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Abstract The paper discusses migration of natural reservoir fines lifted by high-rate or low-
salinity water injection. The previous papers used linear analytical model, which is valid for
low retention of mobilised fine particles in order to determine the model parameters from
breakthrough fines concentration and pressure drop across the core during laboratory core-
floods. The current work derives exact analytical solutions for the nonlinear case of high
retention-concentration fines migration. The solution exhibits uniform profiles of suspended
and retained concentrations ahead of the particle front and steady-state retained concentration
behind the front. The obtained type curves allow distinguishing between linear and nonlin-
ear fines migration. The laboratory data exhibit close agreement with the nonlinear model
predictions, whereas the linear model poorly matches the laboratory data.

Keywords Fines migration · Colloid · Porous media · Mathematical model · Suspension ·
Particle capture · Particle detachment · Analytical modelling
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c Suspended particle concentration (L−3)
C Dimensionless suspended particle concentration
f Drift-delay factor
k Permeability (L2)
L Core length (L)
p Pressure (MT−2L−1)
s Accessibility factor
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S Dimensionless retained particle concentration
Sm Dimensionless maximum vacancy concentration
t Time (T)
U Darcy’s velocity (LT−1)
Us Velocity of particles (LT−1)
x Dimensionless linear coordinate

Greek

α Constant value of drift-delay factor
β Formation damage coefficient
λ Filtration coefficient (L−1)
μ Dynamic viscosity (ML−1T−1)
σ Concentration of retained particles
σcr Maximum retention function
σm Maximum vacancy concentration
φ Porosity

Subscripts and Superscripts

f Front
0 Initial value

1 Introduction

Migration of natural reservoir fines occurs during high-rate or low- salinity flows, which
causes high-detaching or low-attaching particle-rock forces (Khilar and Fogler 1998). The
resulting mobilisation, migration, and straining of fine particles usually cause significant
permeability damage andwell productivity decline (Civan 2014; Lagasca andKovscek 2014).
The oil and gas industry employs numerous technologies to fix reservoir fines and prevent
permeability decline: injection of water with different salt compositions causing strong fines
attachment, nanoparticle injection, combined technologies with the use of rate management,
etc. (Habibi et al. 2012; Ahmadi et al. 2013; Arab and Pourafshary 2013). However, so-
called fines-assisted low-salinity waterflood can enhance the reservoir sweep: weakening
of electrostatic particle-rock attraction under low salinity of injected water yields particle
detachment with further migration and size exclusion in thin pores, resulting in permeability
decline in the swept zone and slowing water down, i.e. low-salinity waterflooding can act as
a mobility control method of enhanced oil recovery (Zeinijahromi et al. 2011). The effects
of fines detachment and consequent permeability decline in low-salinity environment can
be also used for water production control during aquifer water encroachment into oilfield
(Zeinijahromi et al. 2015).

The reliable laboratory-based mathematical modelling of fines migration defines the plan-
ning and design of the above technologies. Often, analytical models yield regularisation of
ill-posed inverse problems, which is essential for tuning the model parameters from labora-
tory or field data (Alvarez et al. 2006, 2007). Besides, analytical models provide faster and
simpler calculations than the numerical models. The above explains large number of works
on analytical modelling of suspension-colloidal flows in porous media (Herzig et al. 1970;
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Bedrikovetsky 1993; Sen et al. 2002; Polyanin and Manzhirov 2006; Polyanin and Zaitsev
2011; Yuan et al. 2016; You et al. 2016; Zeinijahromi et al. 2016).

The mathematical model for colloidal-suspension transport in porous media accounts for
particle capture by the rock and consequent change of the porous space structure and per-
meability (Herzig et al. 1970; Bradford et al. 2009; Bradford and Wiegmann 2011; Tufenkji
and Elimelech 2004; Elimelech et al. 2013). The following governing system consists of
mass balance equations for detached and strained fine particles, straining particles rate, and
Darcy’s law to account for permeability reduction due to particle straining:

∂ (φs (σ ) c + σ)

∂t
+U

∂c f (σ )

∂x
= 0 (1)

∂σ

∂t
= λ (σ ) f (σ )Uc (2)

U = − k0
μ (1 + β (σ) σ )

∂p

∂x
, (3)

where φ is the porosity, k is the permeability,U is the flow velocity, p is the pressure, σ is the
retained particle concentration, c is the suspended particle concentration, λ is the filtration
function, s is the accessibility factor, f is the drift-delay factor,μ is the viscosity, and β is the
formation damage coefficient. The filtration function λ, accessibility factor s, and drift-delay
factor f depend on the retained concentration σ . The fines migrate via the fraction of the
porous space s < 1 that is accessible to the finite-size particles. The fraction of the overall
flux f (σ ) < 1 in Eqs. (1, 2) corresponds to the flux through the accessible pore space only,
where the fine particles are transported (Bedrikovetsky 2008). Another interpretation of the
fraction f (σ ) < 1 is slow drift of the detached fines along the pore walls (Oliveira et al.
2014; Yang et al. 2016); further in the text we call the function f (σ ) the drift-delay factor.

