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Abstract In this work we apply a recently proposed Bayesian Markov chain Monte Carlo
framework (Akbarabadi et al. in Comput Geosci 19(6):1231–1250, 2015) to quantify uncer-
tainty in the three-dimensional permeability field of a rock core. This process establishes the
credibility of a compositional two-phase flow model to describe the displacement of brine
by CO2 and CO2 storage in saline aquifers. We investigate the predictive capabilities of the
compositional model in the context of an unsteady-state CO2-brine drainage experiment at
the laboratory scale, performed at field-scale aquifer conditions. We employ forward models
consisting of a system of discretized partial differential equations along with relative per-
meability curves obtained by a curve fitting of experimental measurements. We consider
a forward model to be validated when: (1) numerical simulations reveal that the Bayesian
framework has accurately characterized the core’s permeability and (2) Monte Carlo pre-
dictions show excellent agreement between measured and simulated data. A large set of
numerical studies with an accurate compositional simulator shows that forward models have
been successfully validated. For such models, our numerical results show that we are able
to capture all the dominant features and general trends of the CO2 saturation fields observed
in the core. Our study is consistent with the design and findings of real experiments. Fluid
properties, relative permeability data, measured porosity field, physical dimensions, and ther-
modynamic conditions are the same as those reported in Akbarabadi and Piri (Adv Water
Resour 52:190–206, 2013). However, themeasured saturation data are fromflow experiments
different from those reported in Akbarabadi and Piri (2013), and will be presented here.

B Felipe Pereira
luisfelipe.pereira@utdallas.edu

1 Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071,
USA

2 National Laboratory for Scientific Computing, Petropolis, RJ 25651, Brazil

3 Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA

4 Mathematical Sciences Department, University of Texas at Dallas, Richardson, TX 75080, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-017-0872-6&domain=pdf


26 M. Akbarabadi et al.

Keywords Validation · Core characterization · Bayesian MCMC · Compositional model ·
Drainage · CO2 injection

1 Introduction

CO2 is a greenhouse gas of considerable concern in connection with global warming. As a
method to reduce the emission rate of anthropogenic CO2 into the atmosphere, the storage of
CO2 into geologic formations has attracted a lot of attention, because these formations offer
a significant potential for long-term storage of CO2. This paper examines a method for vali-
dating mathematical models of the fluid displacement processes involved in this technology.

The purpose of performing CO2-brine drainage experiments at the core scale is to help
improve our understanding of fluid flow and displacement of brine by CO2 in saline aquifers.
Recent studies show that rock heterogeneity has a strong influence on the saturation patterns
of brine displaced by CO2 in cores. Even for the Berea sandstone, which is considered to be
a relatively homogeneous rock (Krause et al. 2011), laboratory experiments show that for a
relative low variability of the porosity, the corresponding CO2 saturation profile is highly het-
erogeneous (Akbarabadi andPiri 2013;Shi et al. 2009;Benson et al. 2006).These experiments
provide insight into the role of heterogeneity in determining distribution of theCO2 saturation.

The agreement between core-scale numerical simulations and experimentally measured
fluid properties, such as saturation, has been and will continue to be a challenge because of
uncertainty in the heterogeneities in rock andfluid properties.Accurate numerical simulations
of core-flooding experiments can be used to help in quantifying the underlying uncertainty
associated with geological properties such as permeability. The main challenge in validating
mathematical models against core-flooding experiments is to find the 3-dimensional (3D)
permeability field of a core. One cannot measure the 3D permeability field in laboratory
experiments directly, in contrast to other functions such as porosity, relative permeability
curves, etc. Instead, one must start with statistics of the permeability field, then construct
realizations that are consistent with the observed behavior of fluids in the rock. Finding
accurate 3D permeability field is essential for a successful model validation that establishes
the credibility of mathematical models.

In the work presented here, we apply a recently proposed Bayesian Markov chain Monte
Carlo (MCMC) framework (Akbarabadi et al. 2015) to quantify uncertainty in the 3D per-
meability field of a core in the context of an unsteady-state CO2-brine drainage experiment.
However, a more challenging situation is reported in this work, because the modeling and
numerical errors (Glimm and Sharp 1999) were not present in the work authors reported
in Akbarabadi et al. (2015) (synthetic computational experiments using virtual cores).
Additional uncertainties related to the models for flow, relative permeability curves, fluid
properties, etc., have great impact over prediction capacity. The experiment is conducted at
the laboratory scale, at aquifer conditions. The Bayesian framework incorporates the mea-
sured CO2 saturation data at transverse slices along the core, and consists of two steps: the
characterization and predictions. The core characterization step is based on selecting a suit-
able family of 3D permeability fields such that solutions of a forward model, consisting of
a system of discretized partial differential equations along with relative permeability curves,
match the measured data within some error. In this work, the system of partial differential
equations is a compositional two-phase flow model accounting for mass transfer between
phases, and sets of relative permeability curves are constructed from the laboratory mea-
surements by curve fitting procedures. The predictive capability of the forward model is
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quantified through Monte Carlo simulations using the selected permeability fields from the
posterior distribution.

We consider a forward model to be validated when: (1) numerical simulations reveal that
theBayesian frameworkhas accurately characterized the core and (2)MonteCarlo predictions
show excellent agreement between measured and simulated data. A large set of numerical
studies confirms that our forward models have been successfully validated. However, we
also found that forward models may not be adequate to describe the experimental results
considered here. Such models fail to properly characterize the core and/or produce poor
predictions of future fluid flow. For the validated models, our numerical results capture all of
the dominant features and general trends of distribution of the measured CO2 saturation in
the core. Our numerical studies also show that a change in the relative permeability curves
may also affect the average permeability of the proposals from the posterior distribution.

The pertinent literature to the problem at hand has mostly emphasized the use of indirect
methods to estimate the permeability field of rocks. Most of the earlier work for permeabil-
ity estimation has focused on expressing it in terms of other measurable rock properties.
In particular, these indirect methods incorporate porosity, grain size, surface area, and pore
dimension to determine the permeability field, see Nelson (1994). Many authors have stud-
ied different techniques to validate mathematical models to describe CO2-brine drainage
in core floods. The authors of Krause et al. (2011) performed numerical simulations using
various porosity-based permeability models to estimate the permeability distribution. Sim-
ulated results presented in Krause et al. (2011) indicate that a better model is needed to
obtain a more accurate estimate of the permeability field. The authors of Kong et al. (2014)
reported a geostatistical approach to estimate permeability using the porosity field and the
capillary pressure function. Good agreement between numerical results and the measured
data [reported in Krause et al. (2011)] was reported for a steady-state CO2-brine drainage
experiment. In order to accurately characterize the core, a new model was used for the local
capillary pressure to estimate sub-core-scale permeability distribution in Krause et al. (2013).
The numerical results agree well with the measured data.We remark that our framework does
not assume a dependence of permeability on other rock properties. However, such depen-
dence in principle could be incorporated into the Bayesian framework. In addition, we aim
at validating a mathematical model to describe an unsteady-state CO2-brine drainage exper-
iment, in contrast to the published studies for steady-state experiments. For a detailed review
of published research on model validation the reader is referred to Kong et al. (2014).

