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Abstract The verified Darcy–Brinkman model and boundary perturbation method are used
to study the Brinkman flow in a tube with a bumpy surface, assuming the amplitude of the
bumps is small compared to the mean tube radius. This study is important to understand
the abnormal flow conditions caused by the boundary irregularities in diseased vessels. The
mean rate flow is found, up to second-order correction, as a function of circumferential and
longitudinal wave numbers and the permeability parameter of the porousmedium. Numerical
results displaying the velocity components and bumpiness functions are obtained for various
values of the physical parameters of the problem. The results are tabulated and represented
graphically for various physical parameters. It is found that, for every permeability parameter
and for given bump area, there exists a circumferential wave number, for which the flow
resistance is minimized. The limiting cases of Stokes and Darcy’s flows of the bumpiness
function are discussed and compared with the available results in the literature.

Keywords Brinkman and Stokes equations · Bumpy tube · Flow rate

1 Introduction

The effect of irregularities on heat and flow characteristics in channels and tubes has been
extensively studied in the literature. One of such studies is the pioneering work of Chow and
Soda (1973), in which they investigate the abnormal flow conditions caused by the boundary
irregularities in diseased blood vessels. In early studies by Wang (1976, 1979), Stokes’ flow
between two corrugated plates was considered. It was found that the flow rate enhancement is
a function of the frequency and the relative phase shift of the corrugations. Thus, by varying
the relative phase shift, one can, to a limited extent, control the flow through corrugated
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plates. However, corrugated channels and tubes have long been used in augmentation of heat
and mass transfer; see for example Bergles (1988). Wang’s (1976, 1979) results for the flows
transverse and parallel to the corrugations have since been extended by Phan-Thien (1980,
1981a, b) to channels and tubes with stationary random surface roughness. Wang’s previous
work on corrugated walls has been also extended to three-dimensional bumpy channel (Wang
2006) and bumpy tubes (Wang 2004). Recently, much interest has been found in microflows
(Kariandakis and Beskok 2002), basically due to the tiny sizes of flow devices used for
manipulating fluids inmicromachines.Microchannels exist in themost important part of such
systems. The wall irregularities can play a basic role in microchannels (Shen et al. 2006).
More recently, Faltas et al. (2017) extend the work of Phan–Thien’s (1981b) to microannuli
cylindrical tubes filled with porous medium, allowing for a partial slip at solid boundaries of
the annuli.

Another interesting context involving similar problems is the viscous flow through sinu-
soidal corrugated channels and tubes filled with a porous medium, e.g., Wang (2010), Ng
and Wang (2010) and Wang and Yu (2015). Examples of tubes filled with porous medium
are many, such as those in filters, catalytic reactors or matrix-filled biological pores. The
study of the flow in a channel filled with a porous medium is necessary in the prediction of
the various transport properties of porous media. The Brinkman equation (Brinkman 1947)
has usually been used as a model for a porous medium. Brinkman equation can be estab-
lished theoretically by averaging the Stokes flow past a suspension of spherical particles
(Tam 1969; Lundgren 1972) or by using renormalization techniques of the Stokes equation
for fluid motion past a random assemblage of particles or cylindrical fibers (Howells 1974,
1998). The Brinkman equation is relevant in the low solid fraction limit (Durlofsky and Brady
1987; Phillips et al. 1990). However, in the case of low solid fraction, Allaire (1990) used
the method of periodic homogenization to derive Brinkman equations from Stokes equation.
In his analysis, the value of the permeability parameter k is determined as the product of
the fluid viscosity and a matrix M which is determined by means of the solutions of Stokes
problems on the standard periodicity cell. Thus, M takes into account the geometry of the
porous medium.

The Brinkman equation has a Newtonian viscous drag term and a Darcy drag term which
together balance the pressure gradient. Brinkman equation includes only one parameter
characterizing the permeability of the porous medium. Once the permeability has been deter-
mined, no need to know knowledge about the detailed structure of the porous media. The
dynamic viscosity, μ̃, of the fluid constituent in the porous medium which is associated with
the viscous drag term in the Brinkman equation is called the effective viscosity. The effec-
tive viscosity μ̃ is a complicated function of local pore characteristics and fluid viscosity μ.