The following probabilistic models that are more general than system (1–3) capture
stochastic features of suspension-colloidal transport in porous media: random-walk equa-
tions (Cortis et al. 2006; Shapiro 2007; Lin et al. 2009; Yuan and Shapiro 2010), trajectory
analysis (Payatakes et al. 1973), direct pore scale simulation (Bradford et al. 2009), Boltz-
mann’s kinetics equation (Shapiro and Wesselingh 2008), and population balance models
(Sharma and Yortsos 1987; Yuan et al. 2012). In particular, probabilistic upscaling of pop-
ulation balance equations for deep bed filtration with size-distributed pores and mono-size
particles yields system (1–3) (Bedrikovetsky 2008).

The initial clean-bed conditions for suspension injection into porous media correspond to
the absence of the suspended and retained particles:

t = 0 : c = σ = 0, (4)

whereas the boundary condition corresponds to a givenparticle concentration ci in the injected
water:

x = 0 : c = ci . (5)

Several mathematical models for fines detachment have been proposed for suspension-
colloidal flows (Mays and Hunt 2005, 2007; Tufenkji 2007; Lin et al. 2009; Bradford et al.
2009, 2012, 2013; Elimelech et al. 2013). Kinetics equations for simultaneous fines attach-
ment and detachment contain the relaxation time, yielding the delay in permeability response
to rate and salinity alteration. The modified model assumes mechanical equilibrium of par-
ticles on the top of the rock or internal cake surface that is subject to the flow in porous
space, yielding a maximum attached concentration σcr (U, γ ) (Bedrikovetsky et al. 2011).
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Fig. 1 Exact solution for fines
migration: a the concentration
front and characteristic lines in
plane (x, t); b retention profiles
at three instants and the envelope
curve S(x, tf (1))

The particle attachment occurs only until attached concentration reaches its maximum value;
the attached concentration remains constant until the mechanical equilibrium is broken. The
model exhibits instant detachment of fines, as observed in several laboratory tests (Ochi
and Vernoux 1998; Bedrikovetsky et al. 2012). Explicit expressions for maximum attached
concentration σcr (U, γ ) as salinity and rate functions are derived for attached poly-layers of
mono-sized fines in cylindrical pores and for attached mono-layers of size-distributed par-
ticles (Bedrikovetsky et al. 2011; You et al. 2015). In this work, we assume instant particle
detachment.

Therefore, the initial conditions for fines migration under high-rate or low-salinity water
injection correspond to instant particle release; the retained particles are considered a part of
the porous skeleton (Fig. 1):

t = 0 : c = c0, σ = 0, (6)

whereas the boundary condition for fines migration corresponds to particle-free water injec-
tion:

x = 0 : c = 0. (7)

The capture ofmobilisedfines occurs due to attachment or straining. The capture vacancies for
attachment are active sites on the rock surface,which are not engaged by the attachedfines; the
maximum vacancy concentration σm corresponds to sites before the attachment (Bradford
et al. 2009; Bradford and Wiegmann 2011). For fines straining in thin pore throats, the
maximum vacancy concentration is equal to concentration of non-plugged pores (Bradford
et al. 2013).

In the case of low fines capture, where the concentration of retained fines is significantly
lower than σm , the coefficients s, f , λ, and β are constant. System (1, 2) becomes linear. The
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exponential quasi steady-state solution of Eqs. (1, 2) subject to initial and boundary conditions
(4, 5) for injection of particles in porous media is widely used for analysis of the laboratory
data and determination of the filtration coefficient from breakthrough particle concentrations
(Tufenkji 2007; Bradford et al. 2009; Elimelech et al. 2013). The linear solution for fine-
particle mobilisation during the high-rate injection of particle-free low-salinity water that
corresponds to initial and boundary conditions (6, 7) is used for tuning the laboratory data
and determining the movable fines concentration (Yang et al. 2016).

In the case of large fines capture, where the concentration of retained fines has the same
order of magnitude as σm , the filtration coefficient is assumed to be proportional to the
available vacancy concentration σm-σ (so-called Langmuir blocking filtration function)

λ (σ ) = λ0

(
1 − σ

σm

)
. (8)

The exact solutions for suspension injection under large-concentration particle retention have
been derived for the Langmuir (blocking) filtration function for the case where s = f = 1
(Herzig et al. 1970).