The paper proceeds as follows. Section 2 briefly describes the experimental procedure and
illustrates the measured data. Section 3 is dedicated to the mathematical model. Section 4
reviews the Bayesian framework for model validation described in Akbarabadi et al. (2015).
Section 5 presents validation results and discussion. A summary and concluding remarks
appear in Sect. 6.

2 Laboratory Experiments

2.1 Experimental Methodology

This subsection presents a brief review of the design and setup of the CO2-brine core-
flooding experiments. The experimental methodology that we follow in this work is exactly
the same as reported in Akbarabadi and Piri (2013). However, as stated earlier the measured
saturation data are from flow experiments different from those reported in Akbarabadi and
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Table 1 Total pore volume
injected for each scan

Scan no. Pore volume injected

1 0.6132

2 0.7622

3 0.9110

4 1.0597

5 1.2283

6 1.5307

7 1.8227

Piri (2013). These experiments involve an unsteady-state CO2-brine drainage conducted in
a Berea sandstone at the laboratory scale. In the experiment a rock core of height 15.4 cm
and diameter 3.76 cm was placed in a Hassler-type core holder, held vertically, and sealed
in a sleeve. To prevent CO2 from leaking through the sleeve, both the core and sleeve were
wrapped with several layers of aluminum foil and Teflon tape. The core holder was then
placed in the gantry of a medical CT scanner after wrapping with heating tapes and highly
efficient insulation. The core was then heated to the temperate of 55 ◦C, and pressurized to
11 MPa. After that the core was fully saturated with brine and then flooded from the top
with 100% equilibrated supercritical CO2 at a constant injection rate of 0.15 cm3 (cc)/min. A
medical CT scanner was used to scan the core at several times to obtain the saturation of CO2

in transverse slices of the core. The CT scanner provides a resolution of about 250 µm per
slice with a spacing of about 4 mm, i.e., slices are 4 mm apart from each other. One complete
scan (the term scan refers to the measurements made with a CT scanner at a particular time)
generates data at 37 slices within about 5 min. Table 1 presents the number of scans and total
pore volume injected for each scan.

The Berea sandstone core used in the experiment and the corresponding spatial domain
for the governing equations are shown in Fig. 1. The inlet is subject to a Neumann boundary
condition (a constant injection rate), and the outlet obeys a Dirichlet boundary condition
(constant pressure). We impose no-flow conditions on all other segments of the boundary.
In the experiment, two pressure ports were used along the length of the core to monitor the
pressure. These ports affect the measurements, and as a consequence the CT scanner does
not provide physically meaningful CO2 saturation and porosity data close to these pressure
ports. Therefore, we ignore data over this length and those of a few slices on each side of
the two pressure ports. Moreover, there are some slices where the scanner-determined CO2

saturation is negative with magnitude 10−3–10−1. We do not ignore such slices; instead,
we round the negative saturation values to zero. In most cases, such slices are close to the
outlet. Table 2 shows physical positions and slice numbers where we used the scanner data.
These are the slices used to compare against numerical simulations. Slices associated with
inaccurate measurements are not numbered but highlighted in italic.

2.2 Experimental Data

2.2.1 Measured Porosity and CO2 Saturation Data

We present the measured porosity values and the CO2 saturation data at some selected slices
of the core to highlight the importance of heterogeneities in the spatial distribution of the
CO2 saturation. The Berea sandstone is considered to be a homogeneous rock in the sense
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Fig. 1 (Left) The Berea sandstone used in the experiment; (Right) Core description: Pressure ports (in blue)
and slices for monitoring CO2 saturation (in light green). Injection of supercritical CO2 in the direction of
gravity

Table 2 Physical position and slices numbers

Slice no. Physical
position (cm)

Slice no. Physical
position (cm)

Slice no. Physical
position (cm)

1 15.0 9 9.80 22 4.60

2 14.6 10 9.40 23 4.20

3 14.2 11 9.00 – 3.80

– 13.8 12 8.60 – 3.40

– 13.4 13 8.20 – 3.00

– 13.0 14 7.80 – 2.60

– 12.6 15 7.40 – 2.20

– 12.2 16 7.00 – 1.80

4 11.8 17 6.60 24 1.40

5 11.4 18 6.20 25 1.00

6 11.0 19 5.80 26 0.60

7 10.6 20 5.40

8 10.2 21 5.00

that there are no apparent bedding layers in its structure. However, experiments show that
the spatial distribution of the CO2 saturation is very heterogenous even for this type of rock;
see Benson et al. (2006), Shi et al. (2009), Perrin and Benson (2010), Shi et al. (2011),
Akbarabadi and Piri (2013).
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Fig. 2 Measured CO2 saturation at locations close to the inlet boundary (left: slice # 3), in the middle part of
the core (middle: slice # 13), and close to the outlet boundary (right: slice # 23) of scan 1. These data will be
used for core characterization

Fig. 3 Measured CO2 saturation at locations close to the inlet boundary (left: slice # 3), from the middle of
the core (middle: slice # 13), and close to the outlet boundary (right: slice # 23) of scan 7. Data used to assess
the accuracy of the predictive simulations

In Fig. 2, we show the measured CO2 saturation at slices # 3, 13, and 23, of the core
of scan 1. The measured CO2 saturation field is highly heterogeneous. Along the length of
the core, in the direction of injection, there is relatively less CO2, especially at slices close
to the bottom, and the CO2 is leaving the core in a channelized pattern. In the framework
employed here, we use the measured data of scan 1 to characterize the core and later scans
to assess the validity of the characterization. For example, Fig. 3 shows the measured data
of scan 7 at slices # 3, 13, 23, which we use to assess the capability of a forward model
to predict future fluid flow. In case of successful model validation, the numerically simu-
lated results will match these data from scan 7, within an uncertainty, along with data from
all other previous scans, which are not shown here. Figure 4 illustrates measured poros-
ity data at slices # 3, 13, and 23. These data vary between 17 and 25%, with an average
value of 21.2%. Note from Table 2 that slice # 3 is close to the inlet boundary, slice #
13 is in the middle part of the core, and slice # 23 is close to the outlet boundary of the
core.