Brinkman (1947) proposed that for a high-porosity medium composed of spheres, the effec-
tive viscosity can be approximated by Einstein’s formula (Einstein 1956), μ̃/μ = 1+ 5φ/2,
where φ is the solid fraction. For low solid fraction, μ̃ ∼= μ (Wang and Yu 2015; Lundgren
1972). Later studies indicated that μ̃ may be smaller or larger than μ, depending on the
porosity and the type of porous medium (Brinkman 1947; Neale and Nader 1974; Koplik
et al. 1983; Kim and Russel 1985; Larson and Higdon 1987; Martys et al. 1994). King (2007)
has compared the predictions of the Stokes flow theory for three-dimensional bumpy tubes
developed by Wang (2006) to histological measurements of human capillaries and arteri-
oles. It is found that these microvessels exhibit nearly optimal geometry for minimizing the
overall flow resistance. The theoretical result that there exists an optimal circumferential
wave number which minimizes the flow resistance in capillaries and arterioles with bumpy
walls has important implications in the field of tissue engineering. The conclusions of King
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(2007) motivated us to extend Wang’s (2006) results to Darcy–Brinkman flow through a
three-dimensional bumpy tube.

In this paper, the problem of flow through a sinusoidal bumpy tube filled with a porous
medium is considered. The porous medium is modeled by Brinkman equation with no-slip
boundary condition on the lateral surface of the tube. Using a perturbation method with
respect to the normalized amplitude of corrugations (ε � 1), a closed form of the mean flow
rate is obtained in terms of the modified Bessel functions, up to second order in ε. The mean
flow rate approximation depends on the permeability of the medium, the area of a bump and
thewave number parameters. In the last part of this paper, the derived approximations are used
to study the dependence of the solution on the permeability parameter and the dependence
of the mean flow rate on the parameters of the problem. A comparison is made between the
results of the present study for clear fluid and the results of Wang (2006) and also between
our results and the results of Darcy’s model obtained by Wang and Yu (2015).

2 Mathematical Formulation

In the present mathematical model, we consider the steady flow through a porous structure
that is governed by Brinkman equation (Brinkman 1947). The flow is within an infinitely
long cylindrical wall with periodic bumps described by

r ′ = a + b sin(α θ) sin(2π z′/�), (2.1)

where (r ′, θ, z′) are cylindrical coordinates in R
3, a is the mean radius of the tube, b is

the amplitude of the pumps, α is circumferential wave number and has to be an integer to
satisfy the 2π periodicity of the annular walls, and � is the longitudinal wavelength (Fig. 1).
The tube is filled with a sparse porous material so that the flow can be described by the
Darcy–Brinkman model, which tends to the Darcian or Stokes flow limits for small or large
permeability of the medium. The Reynolds number is also assumed to be so low that the
inertia term can be ignored. Before presenting the equations of motion, it is convenient
to non-dimensionalize the coordinates (unprimed) in terms of the dimensional (primed)
coordinates as r = r ′/a, z′ = z/a, such that the dimensionless amplitude of the bumps
becomes ε = b/a, where ε is a small parameter describing the fact that the amplitude of the
oscillations is much smaller than the mean radius of the tube, so that only slight bumps are
considered. This small amplitude will be used as a perturbation parameter for the considered
problem. The velocity components are expressed in dimensionless form using the mean axial
pressure gradient G and the effective viscosity μ̃ as

Fig. 1 The schematic diagrams
of a bumpy tube
(ε = 0.1, α = 5, β = 3)
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�u = μ̃ �u′
G a2

. (2.2)

The field equations governing an incompressible steady viscous fluid flow through a bumpy
tube filled with porous medium according to Darcy–Brinkman model in the absence of body
forces under the Stokesian assumption are given in vector forms as