The introduction of potential for suspension concentration allows deriving the exact solu-
tion of the initial-boundary problem (Polyanin and Manzhirov 2006; Polyanin and Zaitsev
2011) for any arbitrary form of the filtration function λ(σ ). The exact solution of the forward
problem allows for regularisation of inverse problems, which determine the filtration and for-
mation damage functions from breakthrough concentration and pressure drop, respectively
(Alvarez et al. 2006, 2007). Yet, the exact solutions of governing system (1–3) subject to
initial-boundary conditions (6, 7), i.e. the analytical model for nonlinear fines migration at
large retention is not in the literature.

In the current work, we derive an exact solution for the fines migration problem for
arbitrary filtration, accessibility, and drift-delay functions. The type curves derived from the
solution allow for differentiation between the linear and nonlinear suspension-colloidal flows.
The exact solution distinguishes the features of fines-migration flows: uniform profiles for
suspended and retained concentrations ahead of the concentration front, and no suspended
fines at steady state behind the front. The laboratory data exhibit strong agreement with the
nonlinear analytical model, while the linear model provides the poor match.

The structure of the text is as follows. Section 2 presents the main assumptions and
corresponding dimensionless system for colloidal-suspension flow in porousmedia. Section 3
derives the exact solution for fines migration for arbitrary forms of functions s(S), f (S), and
λ(S). Section 4 discusses several particular cases of the exact solution, including Langmuir’s
blocking function. Section 5 shows the solution-based type curves for suspended and retained
concentration and for pressure drop across the core. Section 6 presents the results of solution-
based matching of laboratory data. Section 7 discusses our findings. Section 8 concludes the
paper.

2 Governing Equations

Consider fine-particle mobilisation, transport, and retaining in porous media due to injection
of low-salinity water. The retention rate is proportional to the advective particle flux [see
Eq. (2)]. Fine-particle dispersion is negligible compared with the particle advection. Further
assumption is that the suspended particles are mono-sized. The advective particle flux is cfU,
where f is the drift-delay factor, so the fines velocity is fU/s.
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Stabilisation of retained concentration and pressure drop across the core during fines
migration occurs after injection of hundreds of pore volumes and is attributed to mobilised
fines’ rolling and sliding near pore walls at a velocity (fU/s) that is significantly lower than the
carrier water velocity (U ) (Ochi and Vernoux 1998; Schembre and Kovscek 2005; Schembre
et al. 2006; Oliveira et al. 2014). Modelling of suspension-colloidal flows in porous space by
Navier–Stokes equations also shows that the particle drift near the rough pore walls has the
velocity significantly lower than the injected water velocity (Sefrioui et al. 2013). Several
authors mention the two-speed colloidal-suspension flux, where the particle velocity near to
matrix surface may be significantly lower than the carrier water velocity (Yuan and Shapiro
2011a, b; Bradford and Wiegmann 2011; Bradford et al. 2012). Model (1–3) describes the
case where a rapid mass exchange occurs between fast and slow particle populations across
each pore. It results in equal concentrations of particles in the fast and slow fluxes, thus
making model (1–3) single-velocity. Model (1–3) and the hypothesis of slow migration of
fines in porous media are validated by comparison between the laboratory and modelling
data (Yang et al. 2016; Bhattacharya et al. 2016).

The released particle displacement during 1 PVI is negligible compared with the core size
L . Therefore, we assume that at the beginning of injection, the mobilised suspended particles
already fill the porous space and have not yet been captured by the rock. Instant release of
the attached fines followed by changing salinity is assumed also. Those assumptions yield
the initial conditions (6), so

c0 = σcr (γ0) − σcr (γ1)

φ
(9)

where σcr = σcr (γ ) is the maximum retention function discussed in Introduction, γ0 is the
initial salinity, and γ1 is the injected salinity.

The particle capture mechanism is not specified. Usually it is straining of the released par-
ticles that contribute to permeability decline during fines migration. Yet, particle attachment,
diffusion, or segregation affects the suspended concentration. Below we assume a single
retention mechanism; the parameters of changing porous space and capture probability are
determined by the retention concentration.

The above assumptions yield the governing equations (1–3).
Introducing dimensionless variables and parameters into system (1–3),

x → x

L
, t → Ut

φL
,C → c

c0
, S → σ

φc0
, λ → λL , p → kp

μLU
, (10)

leads to the following dimensionless system:

∂

∂t
[s (S)C + S] + ∂

∂x
[ f (S)C] = 0 (11)

∂S

∂t
= λ(S) f (S)C (12)

1 = − 1

1 + βφc0S

∂p

∂x
. (13)

Equation (13) separates from Eqs. (11, 12), i.e. unknownsC(x, t) and S(x, t) are determined
from system (11, 12) subject to initial and boundary conditions (6, 7), and then pressure
distribution is obtained from Eq. (13).
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3 Exact Solution for One-Dimensional Fines Migration

Let us express suspended concentration C from Eq. (12) by introducing potential Φ(S):

