed by Darcy layer of
soft tissue with tissue fluid (tunica media). An analytical expression is obtained for core
and peripheral velocity, volume flow rate and wall shear stress. The effect of permeability,
yield stress, constriction shape parameter and plasma layer thickness on velocity, wall shear
stress and volume flow rate is discussed graphically by using some previous numerical and
experimental findings.

2 Mathematical Formulation

Let us consider the flow of blood through the constricted artery which is modelled as circular
cylindrical tube. The wall of the tube assumed as two-layer porous region. The outer layer
is modelled as Darcy layer, and the inner layer is modelled as Brinkman layer. The blood
flow through the artery is assumed as two-layer model. In peripheral region, it is Newtonian
in the form of plasma and in core region it is the suspension of cells (RBC, WBC etc.) in
the form of non-Newtonian Casson fluid. The porous region filled with the Newtonian fluid.
Let (r , θ , z) be the cylindrical polar coordinate system in which z axis taken along the axis
of constricted segment under the study while r , θ are taken as the radial and circumferential
region. The geometry (Fig. 1) (Ponalagusamy 2007) of the constricted region is given as:
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Fig. 1 Geometry of the porous constricted region

R(z) =
{
R0

[
1 − a1{ln−1

0 (z − d) − (z − d)n−1}
]

d ≤ z ≤ d + l0
1 other wise

(1)

where a1 = δm
R0ln0

[
nn/(n−1)

n−1

]
and n(≥ 2) is a parameter which determines the shape of the

constricted region, R0 is the radius of the normal artery, l0 is the length of the constricted
area, d is the position of the constriction, and L is the length of the artery. Here δm is the

maximum depth of the constricted area appears at z = d + l0
n1/(n−1)

such that ratio of the

depth of the constricted area to the radius of the normal artery is much less than unity. We
consider R1, R2, R3 and R4 as the radius of the artery in constricted region for Newtonian,
non-Newtonian, Brinkman and Darcy region, respectively. Let us assume that the flow is
steady axisymmetric, incompressible, fully developed, laminar, in z direction such that the
radial component of velocity is negligibly small in case of low Reynolds number flow. The
axial velocity in core, peripheral, Brinkman and Darcy region are taken as v1, v2, v3 and v4,
respectively. Let p1, p2, p3 and p4 be pressure in the above four region. We assume that the
thickness of the transition Brinkman layer is h1 and Darcy layer is h2 such that h1 = h2

9
(Straughan 2008).

The governing equations for the above-modelled problem will be:
For Non-Newtonian region, i.e. 0 ≤ ¯R(z) ≤ ¯R1(z)

∂v̄1

∂ z̄
= 0 (2)

∂ p̄1
∂ r̄

= 0 (3)

−∂ p̄

∂ z̄
+ 1

r̄

∂(r̄ τ̄ )

∂ r̄
= 0 (4)

where the constitutive equation for non-Newtonian Casson fluid is given as:

√
τ̄ = √

τ̄y +
√

μ̄1
∂v̄1

∂ r̄
if τ̄ ≥ τ̄y
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∂v̄1

∂ r̄
= 0 if τ̄ ≤ τ̄y (5)

For Newtonian region, i.e. ¯R1(z) ≤ ¯R(z) ≤ ¯R2(z)

∂ p̄2
∂ r̄

= 0 (6)

−∂ p̄2
∂ z̄

+ μ̄2

r̄

∂

∂ r̄

(
r̄
∂v̄2

∂ r̄

)
= 0 (7)

For Brinkman region, i.e. ¯R2(z) ≤ ¯R(z) ≤ ¯R3(z)

∂ p̄3
∂ r̄

= 0 (8)

−∂ p̄3
∂ z̄

+ μ̄e f f

r̄

∂

∂ r̄

(
r̄
∂v̄3

∂ r̄

)
− μ̄2

k̄
v̄3 = 0 (9)

where μ̄e f f is the effective viscosity of Brinkman layer and k̄ is the permeability constant.
For Darcy region, i.e. ¯R3(z) ≤ ¯R(z) ≤ ¯R4(z)

∂ p̄4
∂ r̄

= 0 (10)

−∂ p̄4
∂ z̄

− μ̄2

k̄
v̄4 = 0 (11)

The governing equation for each region can be converted in to non-dimensional form by
using the following non-dimensional variable:

r̄

R0
= r,

R̄i

R0
= Ri ,

R̄

R0
= R,

v̄i

U0
= vi ,

z̄

R0
= z,

p̄i R̄0

U0μ̄2
= pi , λ1 = μ̄1

μ̄2
,

λ2 = μ̄e

μ̄2
, θ = τ̄y R0

μ2U0
, τ = τ̄ R0

μ̄2U0
, k = k̄

R2
0

(12)

using above non-dimensional variable, the governing equation in non-dimensional form will
become as:
For non-Newtonian region