∇ · �q = 0, ∇ p + μ

K
�q − μ̃ ∇2 �q = 0, (2.3)

where ∇ is the gradient operator, �q is the volume averaged velocity, p is the pore aver-
age pressure, μ̃ represents the effective viscosity, and K is the permeability of the porous
medium. The permeability K is a scalar for isotropic porous medium; otherwise, K is a
second-order tensor (Kaviany 2012). This model has two viscous terms; the first is the usual
Darcy term, and the second is analogous to the Laplacian term that appears in the Navier–
Stokes equation. This equation is well accepted for porous media of high porosity. When
the permeability of the medium is small, K � 1, the viscous term can be neglected and the
Darcy–Brinkman equation reduces to Darcy’s law. On the other hand, in the limit of large
permeability, K → ∞, the Brinkman equation reduces to the Stokes equation. Both the
continuity and Brinkman equations are actually volume averaged formulations. Let (u, v, w)

be velocity components in the dimensionless cylindrical directions (r, θ, z), respectively. In
terms of velocity components, equations (2.3) become

1

r

∂ru

∂r
+ 1

r

∂v

∂θ
+ ∂w

∂z
= 0, (2.4)

∇2u − u

r2
− 2

r2
∂v

∂θ
− k2u = ∂p

∂r
, (2.5)

∇2v − v

r2
+ 2

r2
∂u

∂θ
− k2v = 1

r

∂p

∂θ
, (2.6)

∇2w − k2w = ∂p

∂z
, (2.7)

where k = √
μa2/(K μ̃) is a parameter characterizing the porous medium. The parameter

k can be defined in terms of Darcy number as k = Da−1/2. As k → 0, the flow reduces to
Stokes limit, while for k 	 1 the flow reduces to Darcian limit.

The no-slip boundary conditions on the lateral surface are

u = v = w = 0, at r = 1 + ε sin(α θ) sin(β z), (2.8)

where β = 2π/(�a) 
= 0. Also the velocity components must be finite at the axis of the tube.

2.1 Method of Solution

Using a perturbation argument with respect to the small parameter ε, the components of
velocity and the pressure can be expanded for small ε as:

(u v w p) = (u0 v0 w0 p0) + (u1 v1 w1 p1) ε + (u2 v2 w2 p2) ε2 + · · · . (2.9)

On the boundary of the tube, any function f (r, θ z) can be expanded about r = 1 as

f |r=1+ε g = f0|1 + ε ( f1|1 + g f0r |1) + ε2
(
f2|1 + g f1r |1 + g2 f0rr |1/2

) + · · · , (2.10)

where g = sin(α θ) sin(β z).

(i) ε0–solution
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The zero solution is the usual Poiseuille flow in a smooth tube:

w0(r) = 1

k2

(
1 − I0(k r)

I0(k)

)
, u0, v0 = 0, p0 = −z, (2.11)

where In is the modified Bessel function of the first kind of order n.

(ii) ε1–solution

The differential equations satisfied by the first-order solution are the same as (2.4)–(2.7)
with (u v w p) replaced by (u1 v1 w1 p1) subject to the boundary condition:

u1|1 = 0, v1|1 = 0, w1|1 = I1(k)

k I0(k)
sin(α θ) sin(β z) (2.12)

In view of boundary conditions and the continuity equation, for the first-order solution let

u1 = U sin(α θ) cos(β z), v1 = V cos(α θ) cos(β z),
w1 = W sin(α θ) sin(β z), p1 = P sin(α θ) cos(β z).

(2.13)

where U, V, W, P are functions of r to be determined. Substituting from (2.13) into
(2.4)–(2.7), we get the following set of differential equation for determining the amplitude
functions:

dU

dr
+ U

r
− α V

r
+ β W = 0, (2.14)

d2U

dr2
+ 1

r

dU

dr
−

(
1 + α2

r2
+ λ2

)
U + 2α V

r2
= dP

dr
, (2.15)

d2V

dr2
+ 1

r

dV

dr
−

(
1 + α2

r2
+ λ2

)
V + 2αU

r2
= α

r
P, (2.16)

d2W

dr2
+ 1

r

dW

dr
−

(
α2

r2
+ λ2

)
W = −β P, (2.17)

where λ2 = β2 + k2, and with the boundary conditions

U |1 = 0, V |1 = 0, W |1 = I1(k)

k I0(k)
. (2.18)