C = ∂
 (S)

∂t
,
′ (S) = 1

λ (S) f (S)
,
 (S) =

S∫
0

du

λ (u) f (u)
. (14)

Substituting expression (14) into Eq. (11) results in

∂

∂t

[
s (S)

∂
 (S)

∂t
+ S

]
+ ∂

∂x

[
f (S)

∂
 (S)

∂t

]
= 0. (15)

The expression inside the second set of square brackets in Eq. (15) can be represented as a
time derivative. This allows changing the order of derivatives over x and t :

∂

∂t

[
s (S)

∂
 (S)

∂t
+ S

]
+ ∂

∂t

[
f (S)

∂
 (S)

∂x

]
= 0. (16)

Integration of both sides of Eq. (16) in t yields

s (S)
∂
 (S)

∂t
+ S + f (S)

∂
 (S)

∂x
= g (x) . (17)

Initial conditions (6) determine the right side of Eq. (17). At t = 0, the first term on the left
side of Eq. (17) is

t = 0 : s (S)
∂
 (S)

∂t
= s (S)

λ (S) f (S)

∂S

∂t
= s (S)

λ (S) f (S)
λ (S) f (S)C = s (0) . (18)

At t = 0, the second and third terms on the left side of Eq. (17) equal zero, and Eq. (17)
becomes

s (S)
∂
 (S)

∂t
+ S + f (S)

∂
 (S)

∂x
= s (0) . (19)

Substituting the expression for potential Φ(S) from Eq. (14) into Eq. (19) yields

∂S

∂t
+ f (S)

s (S)

∂S

∂x
= (s (0) − S) λ (S) f (S)

s (S)
. (20)

The following system of two ordinary differential equations is a characteristic form of first-
order hyperbolic partial differential equation (20) (Logan 2015):

dx

dt
= f

s
,
dS

dt
= (s (0) − S) λ (S) f (S)

s (S)
. (21)

The characteristic curve trajectories are shown schematically in Fig. 1.
Let us derive the solution ahead of the concentration front for x > xf (t). Integrating the

second equation in system (21) by separation of variables and accounting for initial conditions
(6) yields

t =
S∫

0

s (u) du

(s (0) − u) λ (u) f (u)
. (22)

Introducing x as a parameter along the characteristic lines (21) yields

dt

dx
= s (S)

f (S)
,
dS

dx
= λ (S) (s (0) − S) . (23)
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Integrating the second equation of system (23) by separation of variables and accounting for
initial conditions (6) yields

x − x0 =
S∫

0

du

λ (u) (s (0) − u)
. (24)

Equations (22, 24) define the characteristic curve intercepting point x0 parametrically (Fig. 1).
Either Eq. (22) or (23) determines retained concentration along the characteristic curve.

The concentration front x = xf (t) corresponds to x0 = 0 in Eq. (24):

xf (t) =
S∫

0

du

λ (u) (s (0) − u)
. (25)

Thus, Eqs. (22, 25) determine the concentration front trajectory via the parameter S.
The arrival time tf (x) is given by Eqs. (22, 24) for x0 = 0:

tf (x) =
S∫

0

s (u) du

(s (0) − u) λ (u) f (u)
, x =

S∫
0

du

λ (u) (s (0) − u)
. (26)

Suspension concentration C(x, t) is determined from the first expression of Eq. (14) for a
known solution S(x, t).

Exact solution (22) is determined for the domain x > xf (t) in the plane (x, t) (Fig. 1).
Equation (22) shows that retention concentration ahead of the front is independent of x and
depends only on time t .

Now let us derive the solution behind the concentration front for x < xf (t).
Substituting Eq. (12) into the left side of Eq. (11) and differentiating yields

∂C

∂t
+ f (S)

s (S)

∂C

∂x
= −C

[
λ (S) f (S)

s (S)
+ f ′ (S)

s (S)

∂S

∂x

]
− C2 s

′ (S) λ (S) f (S)

s (S)
. (27)

The characteristic form of Eq. (27) is:

dx

dt
= f (S)

s (S)
,
dC

dt
= −C

[
λ (S) f (S)

s (S)
+ f ′ (S)

s (S)

∂S

∂x

]
− C2 s

′ (S) λ (S) f (S)

s (S)
. (28)

Ordinary differential equation (28)with initial-boundary condition (6) shows thatC(x, t) = 0
for x < xf (t). Therefore, it follows from Eq. (12) that dS/dt=0 behind the concentration
front, i.e. retained concentration is steady state behind the concentration front:

x < xf (t) : C = 0, S (x, t) = S (x, tf (x)) . (29)

At the instant of system stabilisation, the concentration front reaches the outlet. No retention
or suspension flow occurs in the core afterwards. The stabilisation instant tf (1) is determined
from Eq. (26) for x = 1. The stabilised retention profile S(x, tf (1)) for t > tf (1) is also
determined from Eqs. (26, 29) for x = 1.