∂p1
∂r

= 0 (13)

−∂p1
∂z

+ 1

r

∂(rτ)

∂r
= 0 (14)

where the constitutive equation for non-Newtonian Casson fluid is given as:

√
τ =√

θ +
√

λ1
∂v1

∂r
if τ ≥ τy

∂v1

∂r
= 0 if τ ≤ τy (15)

For Newtonian region

∂p2
∂r

= 0 (16)

−∂p2
∂z

+ 1

r

∂

∂r

(
r
∂v2

∂r

)
= 0 (17)
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For Brinkman region

∂p3
∂r

= 0 (18)

−∂p3
∂z

+ λ2

r

∂

∂r

(
r
∂v3

∂r

)
− 1

k
v3 = 0 (19)

For Darcy region

∂p4
∂r

= 0 (20)

−∂p4
∂z

− 1

k
v4 = 0 (21)

whereλ2 is the non-dimensional effective viscosity and k is the non-dimensional permeability.

3 Solution of the Problem

Let us consider the pressure gradient in all four region be constant, i.e. ∂p1
∂z = ∂p2

∂z = ∂p3
∂z =

∂p4
∂z = P .
Therefore from Eq. (14)

τ = r P

2
+ C1

r
(22)

where C1 is arbitrary constant which can be obtained by using the condition that τ is finite
at r = 0 and it will become zero. Thus,

τ = r P

2
(23)

now using value of τ from Eq. (23) in (15), we get:

v1 = 1

λ1

[
r P

4
+ θr −

√
8θ P

3
r3/2 + C2

]
(24)

Similarly, we can obtain the velocity in peripheral, Brinkman, and Darcy region, respectively,
which are:

v2 = r2P

4
+ C3 ln r + C4 (25)

v3 = C5 I0(γ r) + C6K0(γ r) − Pk (26)

and from Eq. (21), we have:

v4 = −Pk (27)

where, 1
λ1k

= γ 2; I0 and K0 are the modified Bessel functions and C2, C3, C4, C5 and C6

are arbitrary constant which can be obtained with the help suitable boundary conditions
The suitable boundary conditions which are physically realistic and mathematically consis-
tent are as follows:

1. The stress is finite on the axis r = 0, i.e

τ is finite at r = 0 (28)
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2. Continuity of velocity at Newtonian and non-Newtonian interfaces, i.e.

v1 = v2 at r = R1 (29)

3. Continuity of shear stresses at Newtonian and non-Newtonian interfaces, i.e.

dv2
dr

=
(√

θ −
√

λ1
dv1
dr

)2

at r = R1 (30)

4. Continuity of velocity across the Newtonian and Brinkman interface, i.e.

v3 = v4 at r = R2 (31)

5. The stress jump condition of tangential stress at Newtonian and Brinkman interface
(Ochoa-Tapia and Whitakeri 1995), i.e.

1

φ

dv3
dr

− dv2
dr

= β√
k
v3 at r = R2 (32)

where, φ is the porosity and β is stress jump parameter
6. The Beavers and Joseph boundary (Beavers and Joseph 1967) condition at Brinkman and

Darcy interface, i.e.

dv3
dr

= α√
k
(v3 − v4) at r = R3 (33)

where α is Darcy slip parameter.
Using value of v1, v2, v3 and v4 in the boundary condition (27)–(33), we have

PR2
1(1 − λ1)

4λ1
+ θR1

λ1
+

√
8θ PR3/2

1

3λ1
+ C2 − C3 ln R1 − C4 = 0 (34)

R2
1 P + 2C3 − 2R1

[√
θ −

√
μ1

(
R1P

2
+ θ − √

2R1Pθ

)]2

= 0 (35)

R2
2 + 4C3 ln R + 4C2 − C5 I0(γ R2) − C6K0(γ R2) + PD = 0 (36)

γC5 I1(γ R3) + γC6K1(γ R3) − C3

(
φ

R3
− ln R3φβ√

D

)
− C4

(
φβ√
D

)

−
(

φR3P

2
+ R2

3 Pφβ

4
√
D

)
= 0 (37)

C5

(
γ I1(γ R3) − α√

D
I0(γ R3)

)
+ C6

(
γ K1(γ R3) − α√

D
K0(�R3)

)
= 0 (38)

By solving the above system of Eqs. (34)–(38) and by using the Mathematica-10.3 soft-
ware, we get the values of arbitrary constants C2, C3, C4, C5 and C6, and hence velocity
in core, peripheral, Brinkman and Darcy region is given in Appendix-A.