Eliminating U, V, W from the set of differential equations (2.14)–(2.17), we find that after
much algebraic manipulation, the differential equation satisfied by the amplitude pressure
function is

r2
d2P

dr2
+ r

dP

dr
− (α2 + β2r2)P = 0. (2.19)

The bounded solution of equation (2.19) is

P(r) = A Iα(β r), (2.20)

where A is a constant. If we define the Bessel operator as

Bα = r2
d2

dr2
+ r

d

dr
− (α2 + λ2r2),

then the set of differential equations (2.14)–(2.17) has the simplest form

Bα U − (U − 2α V ) = r2
d2P

dr2
, (2.21)

Bα V − (V − 2αU ) = α r P, (2.22)

Bα W = −β r2P. (2.23)
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Let F = U − V and G = U + V, therefore coupled differential equations (2.21) and (2.22)
become

Bα+1 F = A β r2 Iα−1(β r), (2.24)

Bα−1 G = A β r2 Iα+1(β r). (2.25)

The bounded general solutions of (2.23), (2.24) and (2.25) are, respectively, as

W = B Iα(λ r) + A β k−2 Iα(β r), (2.26)

G = C Iα+1(λ r) − A β k−2 Iα+1(β r), (2.27)

F = D Iα−1(λ r) − A β k−2 Iα−1(β r). (2.28)

Thus

2U (r) = D Iα−1(λ r) − A β k−2(Iα−1(β r) + Iα+1(β r)
) + C Iα+1(λ r), (2.29)

2V (r) = D Iα−1(λ r) − A β k−2(Iα−1(β r) − Iα+1(β r)
) − C Iα+1(λ r). (2.30)

Using boundary conditions (2.18) and with the aid of the continuity equation, the unknown
coefficients are determined as:

A = −2k

�
Iα+1(λ) Iα−1(λ) I1(k), (2.31)

B = λ I1(k)

k �
(Iα−1(λ) Iα+1(β) + Iα−1(β) Iα+1(λ)) , (2.32)

C = −2β

k �
Iα−1(λ) I1(k) Iα+1(β), (2.33)

D = −2β

k �
Iα+1(λ) I1(k) Iα−1(β), (2.34)

where

� = I0(k)
(
λ Iα(λ)

(
Iα−1(λ) Iα+1(β) + Iα−1(β) Iα+1(λ)

) − 2β Iα(β) Iα−1(λ) Iα+1(λ)
)
.

(iii) ε2–solution

Again the differential equations satisfied by the second-order solution are the same as
(2.4)–(2.7) with (u v w p) replaced by (u2 v2 w2 p2) subject to the boundary conditions:

u2|1 = −1

4
[1 − cos(2αθ)] sin(2βz)Ur |1, (2.35)

v2|1 = −1

4
sin(2αθ) sin(2βz) Vr |1, (2.36)

w2|1 = −1

2
[1 − cos(2αθ)] sin2(βz)

(
Wr |1 + w0rr |1

2

)
. (2.37)

Here, we limit our attention to the mean second-order solution. Let the over bar denote the
mean with respect to θ . Therefore, the differential equations satisfied by the mean second
order with respect to θ are as follows
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1

r

∂r ū2
∂r

+ ∂w̄2

∂z
= 0, (2.38)

∂2ū2
∂r2

+ 1

r

∂ ū2
∂r

+ ∂2ū2
∂z2

−
(

1

r2
+ k2

)
ū2 = ∂ p̄2

∂r
, (2.39)

∂2v̄2

∂r2
+ 1

r

∂v̄2

∂r
+ ∂2v̄2

∂z2
−

( 1

r2
+ k2

)
v̄2 = 0, (2.40)

∂2w̄2

∂r2
+ 1

r

∂w̄2

∂r
+ ∂2w̄2

∂z2
− k2w̄2 = ∂ p̄2

∂z
, (2.41)

with boundary conditions

ū2|1 = −1

4
sin(2βz)Ur |1, (2.42)

v̄2|1 = 0, (2.43)

w̄2|1 = −1

4
[1 − cos(2βz)]

(
Wr |1 + w0rr |1

2

)
. (2.44)

We suggest solutions of the above system of equations as follows:

ū2 = X (r) sin(2βz), (2.45)

v̄2 = 0, (2.46)

w̄2 = Y (r) + Z(r) cos(2βz), (2.47)

p̄2 = �(r) sin(2βz). (2.48)

Thus the problem reduces to the solution of the following differential equation:

dX

dr
+ X

r
− 2β Z = 0, (2.49)

d2X

dr2
+ 1

r

dX

dr
−

(
1

r2
+ δ2

)
X = d�

dr
, (2.50)

d2Y

dr2
+ 1

r

dY

dr
− k2Y = 0, (2.51)

d2Z

dr2
+ 1

r

dZ

dr
− δ2Z = 2β �, (2.52)

where δ2 = 4β2 + k2, with the following boundary conditions

X |1 = −1

4
Ur |1, Y |1 = −1

4

(
Wr |1 + w0rr |1

2

)
, Z |1 = 1

4

(
Wr |1 + w0rr |1

2

)
. (2.53)

It can be shown that the amplitude pressure � satisfies the differential equation

d2�

dr2
+ 1

r

d�

dr
− 4β2� = 0. (2.54)

The regular solution of equation (2.54) is

�(r) = A′ I0(2β r). (2.55)
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After some work, the solutions for the functions X (r), Y (r) and Z(r) are

X (r) = B ′ I1(δ r) − 2β A′

k2
I1(2β r), (2.56)

Y (r) = C ′ I0(k r), (2.57)

Z(r) = D′ I0(δ r) − 2β A′

k2
I0(2β r). (2.58)

The unknown constants A′, B ′, C ′ and D′ can be determined using the boundary conditions
and with the aid of the continuity equation. In the subsequent work, we need only the value
of the constant C ′,

C ′ = 1

8I0(k)

(
1 − I1(k)

�2k I0(k)

(
λ (2α k2 − β2) Iα(β) + 2β λ k2 Iα+1(β)

)
I 2α+1(λ)

+ (
α (k2 − β2) (1 + 2α) Iα(β) + β (4α k2 + λ2) Iα+1(β)

)
Iα(λ) Iα+1(λ)

+α β λ (1 + 2α) I 2α (λ) Iα+1(β)
)
, (2.59)

with

�2 = (
α (k2 − β2) Iα(β) + β λ2 Iα+1(β)

)
Iα(λ) Iα+1(λ) − β λ

(
β I 2α+1(λ) Iα(β)

−α I 2α (λ) Iα+1(β)
)
.

3 The Flow Rate

The change in flow rate due to the unevenness is of second order, i.e.,

Q = 2π
∫ 1+ε g(θ,z)

0
w(r, θ, z) r dr, (3.1)

Q = 2π
∫ 1

0

(
w0 + w1 ε + w2 ε2

)
r dr + π I1(k)

k I0(k)
sin2(αθ) sin2(βz) ε2. (3.2)

The mean rate of flow with respect to θ is

Q̄ = 2π
∫ 1

0

(
w0 + w̄2 ε2

)
r dr + π I1(k)

2k I0(k)
sin2(βz) ε2. (3.3)

Let the over double bar denote themeanwith respect to θ and thenwith respect to z.Averaging
equation (3.3) with respect to z, we get

¯̄Q = π

k3 I0(k)

(
k I0(k) − 2I1(k)

)
(1 + ε2χ), (3.4)

where

χ = k2 I1(k)

4

1 + 8C ′ I0(k)
k I0(k) − 2I1(k)

, (3.5)

which represents the second-order correction of the mean velocity due to the corrugations.
The constant C ′ is given by equation (2.59).
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3.1 Limiting and Asymptotic Results of the Bumpiness Function χ

(i) For clear fluid k → 0, the bumpiness function χc (given by equation (3.5)) reduces to
the following expression

χc = 1

2�3

(
α β (2α − 3) I 3α(β) + (12α − 4α3 − 2α2 − 3β2) Iα+1(β) I 2α (β)

−β (2α2 + 3α − 6) I 2α+1(β) Iα(β) − β2 I 3α+1(β)
) + O(k2), (3.6)

where

�3 = α β I 3α(β) + (β2 − 2α2 − 4α) Iα+1(β) I 2α (β) − β (3α + 2) I 2α+1(β) Iα(β)

−β2 I 3α+1(β).