Finally, Eq. (22) determines retained concentration S(x, t) ahead of the concentration
front, yielding a uniform profile. Equations (26, 29) determine retained concentration S(x, t)
behind the front, yielding a steady-state distribution. Suspension concentration ahead of
the front is determined from Eq. (14) for known retained concentration ahead of the front.
Suspension concentration is zero behind the front.
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Expressing pressure gradient from Eq. (13), we calculate pressure drop across the core:

�p = −
1∫

0

∂p

∂x
dx =

1∫
0

(
1 + βφc0S (x, t)

)
dx = 1 + βφc0

1∫
0

S (x, t) dx . (30)

4 Simplified Cases of the Analytical Model

Constant accessibility and drift delay: s(S) = const, f (S) = const. Characteristic speed in
Eq. (21) becomes constant. The front trajectory (26) becomes a straight line

xf = f

s
t. (31)

Equation (22) with constant s and f defines S(t) and C(t) ahead of the concentration front.
Equations (22, 29) for steady-state retention distribution behind the front become

x =
S∫

0

du

(s − u) λ (u)
. (32)

Equation (32) shows that retention distribution is x-dependent only and is independent of the
drift-delay factor.

Langmuir blocking filtration function and constant accessibility and drift delay. For fil-
tration function (8)

λ (S) = λ0 (1 − bS), b = S−1
m , (33)

the integral (22) becomes

f

s
t =

S∫
0

du

(s (0) − u) λ0

(
1 − S

Sm

) . (34)

It allows for the explicit formula for retention distribution ahead of the front:

S(x, t) =
λ0s

(
e

(
λ0− λ0

Sm
s
)

f
s t − 1

)

λ0e

(
λ0− λ0

Sm
s
)

f
s t − λ0

Sm
s

. (35)

The suspension concentration follows from Eq. (14):

C(x, t) =
(
λ0 − λ0

Sm
s
)

λ0e

(
λ0− λ0

Sm
s
)

f
s t − λ0

Sm
s

. (36)

The retention distribution behind the front follows from Eq. (32):

S(x, t) =
λ0s

(
e

(
λ0− λ0

Sm
s
)
x − 1

)

λ0e

(
λ0− λ0

Sm
s
)
x − λ0

Sm
s

. (37)
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Constant accessibility, drift delay, and filtration coefficient. Assuming s, f , and λ constant,
and infinite Sm , from Eqs. (35, 36), we obtain the solution

S (x, t) =
{
s
(
1 − e− f

s λ0t
)

, x ≥ f
s t

s
(
1 − e−λ0x

)
, x <

f
s t

, (38)

C (x, t) =
{
e−λ0

f
s t , x ≥ f

s t
0, x <

f
s t

. (39)

Linear functions for filtration, accessibility, and drift delay. Integrals in Eqs. (22) and (26)
contain polynomials of third and second orders and can be solved explicitly.

5 Type Curves for Concentrations and Pressure Drop

In this section, for the case where the particles are significantly smaller than pores, i.e. s = 1,
we calculate the type curves for retention and suspension concentrations and for the pressure
drop across the core. Fines roll and slide along pore walls; thus, f (S)/s(S) = α � 1. Particle
capture is governed by the Langmuir blocking function, Eq. (33). The calculation results are
presented in Figs. 2, 3, and 4.

The case b = 0 (Sm = ∞) corresponds to constant filtration coefficient. The solution
is given by formulae (38, 39), showing that the logarithm of breakthrough concentration
is linear versus time. Thus, the breakthrough concentration in semilogarithmic coordinates
is given by a straight line (Fig. 2). Its tangent is equal to αλ0. The straight line crosses
the vertical axes at ordinate lnc0. The dimensional breakthrough concentration decreases
from the initial value c0. Using two breakthrough concentration measurements and plotting
the corresponding straight line in semilogarithmic coordinates allows for calculation of the
initial suspended concentration c0, which avoids the errors in concentration measurement at
the beginning of injection.

Langmuir’s cases with Sm > 0, in which filtration coefficient decreases during filling the
retention vacancies from S = 0 to S = Sm , correspond to convex retention curves (curves
1 and 2 in Fig. 3a) and concave breakthrough curves (curves 1 and 2 in Fig. 3b). The cases
where the filtration function increases during the retention (b < 0) correspond to concave
retention curves (curves 4 and 5 in Fig. 3a) and convex breakthrough curves (curves 4 and 5
in Fig. 3b).