The numerical results presented here are consistent with a real experiment in that, for
the simulations, we use the porosity field, fluid properties, relative permeability curves,
injection rate, total injected pore volume for each scan, outlet boundary pressure, temperature,
and physical dimensions that are reported in Akbarabadi and Piri (2013), see Tables 1, 2
and 3.
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Fig. 4 Measured porosity at locations close to the inlet boundary (left: slice # 3), from the middle of the core
(middle: slice # 13), and close to the outlet boundary (right: slice # 23)

Table 3 Summary of core and
fluid properties (Akbarabadi and
Piri 2013)

Mean porosity 21.2% Injection rate 0.15 cc/min

Length 15.4 cm Brine density 1123 kg/m3

Diameter 3.76 cm CO2 density 393 kg/m3

Pressure ports 2 Brine viscosity 9.1E−4 Pa s

Back pressure 11 MPa CO2 viscosity 4.4E−5 Pa s

Temperature 55 ◦C Pore volume 36.3 cc

Fig. 5 An illustration of the measured porosity: three-dimensional profile with 16 × 16 × 64 grid elements
excluding the dead (or inactive) cells

2.2.2 Construction of a 3D-Porosity Field for Simulations

In the simulations presented here, the porosity field is considered to be deterministic and is
constructed from the measured porosity data at slices. Figure 5 shows the three-dimensional
image of the porosity field used in simulations in a 16×16×64 grid. (We discuss the choice
of grid size in Sect. 3.4.2.) For the cylindrical geometry, some of the cells are inactive and are
not shown in Fig. 5. We linearly interpolate porosity values along the length of the core at the
locations where porosity is not known from measurements. Figure 6 illustrates a histogram
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Fig. 6 Measured porosity histogram

of the measured porosity data exhibiting an approximately Gaussian distribution with an
average of 0.212.

2.2.3 The Prior Distribution for the Permeability Field

In the Bayesian framework, we must provide the prior distribution of permeability for the
characterization step. We assume that, although statistically independent, the porosity, and
permeability fields share the same spatial structure. Thus, we first estimate the covariance of
themeasured porosity data and then adopt a best fit of these data as the covariance function for
the (Gaussian) prior distribution of the permeability field.Wefind that the covariance function
denotedby R(x1, x2) (seeSect. 4.1.3)with correlation length 0.1 cm in eachdirectionmatches
the form of the covariance of the porosity field in x- and y-directions well (up to about 0.2
cm) as shown in Fig. 7 (for distances greater than 0.2 cm, we believe that we do not have
enough data to estimate the correlation because the data show oscillations). In the z-direction,
the smaller measured distance is 0.4 cm (the distance between two successive slices), and
therefore, it is impossible to find correlation lengths smaller than this value. Thus, assuming
isotropy of the rock, we consider the same correlation length (0.1 cm) in the z-direction. This
finding motivates the use of R(x1, x2) as the covariance function for the prior distribution
of the permeability field, assumed to be log-normal distributed and entirely characterized by
its two-point covariance function (details in Sect. 4.1.3). In Fig. 7, CY represents covariance
of the porosity data and r denotes the distance. The coefficient of determination is 1 which
indicates R(x1, x2) is the best fit to the porosity covariance (using data up to the distance of
0.2 cm.)We remark that to the best of our knowledge the use of porosity correlation properties
to define the prior for absolute permeability modeling has not appeared in the literature, and
is used here for the first time.

2.2.4 Representative Elementary Volume (REV)

We use spatial mesh sizes for continuum-scale simulations that are larger than or comparable
to the REV size. The size of the porosity-based REV for the core is computed using images
with resolution 2.34µm. Porosity as a function of domain volume is illustrated in Fig. 8. This
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Fig. 7 An illustration of the
covariance form of porosity and
the exponential covariance
function with correlation length
0.1 cm in each direction. a, b, and
c correspond to x-, y-, and
z-direction, respectively, and R2

is the coefficient of determination
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figure shows that oscillations in the porosity are not significant at averaging volumes larger
than approximately 0.78× 0.78× 0.78mm3. This volume corresponds to 335× 335× 335
voxels. This observed size of the porosity REV is consistent with the data published in the
literature; see Mostaghimi et al. (2013) and Ovaysi and Piri (2010).
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Fig. 8 (Representative elementary volume) An illustration of porosity as a function of volume (mm3) for
images with resolution 2.34 µm

3 The Forward Model

3.1 Governing Equations

Weuse a two-phase compositional model to describe the compressible fluid flow of supercrit-
ical CO2 in saline formations. The two phases are referred to as aqueous (aq) and non-aqueous
(naq) phases. There are three components distributed among the phases: CO2 (c),water (w),
and salt (s). The non-aqueous phase is the CO2-rich phase. For comprehensive reviews of
compositional models, refer to Trangenstein and Bell (1989), Qin (1995), Chen and Zhang
(2008), Akbarabadi et al. (2015), among many others. Here, we provide a brief summary for
a quick reference.

We write a mass balance equation for each component in terms of the total moles per pore
volume (Trangenstein and Bell 1989; Qin 1995):

φ
∂mi

∂t
+ ∇ ·

(
mi

aq

Saq
vaq + mi

naq

Snaq
vnaq

)
= 0, i = c, w, s. (1)

Here vaq, vnaq, Saq, and Snaq denote the velocities and saturations of the aqueous and non-
aqueous phases, respectively. The variables mc

aq, m
w
aq, m

s
aq, m

c
naq, m

w
naq, and ms

naq are total
moles per pore volume of each component in each phase. Note that there is no salt in the
non-aqueous phase, that is, ms

naq = 0. The superscripts c, w, s refer to the components
CO2, water, and salt, while the subscripts aq and naq denote the aqueous and non-aqueous
(CO2-rich) phases, respectively.