4 Results and Discussion

The purpose of this study is to understand the theory of blood flow in porous constricted blood
vessels. Here we are interested to see the effect of permeability k, yield stress θ , plasma layer
thickness h, constriction shape parameter n on core and peripheral region velocity, volume
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flow rate and wall shear stress. the value of flow rate and wall shear stress is given in next
section.

4.1 Volume Flow Rate

The total volume flow rate in non-dimensional form is defined as:

Q = Q1 + Q2 + Q3 + Q4 (39)

where Q1, Q2, Q3 and Q4 are the volume flow rate in non-dimensional form of the regions
I, II, III, and IV, respectively.
The volume flow rate for region-I will be evaluated as:

Q1 = 2π
∫ R1

0
v1 rdr (40)

Substituting the value of v1 from Eq. (24) in the above equation and integrating with respect
to r , we get:

Q1 = 1

2
C2R

2
1 +

− 1
21 R

7/2
1

(
4
√
2θ P

)
+ PR4

1
16 + θR3

1
3

λ1
(41)

Similarly, we can obtain the expression for Q2, Q3 and Q4 for other three regions as:

Q2 = C4

(
R2
2

2
− R2

1

2

)
+ C3

(
−

(
R2
2

4
− R2

1

4

)
− 1

2
R2
1 log (R1) + 1

2
R2
2 log (R2)

)

+ 1

16
P

(
R2
2 − R2

1

)
(42)

Q3 = γC5 (R3 I1 (γ R3) − R2 I1 (γ R2)) + γC6 (R2K1 (γ R2) − R3K1 (γ R3))

− kP

(
R2
3

2
− R2

2

2

)
(43)

Q4 = 1

2

(
R2
4 − R2

3

)
(kP) (44)

Therefore, the total volume flow rate will become:

Q = 1

336λ1

[
21λ1(−16γC5 (R2 I1 (γ R2) − R3 I1 (γ R3))

+ 16γC6 (R2K1 (γ R2) − R3K1 (γ R3))

− 4C3R
2
2 + 8C4R

2
2 + 8C3R

2
2 log (R2) + 8kPR2

2 − 16kPR2
3 + 8kPR2

4 + PR2
2)

− 21λ1R
2
1 (C3 (8 log (R1) − 4) − 8C2 + 8C4 + P)

− 64
√
2R7/2

1

√
θ P + 21PR4

1 + 112θR3
1

]
(45)

4.2 Wall Shear Stress

The wall shear stress on wall may be obtained in non-dimensional form as:

τw = −
[
dv2
dr

|r=R2 + dv3
dr

|r=R3 + dv4
dr

|r=R4

]
(46)
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substituting the value of v2, v3 and v4 from Appendix-A in Eq. (46), we have:

τw =P(R2(
(
γ
√
kK1 (γ R3) + αK0 (γ R3)

) (
−

(
βφ I0 (γ R2) − γ

√
k I1 (γ R2)

))
+ α I0 (γ R3)(

γ
√
k (φK1 (γ R3) + K1 (γ R2)) + βφK0 (γ R2)

)
+ γ

(
−√

k
)
I1 (γ R3) (γ

√
kK1 (γ R2)

− αφK0 (γ R3) + βφK0 (γ R2))) − 2αβγ kφ (I1 (γ R3) K0 (γ R3) + I0 (γ R3) K1 (γ R3)))
(47)

To see the influence of k, θ , h, n on the velocity, volume flow rate, and wall shear stress,
we assumed α = 0.1, β = 0.1, φ = 0.5, from Straughan (2008) throughout the analysis. The
thickness of the Newtonian fluid Plasma layer h is assumed between 0.015 and 0.05 (Sankar
and Lee 2010), and the thickness of the Newtonian fluid layer not in the porous medium is
assumed as 25% of the entire plasma layer.

In Figs. 2a–c, the effect of permeability on core region velocity v1 inside and outside the
constricted region has been discussed. In Figs. 2a, b the both region velocity increases with
the decrease in permeability parameter k, but the change in radial direction is very small.
The visible effect of yield stress on core velocity can be observed in Fig. 2c. The higher
value of yield stress gave lower value of velocity v1 but it increases in radial direction up to
Newtonian plasma layer. Figure 3 exhibits the effect of permeability parameter k and degree of
shape parameter n on peripheral region velocity v2 in constricted and non-constricted region.
From Fig. 3a, b, it is observed that the velocity decreases with increase in permeability
parameter k. It is also noticed that the velocity increases with increase in shape parameter n
(Fig. 3c).