For long and short wavelengths we have, respectively

lim
k→0, β�1

χc ∼ α − 3

2
+ 3β2

2(α + 1)
+ O(β3), lim

k→0, β	1
χc ∼ 2β − 3

2
+ O(β−1). (3.7)

These expressions agree with the clear fluid problem that deduced previously by Wang
(2006).

(ii) On the other hand, for the Darcy limit k 	 1, the asymptotic form is

χD ≈ β Iα(β)

�4
− 1

4
+

(
2

(
β2 + α2

)
I 2α (β)

�2
4

+ α2 − β2 − 2

4

)
1

k
+ O(k−2), (3.8)

where
�4 = Iα−1(β) + Iα+1(β).

The O(k0) agrees with that previous result obtained by Wang and Yu (2015) for the Darcy
flow in a bumpy tube. Further, if very long and short wavelengths of bumpiness are considered

lim
k	1, β�1

χD ∼ α2 − k − 2

4k
+ (α + 2k) β2

4α k
+ O(β3), lim

k	1, β	1
χD ∼ β2 + α2

4k
+ (k + 1) β

2k
+ O(β−1).

(3.9)

4 Results and Discussion

The effects of the porous medium parameter k on the typical velocity correctionsU (r), V (r)
and W (r) are shown in Fig. 2. As the porous media parameter k is increased, the radial and
tangential velocitiesU (r) and V (r) become smaller and more dampen, and the axial velocity
correction becomes more dominant. That is, for large k (low permeability) the amplitude of
the velocity becomes dampen, and the effect of the wall only extends in a thin layer near the
wall. Therefore, the wall resistance has a small effect to the total resistance, which is mostly
due to the porosity of the medium. In such cases, the Darcy model is more appropriate. We
note also that for all values of k, the axial velocity W (r) correction may become slightly
negative. For clear fluid (k → 0), the velocity profiles coincide with those of Wang (2006).
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Fig. 2 Variation of the first-order radial, tangential and axial velocities at α = 3 and β = 6.
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Fig. 3 Variation of the bumpiness function χ versus the permeability parameter k for different values of the
wave number α and the bump area A.

In order to find the values of circumferential wave numbers, for which the flow resistance is
minimum, we have to evaluate the volume of a sticking out bump

V =
∫ π/β

0

∫ π/α

0

∫ 1+ε g

1
r dr dθ dz = 4

α β
ε + O(ε2), (4.1)

and its area is A = π2/(αβ).The volume of each sticking out bump is proportional to its area.
Therefore, in our numerical investigation, we replace the two independent parameters (α, β)
by the new independent parameters (α, A). Figure 3 exhibits the variation of bumpiness
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Fig. 4 Variation of the bumpiness function χ versus the wave number α for different values of the bump area
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Fig. 5 Variation of the minimum bumpiness function χ versus the bump area A for different values of the
wave number α and permeability parameter k.

function χ against the permeability parameter for different values of A and α. The function
χ is monotonically decreasing for the entire range of values of A and α, and its relative
maximum values occur in the limit of Stokes’ flow (k = 0). This means χ tends to zero as k
increases to the Darcian limit. The bumpiness will continuously lose their influence on the
flow as the permeability decreases. For a specified value of k and for the entire range of A, χ

decreases as α increases. Figure 4 exhibits the variation of the bumpiness function χ against
the wave number α for given values of A and k. It indicates that for the entire range of A and
k, the bumpiness function χ decreases as α increases till it reaches a minimal value at some
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Table 1 Values of the area of a
bumpy for various k and α.

α A

k = 0 k = 2 k = 4

3 2.7199 2.9213 3.4604

5 1.1501 1.1893 1.2971

7 0.5024 0.5116 0.5343

10 0.2616 0.2577 0.2642

Table 2 A comparison of the bumpiness function for the clear fluid, Brinkman’s and Darcy’s limit versus the
wave number α for different values of the bump area A and permeability parameter k.