By mass conservation, the following relations hold:

mi = mi
aq + mi

naq, i = c, w, s. (2)

The phase velocities vaq and vnaq are functions of the corresponding phase saturation and
pressure, given by Darcy’s law for multiphase flow (Bear 1979):

vα = −kλα(Saq)(∇ pα − ραg∇z), α = aq, naq, (3)
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where ρα, α = aq, naq, denotes phase mass density, k is the rock permeability, g is the
gravity acceleration, and z is the depth. The functions λaq and λnaq are the phase mobilities
defined by

λα(Saq) = krα
μα

α = aq, naq, (4)

where krα and μα , α = aq, naq, denote the relative permeability and phase viscosities,
respectively. We assume that the pore volume of the rock is fully filled with fluid, resulting
in the constraint:

Saq + Snaq = 1. (5)

The compositional pressure equation used in this work, derived in Trangenstein and Bell
(1989) and Qin (1995) using the volume balanced method, is given by:

βT
∂p

∂t
+ div (vt) = φ

S(tn) − 1

�t
. (6)

Here vt = vnaq + vaq is the total Darcy velocity; S(tn) = Saq + Snaq is the total computed
saturation, φ is the porosity, and �t is the time-step of the pressure equation. The parameter
βT is the total fluid compressibility, given by

βT (p,m) = −φ

(
∂Saq
∂p

+ ∂Snaq
∂p

)
, (7)

wherem = 〈mc,mw,ms〉 is a vector of the total moles per pore volume of each component
in the fluid. The pressure equation corresponds to a total volume balance. In computations,
Eq. (5) may not hold exactly at a current time level tn . The term on the right side of Eq. (7)
serves to correct a possible volume discrepancy error. The phase pressures are related by cap-
illary pressure function. For the numerical discretization strategy employed in our simulator,
we refer to Akbarabadi et al. (2015).

3.2 Thermodynamics

For each grid cell in the spatial discretization, given the total number of moles of each
component in the mixture, the pressure, and the temperature, the simulator computes the
distribution of each component in each phase at the equilibrium state. This characterization
of the fluid-phase equilibrium is known as a flash calculation. The flash calculationminimizes
the total Gibbs free energy of the fluid mixture in each grid cell. The algorithm used in the
minimization problem is given in Akbarabadi et al. (2015), and a detailed description of the
flash calculation is given in Leal (2010).

3.3 Relative Permeabilities

The relative permeabilities are functions that determine how two fluids influence the motion
of each other. We construct differentiable relative permeability curves that fit experimentally
measured relative permeability data. The software used in this curve fitting estimates the
fitting parameters using the least-squares method. Figure 9 shows the measured relative
permeability data and fitted curves considered in this work. The analytical parameterizations
of the relative permeability curves are given in “Appendix A”. The mapping between discrete
relative permeability data and differentiable curves is not unique, and the choice of curve has
someeffect on themodel validation.Wediscuss the influence of different relative permeability
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Fig. 9 Experimentally measured relative permeability data and curve fits

curves on the characterization, predictions, and average permeability of the core in Sect. 5.3.
We refer to these relative permeability curves as follows: curve fit-1 (Kr-1), curve fit-2
(Kr-2), curve fit-3 (Kr-3), and curve fit-4 (Kr-4). For a low injection rate (0.15 cc/min),
the experimentally measured remaining brine saturation is approximately 0.55–0.65. In this
work, we use the remaining brine saturation of 0.6.

3.4 Design of Numerical Simulations

3.4.1 Geological Grid

We use the REV concept to determine a spatial grid on which to assign piecewise constant
values of the permeability and porosity fields. We refer to this grid as the geological grid. The
REV is the smallest volume at which the volume averages of rock properties do not change
significantly. In our work, the porosity-based REV is approximately 0.78×0.78×0.78mm3,
as illustrated in Fig. 8. Typically, the permeability REV is about 2-3 times larger than the
porosityREV (Mostaghimi et al. 2013). Therefore, the permeabilityREV forBerea sandstone
is roughly 2×2×2mm3. In linewith this discussion, for discretization of the continuum-scale
model, we adopt a spatial mesh size that is comparable to the permeability REV.

3.4.2 Computational Grid

We refer to the spatial grid used to discretize the partial differential equations as the
computational grid. We run all compositional simulations on a 16 × 16 × 64 grid (i.e.,
2.35 × 2.35 × 2.40mm3 cell sizes) with some inactive cells to produce a cylindrical core.
This mesh size for the computations is consistent with the mesh size of the geological grid.

In principle a computational grid can be finer than REV size, for the purpose of reducing
the error between the approximate numerical results and the exact solutions to the partial
differential equations. Our numerical simulations show that a finer grid, i.e., 32× 32× 128,
does not change the saturation profiles significantly. Figure 10 compares slice-averaged CO2

saturation for a problem solved on 16×16×64 and 32×32×128 grids. These are the results
for the same problem solved with different mesh refinements. The relative error between the
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Fig. 10 Comparison of the slice-averaged CO2 saturation values along the length of the core for two com-
putational grids: 16 × 16 × 64 and 32 × 32 × 128

coarse and fine-grid simulations is less than 3%. Since in our characterization/prediction
framework we run the forward model thousands of times, we adopted the coarser computa-
tional grid in the validation studies reported here.

3.4.3 Projection of the Measured Porosity Data on the Computational Grid

The measured porosity has resolution of 250 µm, which is finer than the spatial grid used
for simulations. To upscale (or project) the porosity data on the computational grid for the
simulations, we use weighted averages of fine-grid porosities to define porosity values on a
coarser grid. The weighted average at a cell is defined as:

φcell = 1

v

vn∑
i=1

viφi , (8)

where vi is the volume of voxel i , φi is the porosity value of voxel i , v = ∑vn
i=1 vi is the total

volume of voxels, and vn is the total number of voxels per cell.

4 The Bayesian Markov Chain Monte Carlo Framework

We use a Bayesian framework to quantify uncertainty in the permeability field of a real
rock core. The working principle of the Bayesian MCMC framework involves two steps:
characterization and predictions, and is described below. This framework has been tested
extensively with synthetic computational CO2-brine drainage experiments for virtual cores
in Akbarabadi et al. (2015). In some respects, these tests are more rigorous than comparisons
with physical experiments, since in synthetic tests we have complete knowledge of and
control over the uncertain parameters, including the permeability field to be modeled. The
framework performs well for all synthetic models of subsurface flows used in the tests. In
the case of the synthetic studies reported in Akbarabadi et al. (2015), predictive simulations
could be used as a tool to assess the quality of our characterization step. This is not possible
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with tests involving experimental data from a real core, because the underlying permeability
field is not known.