Fig. 2 Breakthrough
concentration in semilogarithmic
coordinates for low-retention
fines migration
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Fig. 3 Effects of maximum
vacancy concentration Sm = 1/b
on fines migration: a retention
profiles after 50 PVI; b
breakthrough concentration; c
average retention concentration
versus time
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Fig. 4 Effects of drift-delay
factor α on fines migration: a
retention profiles after 100 PVI; b
breakthrough concentration; c
average retention concentration
versus time
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Figures 3a and 4a show the retention profiles. It follows from Eqs. (22, 29) that retention
profile is uniformahead of the concentration front and steady state behind the front. So, at each
point x0 of the reservoir before the front arrival, S(x0, t) growsmonotonically from zero to the
maximum, S(x0, tf (x0)), at the moment of the front arrival. S(x0, t) then remains constant.
Therefore, there exists an envelope profile S(x, tf (1)). From the instant of the breakthrough
t > tf (1), the retention profile coincides with the envelope curve. The retention profiles in
Fig. 3a correspond to t = 50 PVI, which is before the front arrival at the core outlet. Cases 1
and 2 in Fig. 4a also show the retention concentration before the front arrival; however, the
front already arrived in case 3.

The lower the maximum vacancy concentration Sm , the higher the constant b, the lower
the filtration function, the lower the retention profile, and the higher the breakthrough con-
centration (Fig. 3a, b).

According to formula (30), the pressure drop across the column is linearly dependent on
the average retention concentration <S>. Figure 3c shows that the higher the maximum
vacancy concentration Sm , the larger the averaged concentration and the higher the pressure
drop.

Figure 4 shows the effect of drift-delay factor f = α (s = 1) on retained and breakthrough
concentrations and on the average retention concentration. The higher the f , the faster the
fine particles move and arrive (Fig. 4a), the larger the particle flux and retention concentration
(Fig. 4a), and the lower the suspended concentration (Fig. 4b).

Monotonic growth of the average retention concentration is shown in Fig. 4c. At the instant
1/α, the pressure drop stabilises. The higher the drift-delay factor f = α, the sooner that
stabilisation occurs.

6 Matching the Experimental Data

In this section, the analytical model (35–37) matches the laboratory data from 12 experi-
ments. The nonlinear least square method (improved Levenberg–Marquardt procedure) was
applied formatching the data (More 1977; Coleman andLi 1996). The optimisation algorithm
implemented inMATLABwas used (MatLab 2013). The Levenberg–Marquardt method acts
more like a gradient descent method when the parameters are far from their optimal value,
and acts more like the Gauss–Newton method when the parameters are close to their optimal
value.

Grolimund et al. (2001) injected water into a column filled by non-calcareous soil material
that consisted of 16% sand, 18% clay, and 66% loam. In each experiment, particle release
was initiated by reduction of injected water salinity if compared with the formation of water
salinity. The ionic strengths of the injected water are shown in second column of Table 1.
Sodium was used as a main cation in all experiments. Figure 5 shows the breakthrough con-
centration of mobilised fines for ionic strength reduction from 500 to 20mM. The effects of
salt concentrations on particle mobilisation were investigated in several chemical environ-
ments. Figures 6, 7, 8, and 9 show the effect of injected salinity on fines production in the
presence of chloride, malonate, phthalate, and azide, respectively.

The nonlinear model (Eqs. 35–37) and linear model (Eqs. 38, 39) match the breakthrough
curve by the error minimisation. For all tests, the laboratory data show close agreement
with the nonlinear model, whereas the results of the linear model significantly deviate from
the experimental breakthrough curves. Table 2 presents the obtained values of the tuning
parameters α, λ0, and Sm for the nonlinear model in columns 3, 4, and 5, respectively. The
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Table 1 Tuning parameters for fines-migration tests in the presence of various anions and salt concentrations

Anion [N+
a ] (mM) Nonlinear model Linear model

α λ0 Sm S(1, tf (1))/Sm αλ0

No additional
anions

20 9.25E−3 27.7 0.024 0.98 4.22E−3

Chloride 10 1.99E−3 27.87 3.90E−4 0.98 8.67E−3

20 1.23E−3 15.87 2.44E−5 0.94 4.28E−3

40 1.08E−3 6.266 1.09E−6 0.78 3.21E−3

Malonate 20 1.10E−3 119.7 4.42E−3 0.99 5.25E−3

40 1.61E−3 65.08 1.55E−3 0.99 7.11E−3

80 3.93E−3 22.35 2.32E−4 0.99 1.30E−2

Phthalate 20 4.11E−3 4.951 4.09E−6 0.89 3.70E−3

40 4.22E−3 5.445 7.90E−7 0.97 6.27E−3

Azide 20 2.72E−3 8.785 2.34E−6 0.93 5.18E−3

40 2.72E−3 8.785 2.34E−6 0.93 5.18E−3
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-2

-1

0

t, PVI

Lo
g(

c/
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Experimental data
Non-linear Model, R2=0.972

Linear Model,        R2=0.746

Fig. 5 Matching the laboratory data from mobilisation experiment of colloidal particles in natural porous
material

obtained parameters vary in the common intervals typical for suspension-colloidal flows in
natural rocks (Al-Abduwani 2005; Al-Abduwani et al. 2005; Alvarez et al. 2006, 2007; Civan
2014; Oliveira et al. 2014).