α A Results of Wang
(2006) (χc)

χ χD Results of
Wang and Yu
(2015)k = 10 k = 102 k = 10 k = 102 k = 104

1 0.5 38.0160 17.6894 10.9421 20.6171 10.9407 9.8763 9.8656

1 18.3106 7.7296 5.2221 7.8749 5.2197 4.9276 4.9247

2 8.4502 3.3576 2.5236 3.3043 2.5228 2.4368 2.4360

5 2.0736 0.9731 0.8209 0.9624 0.8208 0.8052 0.8050

5 0.5 6.9574 2.0976 1.1104 2.0174 1.1089 1.0090 1.0079

1 4.4436 0.8799 0.1853 0.7931 0.1840 0.1171 0.1164

2 3.7416 0.5316 −0.0930 0.4455 −0.0942 −0.1535 −0.1541

5 3.5389 0.4300 −0.1754 0.3444 −0.1766 −0.2339 −0.2345

10 0.5 9.0254 2.4139 0.2007 2.4895 0.1963 −0.0560 −0.0585

1 8.6325 2.2104 0.0503 2.2729 0.0459 −0.1990 −0.2015

2 8.5332 2.1590 0.0121 2.2183 0.0078 −0.2354 −0.2378

5 8.5053 2.1446 0.0014 2.2029 −0.0030 −0.2456 −0.2481

15 0.5 13.6619 4.4379 0.3774 5.4259 0.3694 −0.1869 −0.1925

1 13.5406 4.3734 0.3311 5.3502 0.3230 −0.2300 −0.2356

2 13.5101 4.3572 0.3195 5.3313 0.3114 −0.2408 −0.2464

5 13.5016 4.3527 0.3162 5.3260 0.3081 −0.2438 −0.2494

α and then it increases for large values of α. Again, as expected, for any specified α and A,

the function χ decreases as the permeability decreases. Also, for any specified α and k, the
function χ decreases as the surface area of a bump increases. Figure 5 indicates, for some
values of k, the optimum α (for maximal flow) increases as A is decreased. Note that, the

mean flow rate ¯̄Q is directly proportional to the term (1+ε2χ). In Fig. 4 a minimal value of χ
is found when α varies from 0 to 30 (and for fixed values of k and A). This χmin corresponds

to a different minimum value of ¯̄Q. Table 1 gives the end points of A as α increases for
the values of k. It shows, for fixed α, the values of end points decrease as the permeability
parameter increases. In Table 2, a comparison is made between our results for bumpiness
function of the clear fluid (k → 0) and the results of Wang (2006). It is found that both
results are in perfect agreement. Also, this table shows the results of Darcy model obtained
by Wang and Yu (2015). It is found that the results almost agree only for large values of the
permeability parameter, as expected. Table 2 indicates also the variation of the asymptotic
bumpiness function, expression (3.8), compared with exact expression (3.5).
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5 Conclusion

The present article extends the work (Wang 2006) to the flow through bumpy tubes filled with
a porous medium using Darcy–Brinkman model. The model equation is adequate for high-
permeability porousmedium and suitable for low velocity applications such as filters and heat
exchangers. Moreover, this model is well accepted for microfluidics because the Reynolds
number is so small that inertial effects are basically absent. Capillaries can be precisely
modeled as a quasi-periodic bumpy tube with a circumferential wave number of α = 1, since
in these smallest vessels, a single endothelial cell wraps around the entire tube circumference
and the endothelial cell nucleus sticks out into the vessel lumen to provide the occasional
large bump. For capillaries of inner diameter 2a ranging from 5.86 to 11.6µm, average
longitudinal wavelengths � of 38.5–48.4µm were measured (King 2007). In this study, we
obtained perturbation solutions up to second order of the normalized bumpy amplitude,
including the following parameter: the amplitude of the bumpiness, circumferential wave
number, the area of a bump and the important porousmedia parameter k.First-order analytical
solutions (2.26)–(2.30) give the complicated part of this study. Our work declares, for every
permeability parameter and for given bump area, there exists a circumferential wave number,
for which the flow resistance is minimized or the flow rate can be maximized. Numerical
investigations are available to extend our study to bumps with large amplitude. Comparisons
with the limiting cases available in the literature show excellent agreement, indicating the
accuracy and reliability of the results presented in this study.
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