Within our characterization and prediction steps, we run forward compositional models
numerous times, each using a different proposed permeability field. For each permeability
proposal, computation of a likelihood function requires a solution of the two-phase compo-
sitional model, which, owing to the number of nonlinear flow equations to be solved and the
flash calculations, is computationally very intensive. We performed highly resolved simula-
tions using an in-house multiphase compositional simulator (see Douglas et al. (2010) for
the object-oriented design of our simulator), in conjunction with MPI and the CUDA parallel
computing platforms on a high-performance computer cluster.

4.1 The Characterization Step

The characterization step involves two tasks:

1. Find a family of randomly generated permeability fields that serve as inputs to the forward
model, such that numerical solutions of this model are in good agreement, within some
error, with the measured CO2 saturation data of scan 1.

2. Determine the suitability of a set of relative permeability curves constructed from the
experimental relative permeability data.

Ensemble averages of numerical solutions of the forward model are compared with the
measured data of scan 1 for the convenience of visualization. The term ensemble average
refers to the average of the simulated CO2 saturation data for the selected permeability fields
from the posterior distribution.

4.1.1 The Bayesian Framework: Bayes Rule

In theBayesian approach, uncertainties in an unknown coefficient in amodel are assessed by a
posterior distribution. The posterior distribution is proportional to the product of a likelihood
function and a prior distribution via Bayes rule:

π(k) = P(k|dm) ∝ P(dm |k)P(k). (9)

Here P(dm |k), P(k), dm , and k denote the likelihood function, the prior distribution of the
uncertain parameters of the permeability field, the measured data, and the proposed perme-
ability field, respectively. In applying the Bayes rule, due to the high dimensionality and
heterogeneity of the permeability field, we use the values of a smaller set of uncertain param-
eters instead of the permeability values themselves, taking advantage of a decomposition
discussed below in Sect. 4.1.3.

We assume that the likelihood function follows a Gaussian distribution (Efendiev et al.
2005; Ginting et al. 2013):

P(dm |k) ∝ exp

(
−‖dm − ds‖2

2σ 2

)
, (10)

where ds is the simulated data when the observed permeability field is k, σ 2 is the precision
parameter associated with the measured and simulated data, and the error norm is given by

‖dm − ds‖2 =
Ts∑
i=1

⎡
⎣ Ns∑

j=1

( Nc∑
l=1

(
Si, j,lm − Si, j,ls

)2)⎤
⎦ . (11)
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Here, Ts , Ns , and Nc denote the number of scans used for characterization (in our case
Ts = 1), the number of slices and the number of cells in a slice, respectively. The variables
Sm and Ss denote the measured and simulated CO2 saturation values at transverse slices of
the core, respectively.

4.1.2 The Markov Chain Monte Carlo Method (MCMC)

The MCMC method is used to compute numerically the form of a posterior distribution
because, in general, such closed form is not available. We use the Metropolis–Hastings
MCMC method (Hastings 1970) to sample the permeability field from the posterior distri-
bution. In principle, the algorithm generates a Markov chain with limiting distribution π(k)
that replicates the target distribution. In other words, the generated limiting distribution π(k)
is invariant. The Metropolis–Hastings MCMC algorithm is given in Algorithm 1.

Algorithm 1Metropolis-Hastings MCMC (Hastings 1970)
Step 1. Given a permeability proposal kn in the Markov chain, generate a permeability proposal k from the
distribution q(k|kn) and a random number ζ from a uniform distribution [0,1].

Step 2. Compute

ρ(kn , k) = min

{
1,

q(kn |k)P(dm |k)P(k)

q(k|kn)P(dm |kn)P(kn)

}
.

Step 3. The next step in the Markov chain is

kn+1 =
{
k if ρ(kn , k) ≥ ζ,

kn otherwise.

In Algorithm 1, q(kn |k), k, and kn represent the proposal distribution, current state of the
parameters, and previously accepted state of the parameters, respectively. We use a random
walk Metropolis–Hastings algorithm, in which case the proposal distribution is given by

ξ
(n+1)
j (ω) = βξ

(n)
j (ω) +

√
1 − β2 εn, n = 0, 1, 2, . . . , (12)

where β is called the tuning parameter, satisfying 0 ≤ β ≤ 1, and εn is an N (0, 1)-random
variable (Cotter et al. 2013). The elements ξ

(n+1)
j (ω) areN (0, 1) and are random coefficients

in the Karhunen–Loéve Expansion (that will be presented in the next section). As stated
earlier, due to the heterogeneities and large dimension of the permeability field, its explicit
use to compute the prior probability in the MCMC algorithm is not practical. Instead, we
use the vector (ξ1(ω), . . . , ξN (ω)). Therefore, kn in the Metropolis–Hastings algorithm will
be replaced by ξ

(n+1)
j (ω)—the inferred KLE coefficients. Using a random-walk sampler, the

proposal distribution is symmetric and q(kn |k)/q(k|kn) = 1 in step 2 of algorithm.

4.1.3 The Karhunen–Loéve Expansion

The Karhunen–Loéve Expansion (KLE) (Loève 1977; Wong 1971) is a useful technique for
approximating high- or infinite-dimensional stochastic processes with a small number of
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random variables and has been used by several authors in porous media problems (Efendiev
et al. 2005; Douglas et al. 2006; Efendiev et al. 2006; Ma et al. 2008).

In core-scale simulations, the spatial grid for the permeability field can have as many as
105 cells, and therefore reduction of the space dimensional is computationally helpful. We
provide a brief overview of the reduction technique based on the KLE; for more details, we
refer to Akbarabadi et al. (2015) and references therein. The truncated KLE is given by

Y (x, ω) =
N∑
j=1

λ jξ j (ω)ψ j (x). (13)

Here Y (x, ω) is a second-order stochastic process, i.e., Y (x, ω) ∈ L2(�), � ⊆ R3, x =
(x, y, z) ∈ �, ω is a random variable, N denotes total number of dominant terms in the
series expansion, and ξ j (ω) belongs to a Gaussian distribution with mean zero and variance
one. The deterministic quantities λ j and ψ j (x) are the eigenvalues and the corresponding
eigenfunctions of the following equation:∫

�

R(x1, x2)ψi (x2) dx2 = λiψi (x1), i = 1, 2, ...N , (14)

where R(x1, x2) is the covariance function given by:

R(x1, x2) = exp

(
−|x1 − x2|

l

)
. (15)

Here l is the correlation length. The choice of Eq. (15) as a covariance function for the
permeability field is motivated by the form of the covariance of the measured porosity field
(see Sect. 2.2.3). Figure 7 shows how accurately Eq. (15) with l = 0.1 cm fits the covariance
form of the porosity field. As stated earlier, to the best of our knowledge the use of porosity
correlation properties to define the prior for absolute permeability modeling has not appeared
in the literature, and is used here for the first time.