The sixth column of Table 1 shows the ratio between maximum retained concentration
S(1, tf (1)) reached in test at the outlet and the correspondingmaximumvacancy concentration
Sm . The ratios vary between 0.78 and 0.99, showing that the retention concentration is not
negligible compared with Sm , i.e. the linear model (37, 38) is not valid for the test conditions.
It explains the high agreement between the laboratory and nonlinear modelling data, and the
poor fit by the linear model.
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Fig. 6 Dependence of the mobilisation of colloidal particles from a natural rock in the presence of chloride,
on salt concentration: 10mM (squares), 20 mM (circles), and 40mM (triangles)
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Fig. 7 Dependence of the mobilisation of colloidal particles from a natural porous material in the presence
of malonate, on salt concentration: 20mM (squares), 40mM (circles), and 80mM (triangles)

Solution (35) shows that maximum retention concentration S(1, tf (1)) is less than the
maximum vacancy concentration Sm and tends to Sm for semi-infinite core. The values of
mobilised particle speeds α = f/s in Table 1 are very low, i.e. full system stabilisation occurs
after 110–1000 PVI (which is 1/α). The injection periods in the tests have the same order of
magnitude. This explains the values of the ratio S(1, tf (1))/Sm that are close to one.

Bhattacharya et al. (2016) injected fresh Milli-Q water into an artificial core packed
by 90% sand and 10% kaolinite and initially saturated by water with salinity 10mM. The
breakthrough concentration and pressure drop across the core, measured during this injection
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Fig. 8 Dependence of the mobilisation of colloidal particles from a natural rock in the presence of phthalate,
on salt concentration: 20mM (squares), 40mM (circles)
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Fig. 9 Dependence of the mobilisation of colloidal particles from a natural porous material in the presence
of azide, on salt concentration: 20mM (squares), 40mM (circles)

Table 2 Tuning parameters from breakthrough fines concentration and pressure drop for kaolinite fines
migration

Model α λ0 Sm c0 β c0 S(1, tf (1))/Sm

Nonlinear model 0.010 17.16 0.638 7.750e−6 1.434 0.99

Linear model 0.012 1.548 ∞ 7.750e−6 2.656 –
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Fig. 10 Matching the fines breakthrough and pressure drop data on fines migration in natural reservoir core:
a breakthrough concentration; b average permeability across the core. The coefficient of determination is
R2 = 0.879 for the linear model and R2 = 0.998 for the nonlinear model

test, are presented in Fig. 10. The figure shows high agreement in breakthrough concentration
and permeability between the experiment and the nonlinear model, but significant deviation
from the linear model. The ratio S(1, tf (1))/Sm was equal to 0.99, which explains the poor
match of the data by the linear model.

7 Discussion

The exact analytical solution for fines migration is given by the set of formulae (22, 26,
29) for any arbitrary functions s(σ ), f (σ ), and λ(σ ). Equation (22) determines retention
concentration ahead of the front, where the retention concentration is independent of x and
depends on time t only. This property is the consequence of the uniform initial distribution of
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suspension concentration. The conditions for deep bed filtration are the same for all particles
that are situated at any point x at t = 0, thus S = S(t) and C = C(t) ahead of the front.
The front trajectory is given parametrically by Eq. (26). Suspended concentration equals zero
behind the front, due to particle-free water injection. Retained concentration at any point x
reaches its maximum and stabilises at the instant when the front passes point x , as given by
Eq. (29).

For constant accessibility and drift-delay functions, the concentration front moves with
constant speed f/s, and the retention profile behind the front is independent of the drift-delay
factor.

For high retention concentration, the laboratory data closely agreed with the nonlinear
Langmuir model but not with the linear model. At low retention concentration, where maxi-
mum value of the retention concentration is significantly smaller than the maximum vacancy
concentration, the results of linear and nonlinear modelling agree highly with the laboratory
data.

The close match of the breakthrough concentration and pressure drop does not validate the
fines-migration model (1–3). Simultaneous model matching of breakthrough concentration
and pressure drop histories, and the retention profile, where the number of model constants
is lower than the number of degrees of freedom of the laboratory dataset, would allow the
model’s validity to be tested. The above data are available for suspension-colloidal injection
(Mays and Hunt 2005, 2007); the correspondingmodel validation has been performed by Al-
Abduwani (2005) and Al-Abduwani et al. (2005). To our knowledge, there are no published
laboratory data on breakthrough concentration and pressure drop histories, and the retention
profile for fines migration.