Figures 4, 5 and 6 illustrate the effect of permeability k, plasma layer thickness h and
degree of constriction n on volume flow rate. During the analysis, it is found that the volume
flow rate decreases with the increase in permeability k in constriction region Fig. 4. From
this figure, it is also observed that the volume flow rate decreases along the axial direction
with increase in constriction region and attains minimum value at the peak of the constriction
and after that it increases (Fig. 4). It shows that permeability has remarkable effect on the
flow rate in the diseased blood vessels. The variation in volume flow rate with plasma layer
thickness h is almost similar in nature to the variation in volume flow rate with k Fig. 5. So
the small thickness of plasma layer gives better flow rate. Figure 6 shows the effect of shape
parameter n on volume flow rate. At n = 2, we obtained the symmetric profile of flow rate,
but for n = 3, 5, 7 we get the asymmetric profile. The peaks are formed at the maximum
arterial constriction but shifted along the axial direction. This explains that the narrower the
artery, the maximum the flow rate.

The effect of permeability on wall shear stress is presented in Fig. 7. We concluded that
wall shear stress increases with the increase in permeability parameter k. From this figure,
we also noticed that the wall shear stress increases or decreases according to increase or
decrease in cross-sectional area in the constricted arterial segment. But in case of the Plasma
layer thickness, the wall shear stress decreases with the increase in plasma layer thickness
(Fig 8). The influence of shape of the constriction region on the wall shear stress is shown in
Fig. 9. From this figure, we observed that the wall shear stress profile is symmetric in axial
direction when n = 2. It increases with the decrease in the cross-sectional area of constricted
blood vessel and decreases with the increase in cross-sectional area. For the other value of
n = 3, 5, 7, we get the asymmetric wall shear stress profile along the axial distance. The
peaks are shifted slightly for the maximum value of constriction parameter towards the axial
distance. This means that the shape of constriction has a remarkable reflection on the wall
shear stress.

123



248 B. D. Sharma, P. K. Yadav

(a)

(b)

(c)

Fig. 2 Velocity variation in core region. a Variation of v1 outside the constriction region with k for θ = 0.1,
n = 2, h = 0.05, z = 6, b Variation of v1 inside the constriction region with k for θ = 0.1, n = 2, h = 0.05,
z = 15, c Variation of v1 with θ for k = 5, n = 2, h = 0.05, z = 15
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(a)

(b)

(c)

Fig. 3 Velocity variation in plasma layer region. a Variation of v2 outside the constriction region with k for
θ = 0.1, n = 2, h = 0.05, z = 6, b Variation of v2 inside the constriction region with k for θ = 0.1, n = 2,
h = 0.05, z = 15, c Variation of v2 with shape parameter n for k = 5, h = 0.05, θ = 0.1, z = 15
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Fig. 4 Variation of Q with permeability k for θ = 0.1, n = 2, h = 0.05, z = 6 to 24

Fig. 5 Variation of Q with plasma layer thickness h for θ = 0.1, n = 2, k = 5, z = 6 to 24

Fig. 6 Variation of Q with shape parameter n for θ = 0.1, k = 5, h = 0.05, z = 6 to 24
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Fig. 7 Variation of wall shear stress with permeability k for θ = 0.1, n = 2, h = 0.05, z = 4.5 to 28

Fig. 8 Variation of wall shear stress plasma layer thickness h for θ = 0.1, n = 2, k = 5, z = 4.5 to 28

Fig. 9 Variation of wall shear stress with shape parameter n for θ = 0.1, k = 5, h = 0.05, z = 4.5 to 28
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5 Conclusion

The discussion on blood flow through porous constricted blood vessels is very important
from the pathological point of view. In this present analysis, we made an effort to discussed
the flow characteristics of Casson fluid model of blood flow through porous constricted blood
vessels. The Brinkman and Darcy model is used to analyse the property of porous wall. The
main objective of this study is to find out the effect of permeability and plasma layer thickness
on various flow quantity. From the above study, the following points are concluded:

• The permeability makes direct impact on flow velocity in core and peripheral region both.
Velocity decreases with the large value of permeability.

• The core region velocity decreases with the increasing value of yield stress.
• The volume flow rate decreases with increase in permeability and increases with decrease

in plasma layer thickness. It has a symmetric profile for the shape parameter n = 2 and
asymmetric profile for other value.

• The wall shear stress decreases with the increase in permeability and plasma layer thick-
ness in the constriction region.

• Wall shear stress has a symmetric profile for constriction parameter n = 2 and for other
value of n it has asymmetric profile.
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