We assume that the permeability field is distributed log-normally with spatial structure
entirely determined by its 2-point statistics. The permeability distribution and the stochastic
process are connected by the relation k(x, ω) = M exp (sY (x, ω)), where s > 0 is the
heterogeneity strength of the permeability field, and M is a reference permeability value that
we take to be themeasured permeability of the core. It can easily bemeasured in laboratory; in
our case it is 612mD (Akbarabadi and Piri 2013). In contrast, the strength of the permeability
field is not known and is taken to be a stochastic parameter to be determined by the available
dynamic data, that is, CO2 saturation values at transverse slices of scan 1. We remark that we
do not make an attempt to recover the value of M in our study. Instead, our focus is in finding
the local permeability field (a function of position) so that our forward-in-time numerical
simulations fit the measured data. We refer to the effective core permeability computed from
the solution of Laplace’s equation as the core average permeability. It will be discussed in
Sect. 5.3.

4.1.4 Other Parametrization Approaches

We remark that it would be of interest, and we intend to pursue this line of work in the
near future, to compare the parametrization just described with, for instance, the gradual
deformation (GD) of Hu et al. (2001) that can reduce the dimensionality of the model
without smoothing the permeability maps (as it can happen with a truncated KLE expansion).
Combining that technique with FFT based methods (Ravalec et al. 2000) yields fast and
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flexible heterogeneous maps generation techniques. This model reduction technique can also
be combined withMCMC techniques (Romary 2009). GD avoids the undesirable smoothing
effect associatedwith theKLE approach. However, onemay experience low acceptance rates,
and recently proposed MCMC acceleration methods (Ginting et al. 2015) may be applicable
here.

4.2 The Prediction Step

We assess the predictive capability of forward models using Monte Carlo simulations, per-
formed with selected permeability fields from the posterior distribution. For each member
of the selected family, we perform a fine-grid simulation for times later than those used in
the characterization step. We compute the weighted ensemble average and compare with
the measured data of future scans, namely, scans 2–7; see Table 1. The weighted ensemble
average is defined as an ensemble average with data for each simulation weighted by the
number of realizations rejected between two successive accepted realizations in the MCMC
chain. The model is validated if the weighted ensemble average matches the measured data
of scans taken after scan 1.

5 Validation Results and Discussion

Numerical simulations presented here are performed with four sets of relative permeability
curves kraq(Saq) and krnaq(Saq). We use the following notation to refer to simulations with
different relative permeability curves:

Study I: Simulations with relative permeability curve pair (Kr-1, krnaq);
Study II: Simulations with relative permeability curve pair (Kr-2, krnaq);
Study III: Simulations with relative permeability curve pair (Kr-3, krnaq);
Study IV: Simulations with relative permeability curve pair (Kr-4, krnaq).

As stated earlier, the numerical simulations are fully consistent with the real experiments.
The data used in simulations are given in Sect. 2. The boundary conditions are as follows:
the inlet of the core is subject to a constant supercritical CO2 injection rate of 0.15 cc/min;
the outlet pressure is constant at 11 MPa, and no-flow boundary conditions apply at all other
boundaries. We consider the first 400 dominant terms in the KLE, i.e., N = 400, as illus-
trated in Fig. 11. In all studies the precision parameter, σ 2, is set to 4 × 10−3. Dimensional
analysis (Hilfer and Øren 1996) shows that the problem considered here is gravity domi-
nated. Thus, for computational efficiency, capillary pressure is not included in the numerical
experiments reported below.

5.1 The Characterization Results

We now present numerical results related to the characterization step of our Bayesian frame-
work. Figure 12 displays the error between measured and simulated data (Eq. 11) for Studies
I, II, III, and IV. Note that the errors decrease until they reach the precision level (deter-
mined by σ 2 in Eq. 10), indicating the convergence of the chains. The numerical mean value
obtained for σ 2 is 3.6× 10−3 which is close to the proposed one (4.0 × 10−3) indicates that
the required accuracy was reached. However, this is not the only factor used to evaluate the
convergence of a study. Typically, every sampled parameter must reach some equilibrium to
call a study convergent. We declare convergence when: (1) the desired precision level has

123



42 M. Akbarabadi et al.

Number of eigenvalues: j
1 200 400 600 800 1000 1200 1400

E
ig

en
va

lu
es

: 
λ

j

0

2

4

6

8

10

12

14

Fig. 11 Eigenvalues of the KLE using exponential covariance function

10

20

30

40

50

60

70

80

90

E
rr

o
r:

‖d
m

−
d
s

‖2

100 200 300 400 500 600 700 800 900 1000

Accepted MCMC realizations

Study I
Study II
Study III
Study IV

Fig. 12 Error between the measured and simulated data vs. accepted MCMC realizations

been achieved (see Fig. 12); and (2) the chain for the heterogeneity strength has stabilized
(discussed later—see Fig. 18). This study is important in determining the burn-in period for
the Markov chains. The burn-in period is defined as an initial period of the selected realiza-
tions for which the error between the measured and simulated data has not yet stabilized.
After the burn-in period the realizations are sampled from the stationary posterior distribu-
tion. On the basis of the errors shown in Fig. 12 and the convergence of the heterogeneity
strength illustrated in Fig. 18, we estimate the burn-in periods to be about 480, 550, 650, and
650 initial realizations for Studies I, II, III, and IV, respectively.

Figure 13 shows the measured data (right column) and the ensemble average simulated
non-aqueous-phase saturation (left column) at the transverse slices 4, 14, and 24, for study II.
Slice 4 is close to the inlet boundary, slice 14 is from the middle, and slice 24 is close to the
outlet boundary of the core. The figure shows that the Bayesian framework is able to capture
dominant features and general trends of the CO2 saturation fields observed in the core.

Figures 14 and 15 show the measured slice-averaged CO2 saturation and the ensemble
average at slices along the length of the core for Studies I and II, respectively. Simulated results
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Average simulated data: Slice 4 Measured data: Slice 4

Average simulated data: Slice 14 Measured data: Slice 14

Average simulated data: Slice 24 Measured data: Slice 24

Fig. 13 (Characterization stage) Comparison between the measured and simulated data at 2D slices for Study
II: (Left) Simulated data. (Right) Measured data. First, second, and third rows correspond to slices 4, 14, and
24, respectively
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Fig. 15 (Characterization stage) Slice-averaged CO2 saturation along the core of themeasured data, the initial
realization, a realization during the burn-in period and the ensemble average for Study II

show excellent agreement with the measured data, within some error. These results, along
with those displayed in Fig. 19, indicate a successful characterization step. The acceptance
rate for permeability proposals is 15–20%.