The laboratory data on breakthrough concentration and pressure drop across the column
agree closely with the analytical model based on Langmuir’s blocking filtration function
(Fig. 10). Yet, the quality of the match can be improved by using a two-parametric equation
for permeability reduction. The mono-parametric permeability reduction model given by
Eq. (3) follows from ignoring the second- and higher-order terms in Taylor’s series for the
function k(0)/k(σ ). Keeping the second-order term yields the second-order polynomial in
the denominator in Eq. (3), which was used by Al-Abduwani (2005). The second formation
damage coefficient could also be introduced by using the power (1 + βσ)n , n �= 1 in the
denominator of Eq. (3) (Bailey et al. 2000).

The model assumes instant particle release. It corresponds to either negligible relaxation
time in the kinetic model with simultaneous attachment and detachment (Tufenkji 2007;
Bradford andWiegmann 2011; Bradford et al. 2012) or the maximum attached-concentration
model (Bedrikovetsky et al. 2011).

The exact solutions derived can be used for planning and design of laboratory tests on fines
migration—reliable prediction of breakthrough and suspended concentrations and pressure
drop allows determining the sample timing, sample volumes, and injection rates where those
are feasible, defining which pressure transducers should be used, etc. The type curves and
the features of the concentration distributions allow interpretation of the laboratory data. The
exact solutions permit the determination of the filtration function and the accessibility and
drift-delay factors from the coreflood data.

The derived exact solutions for one-dimensional flow can be used in stream-line simula-
tors for quasi-3D simulation in natural reservoirs. The exact solutions can be also used for
upscaling of filtration, accessibility, and drift-delay coefficients in the heterogeneous flow
patterns using the stream-line modelling.

The assumptions of themodel formulated in Sect. 2 correspond to corefloodswith constant
initial and injected salinities and slow migration of mobilised fines. More general equations
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that can be extended for 3D two-phase flows in oilfields, capture continuous fines release
during arrival of the salinity wave and kinetics of particle attachment, where the attached con-
centration is below the maximum retention concentration. Mass balance equation accounts
for attached, suspended and retained particles:

∂ (φs (σ ) c + σa + σ)

∂t
+U

∂c f (σ )

∂x
= 0 (40)

If the attached concentration is below the maximum retention value, the attachment occurs,
and the rate is given by the linear kinetics equation:

∂σa

∂t
= λa f (σ )Uc, σa < σcr (γ )

σa = σcr (γ ) (41)

Here σa and λa correspond to particle attachment, which stops when the attached concentra-
tion reaches its maximum value σcr = σcr (γ ).

The continuity equation for salt includes its advective and dispersive fluxes:

∂ (φγ )

∂t
+U

∂γ

∂x
= D

∂2γ

∂x2
(42)

The kinetics of different mechanisms of particle capture than attachment is given by Eq. (2).
Equation (3) captures the formation damage and flux alteration due to the particle capture.

The initial and boundary conditions are:

t = 0 : c = 0, γ = γ0, σ = 0, σa = σa0,

x = 0 : c = 0, γ = γ1 (43)

System of five equations (2, 3, 40–42) subject to initial and boundary conditions (43) deter-
mines the following unknowns: σ(x, t), c(x, t), σa(x, t), γ (x, t) and p(x, t).

For the case where

σa0 = σcr (γ0) , γ1 < γ0, D = 0, t � 1,

the above-formulated problem (2, 3, 40–43) degenerates into the problem (1–3, 6, 7) solved
in the present work.

8 Conclusions

Exact integration of nonlinear equations for fines migration in porous media and matching
the experimental data allows drawing the following conclusions.

The problem of slowfinesmigrationwith varying filtration function that accounts for vary-
ing accessibility and drift-delay factors allows for exact solution. Distributions of suspended
and retained concentrations along with the concentration front trajectory are expressed by
implicit formulae.

The solution shows that suspended and retained concentrations ahead of the concentration
front depend on time only, i.e. their profiles are uniform. Suspended concentration behind
the front equals zero, and the retention concentration is steady state.

If accessibility and drift-delay factors are constant, the concentration front propagates
with constant velocity and the retained concentration behind the front is independent of the
drift-delay factor.
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For the case of Langmuir blocking function and constant accessibility and drift-delay fac-
tors, suspended and retained concentrations are expressed by an explicit analytical nonlinear
model, which exhibits high agreement with experimental data.

The typical properties of the suspended and retained concentrations are as follows: exis-
tence of the envelope curve for retention profiles that determines uniform distribution ahead
of the front and steady-state distribution behind the front; concave breakthrough curves
for increasing filtration function and convex breakthrough curves for decreasing filtration
function in semilogarithmic coordinates; and straight-line breakthrough curve during short
after-breakthrough period for low-varying filtration coefficient, allowing determining model
constants c0 and αλ0.
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