Figure 16 compares numerical results with the measured data for Study III. Except for a
small discrepancy close to the inlet, the simulated andmeasured curves are in good agreement.
We will investigate the predictive capability of this forward model next. Figure 17 plots the
ensemble average and the measured data at the slices of the core for Study IV. Again, a good
agreement between the simulated and measured data is evident. The error bars represent
standard deviation of the data about the mean.

We now turn to a discussion of the determination of the heterogeneity strength using the
dynamic (time-dependent CO2 saturation) data. Figure 18 illustrates convergence of Markov
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Fig. 16 (Characterization stage) Slice-averaged CO2 saturation along the core of themeasured data, the initial
realization, a realization during the burn-in period and the ensemble average for Study III
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Fig. 17 (Characterization stage) Slice-averaged CO2 saturation along the core of themeasured data, the initial
realization, a realization during the burn-in period and the ensemble average for Study IV

chains for the heterogeneity strength of the permeability field. As discussed earlier, the
strength is given by s = exp(ξn+1), where ξn+1 is N (0, 1)-random variable and generated
using Eq. (12). Figure18 shows that the sampled parameter ξn+1 has reached equilibrium. It
is important to point out that the convergence of Markov chains is independent of the initial
value as shown in our previous work (Akbarabadi et al. 2015). The oscillations in strength
values are very small; they stabilize in a neighborhood of the value 1.3 (on a logarithmic
scale) for all studies. However, they do not converge exactly to the same number. This fact is
related to the distinct average permeability of the realizations from the posterior distribution
that is discussed below. The framework used here can reveal the strength of the permeabil-
ity field. Our synthetic computational experiments (Akbarabadi et al. 2015) show that the
heterogeneity strength converges to the reference strength and is independent of the initial
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Fig. 18 Illustration of the convergence of the Markov chain for the heterogeneity strength of the permeability
field vs. accepted MCMC realizations for Studies I, II, III, and IV. The vertical axis displays the random

number, ξn+1, generated to compute the strength given by s = exp(ξn+1). The convergence is independent
of the initial value as shown in our previous work (Akbarabadi et al. 2015)

Fig. 19 (Left-Right) An illustration of vertical cuts of permeability fields (on a logarithmic scale) of the core
for Studies I, II, III, and IV. These fields belong to the posterior distribution

strength. In Fig. 19, we show some two-dimensional vertical cuts of selected permeability
fields for Studies I, II, III, and IV. Although there is no reason to expect similarities among
these fields (it is an ill-posed problem), some common trends were observed, probably due
to the large CO2 saturation data used in the likelihood function. We have 26 transverse slices
and 216 measured CO2 saturation values per slice, so the total number of measurements used
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in the likelihood is 5616.We close this subsection with the discussion of signal-to-noise ratio
(SNR). The SNR is defined as the ratio of the root mean squared error (RMSE) of the initial
realization to the average posterior RMSE. Mathematically,

SNR = ‖dm − ds‖init√
N

( 〈‖dm − ds‖ipost〉√
N

)−1

= ‖dm − ds‖init
〈‖dm − ds‖ipost〉

(16)

Here N is the total number of measurements employed in the likelihood, the angle brackets
represent the average, the superscript i is from 1 to the size of the posterior sample space,
and the subscripts init and post denote the initial and posterior realizations, respectively. In
our studies, the SNR is approximately 2.0 which indicates extraction of useful information
from the posterior (Mao et al. 2007).

5.2 Prediction Results

The aim of predictive simulations is to validate forward models, which consist of the com-
positional two-phase flow model along with specific relative permeability curves. Figure 20
shows the measured data (right column) and the weighted ensemble average simulated CO2

saturation (left column) at the transverse slices 4, 14, and 24, for study II. Similar to the
characterization results, the simulation results at the prediction stage possess the dominant
features and general trends of the observed CO2 saturation in the core. These results indi-
cate that capturing general trends of the permeability field are enough to produce accurate
predictions.

Figures 21, 22 and 23 show a comparison between the weighted ensemble average and
the measured data of scans 3, 5, and 7, respectively, for Studies I, II, III, and IV. We observe
excellent quantitative agreement of the simulated data with the available experimental data
for Studies I and II. Thus, these forward models can be used for accurate predictions.

Predictive simulations for Study III inherit the discrepancies observed in the characteriza-
tion stage, and as a result validation is not established. It can be seen in Fig. 23 that numerical
results for Study IV do not match the measured data very well. That is, for Study IV the
model is not validated successfully even though we see a good agreement of the simulated
data with the measured data at the characterization step.

Table 4 displays the root mean square differences (RMSD) between the measured and
simulated data corresponding to Figs. 21, 22 and 23. Note that the error is growing with time
in all studies; however, this growth is considerably larger in studies III and IV. This conclusion
is further illustrated in Fig. 24 which depicts the percentage increase in the RMSD in the
prediction stage. This is the increase with respect to the RMSD of the ensemble average in
the characterization stage. Finally, we plot the RMSD of scan 7 in Fig. 25 that also shows
larger differences for studies III and IV.

As alluded to earlier, the mapping between the measured relative permeability data (dis-
crete points) and relative permeability functions (differentiable curves) is not unique. This
fact brings additional uncertainty to mathematical models of multiphase flow. Our study
above indicates that adequate forward models can be determined within a Bayesian frame-
work. However, it would be desirable to use the available time-dependent saturation data
to determine the relative permeability functions, which can be written in terms of a small
number of additional stochastic parameters. A synthetic study to quantifying uncertainty in
flow functions is reported in Subbey et al. (2006). The extension of the Bayesian framework
of Akbarabadi et al. (2015) to select acceptable permeability samples as well as relative
permeability curves is a promising avenue for further research.
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Average simulated data: Slice 4 Measured data: Slice 4

Average simulated data: Slice 14 Measured data: Slice 14

Average simulated data: Slice 24 Measured data: Slice 24

Fig. 20 (Prediction stage scan 7) Comparison between the measured and simulated data at 2D slices for Study
II: (Left) Simulated data. (Right) Measured data. First, second, and third rows correspond to slices 4, 14, and
24, respectively
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Fig. 21 (Prediction stage: scan 3) Comparison between the slice-averaged CO2 saturation along the core of
the measured data and the ensemble average of simulated data for all studies

5.3 Discussion of Average Permeability

We now investigate the effect of using different relative permeability curves on the predicted
average permeability of the core. For each selected permeability field, the average permeabil-
ity of the core is computed by solving the pressure equation for single-phase flow. Figure 26
illustrates the average permeability of the accepted MCMC realizations for Studies I, II, III,
and IV. The arithmetic average of the average permeability fields for the selected families is
about 55, 65, 180, and 250 mD for Studies I , II, III, and IV, respectively. Both the inferred
heterogeneity strength and the fixed relative permeability curve affect the inferred average
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Fig. 22 (Prediction stage: scan 5) Comparison between the slice-averaged CO2 saturation along the core of
the measured data and the ensemble average of simulated data for all studies

permeability. In line with the Bayesian framework of Akbarabadi et al. (2015) the reference
permeability M has been fixed. However, it may be of interest to infer this value from the
data and we intend to investigate this possibility. We remark that “a pressure” is also mea-
sured in two positions of the core (see the pressure ports in Fig. 1). However, this pressure
is not a phase pressure (they cannot be directly measured with existing experimental tools)
and we also intend to investigate how to take advantage of these measurements to reduce
uncertainty.
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Fig. 23 (Prediction stage: scan 7) Comparison between the slice-averaged CO2 saturation along the core of
the measured data and the ensemble average of simulated data for all studies

5.4 Additional Remarks

When the validation is established, simulated data have the same general trends as that of
the experimental data, even though we see slightly more CO2 from simulations toward the
bottom of the core. Uncertainty in the measured data (experimental measurement errors)
might be a possible reason for a slight discrepancy close to the outlet.

To construct relative permeability curves, we use best curve fits to the experimentally
measured relative permeability data. Our initial numerical studies (not reported here) were
based on a best curve fit that gives minimum error with the experimental relative perme-
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Table 4 (Prediction stage)
RMSD between the measured
and simulated data

Study Scan 3 Scan 5 Scan 7

I 0.0075 0.0089 0.0112

II 0.0070 0.0091 0.0098

III 0.0122 0.0136 0.0197

IV 0.0109 0.0132 0.025

Fig. 24 (Prediction stage) An illustration of the percentage increase in the root mean square difference of the
measured and simulated data in reference to the ensemble average at the characterization stage

Fig. 25 (Prediction stage : scan 7) The root mean square error difference of the measured and simulated data

ability data and the remaining brine saturation was 0.47. This curve was used in the study
reported in Rahunanthan et al. (2014). However, we could not validate models for such rela-
tive permeability curves because the prediction step failed. Upon further discussion with the
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Fig. 26 Shown is the average permeability of the selected realizations for Studies I, II, III, and IV

experimental scientists in our group, it was indicated that there is uncertainty in the deter-
mination of the remaining brine saturation, and a higher value for this parameter should be
tested. Thus, in the studies reported here we have considered a remaining brine saturation
of 0.6 along with distinct tolerances for the fitting procedure. We believe it would be of
interest to perform a sensitivity study on the remaining brine saturation to better understand
the influence of this parameter. This study is, however, outside the scope of this work. Due
to the slow convergence of the MCMC scheme we also intend to apply adaptive algorithms
that automatically tuning the proposed distribution aiming at significantly improving the effi-
ciency of the MCMC method (Haario et al. 1999, 2001, 2006; Vrugt et al. 2009; Vrugt and
Braak 2011). Note that such algorithms can be associated with other techniques of dimen-
sionality reduction (such as using the interpolated Gaussian process generation via circulant
embedding (Dietrich and Newsam 1997; Laloy et al. 2015)).

6 Conclusions

We assessed the validity of a compositional two-phase flow model for CO2-brine flow at
the laboratory scale. The primary source of uncertainty one has to overcome to be able to
perform predictive numerical simulations is in the determination of the 3D permeability field
of the core.

In this study, we employed a Bayesian Markov chain Monte Carlo framework
of Akbarabadi et al. (2015) to validate a compositional model describing an unsteady-state
CO2-brine drainage experiment, at the laboratory scale, performed at aquifer conditions. We
claimed model validation when: (1) numerical results showed that the Bayesian framework
has accurately characterized the core, and (2) CO2 saturations in Monte Carlo predictive
simulations were in good agreement with measured data. Characterization refers to selecting
a family of permeability fields such that solutions of the forward model (consisting of a
discretized system of partial differential equations along with relative permeability curves)
match the measured dynamic data (CO2 saturation at slices).
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Large-scale numerical simulation studies show that forward models can be validated by
this Bayesian framework. Moreover, the heterogeneity strength of the permeability field is
considered as a stochastic parameter to be determined by the dynamic data, and our results
reveal the convergence of this parameter. Also, to assess the effects of nonuniqueness in the
mapping between relative permeability data (discrete data points) to relative permeability
curves, we examined the results generated using different relative permeability curves. Our
numerical results show that model validation is subject to the choice of relative permeability
curves. Moreover, we found that this choice may affect the average permeability of the
selected samples of the permeability field of the core.

Thework presented here has identified some open problems that we intend to address. One
important development would be the extension of the Bayesian framework of Akbarabadi
et al. (2015) to identify appropriate relative permeability curves; see Subbey et al. (2006).
In another direction, one could also consider the generation of permeability samples with
average permeability close to the experimental value.
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7 Appendix A: Relative Permeability Analytic Parameterization

The analytical parameterizations of the relative permeability curves presented in Fig. 9 are
listed below:

Kr-1(Saq) = exp(−36.1760530 + 35.906092
√
Saq) (17)

Kr-2(Saq) = exp(−38.46 + 36.0
√
Saq + 1.6S2aq + 0.2Saq) (18)

Kr-3(Saq) = exp(−37.1760530 + 36.3106092
√
Saq) (19)

Kr-4(Saq) = −0.0108 + 0.0198Saq
1.0 − 0.9832Saq

(20)

For reference, these aqueous phase relative permeability functions correspond to the relative
permeability curves used in Study I, Study II, Study III, and Study IV, respectively, and the
non-aqueous relative permeability function is given below:

krnaq(Saq) = −1.7212298S10aq + 3.9501271S8aq − 3.5647535S6aq + 2.2058758S4aq

− 1.3020969S2aq + 0.4320773
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