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Abstract We present an extension of the Stefan-type solution method applicable to multi-
component, multi-phase 1D porous flows, and illustrate the method by applying it to phase
separation dynamics in an NaCl–H2O-saturated hydrothermal heat pipe. For this example,
three mathematical models are constructed. The first two models concern the rate of pro-
gression of two interfaces, one separating brine from two-phase fluid and another separating
two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows
that the layer may reach quasi-steady-state thickness even while the salt content of the layer
continues to increase; the two-phase layer model shows how variable heat flux at the top of
the layer leads to departure from the linear growth rate predicted by a simpler model. The
third model concerns the temperature profile in the entire column. The governing advection–
diffusion equation has highly variable coefficients, with no negligible terms in it in the region
of parameter space considered. We present a method to solve this type of equation by con-
structing a propagator and a corresponding Green’s function. Finally, we show how to use the
developed framework to test the internal consistency of numerical simulations, again using
the 1D heat pipe as an example.
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F Mass or heat flux [(kg or J)/m2 s]
F −F0/λ̃ (◦C/m)
h Enthalpy (J/kg)
I Layer energy or solute content (J or kg)
N {0, 1, 2, ...} (dimensionless)
Q Lateral salt loss (kg)
q Proportionality constant [kg/(m3 s)]
T Temperature (◦C)
Ti j Temperature of interface between zones i and j (◦C)
TH Top boundary temperature (◦C)
t Time (s)
v Darcy volumetric flux (m/s)
X Bulk salinity (mass fraction)
y Height (m)
yi j Position of interface between zones i and j (m)
y12,∞ Quasi-steady brine layer thickness (m)
yH Height of the system (m)
Y y − y23 (m)

α
d
dt 〈C〉

(〈C〉−C23) (s
−1)

β F
(〈C〉−C23) (m/s)

γ vl/φ (m/s)
	x Width of pipe front (m)
	z Width of pipe side (m)
	σ Exposed surface area (m2)
ε Cγ /η2 (dimensionless)
ζ y/y23 (dimensionless)

η 1
ξ
〈 ∂ξ

∂t 〉 (s−1)

θ θI + θH = [T − T23 − F(y23 − y)]/Fy23 (dimensionless)
θH Solution to homogeneous problem (dimensionless)
θI Solution to inhomogeneous problem (dimensionless)
κ Thermal diffusivity (m2/s)
λ̃ Medium thermal conductivity (W/m ◦C)
ξ ρX (kg/m3)
ρ Bulk density (kg/m3)
σ̃ Pipe circumference (m)
τ κt/y223 (dimensionless)
φ Porosity (dimensionless)

1 Introduction

In the classical Stefan problem, the half plane (y ≤ 0) filled with ice is heated from above
(i.e., at y = 0) and a melt zone propagates downward (Carslaw and Jaeger 1959). The
interface between the ice and melt zone separates regions with distinctly different physical
properties, which leads to the idea of dividing the system into domains above and below the
interface, solving the governing partial differential equation in the two domains separately,
and joining the solutions together at the moving interface. An important piece of the problem
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is to find the equation governing the rate of interface propagation. We refer to any problem
involving at least one moving interface separating regions of distinct physical properties as
a “Stefan-type” problem; in this study, we present an extension of the method applicable
to 1D problems involving one or more interfaces and whose governing equations may have
strongly variable coefficients. We first derive the general framework and then illustrate it
by applying it to the 1D hydrothermal saltwater heat pipe. Although this paper focuses on
application to the heat pipe, the framework presented generalizes techniques used in early
work on the degradation of a column of permafrost (Lewis et al. 2012) and on the expansion
of subsurface damage zones in geothermal applications (Lewis et al. 2013). We also note that
if a 3D problem can be reduced to a formally 1D problem via, e.g., rotational symmetry, the
method presented here may still be applicable.

One motivation for studying the saltwater heat pipe is to gain understanding of processes
in seafloor hydrothermal systems. Studies of seafloor hydrothermal activity date back to 1979
when the first hydrothermal vent system was discovered at the Galapagos Spreading Center
(Corliss et al. 1979). Since then, it has become clear that these systems significantly affect
the ocean’s overall chemical composition (Elderfield and Schultz 1996), provide the primary
energy source for nearby deep-sea ecosystems (Hessler and Kaharl 1995), and factor into the
Earth’s heat budget by transferring heat from themantle to the seafloor (Stein and Stein 1995).
Hydrothermal systems thus play a key role in deep-sea biology, geophysics, andgeochemistry.

The processes occurring in these systems can be complex, and simplified analog models
are useful to establish partial understanding, which can later be used to leverage under-
standing of more realistic behavior (Lewis 2013); these models are also important for testing
numerical simulators. One such model is the two-phase saltwater heat pipe mentioned above.
The corresponding pure water problem has been thoroughly studied (Straus and Schubert
1981; Preuss 1985; McGuinness 1990, 1996; Young 1996; Xu and Lowell 1998); however,
accounting for the presence of salt leads to significant complications. Moreover, accounting
for salt is often crucial when modeling high-temperature seafloor hydrothermal flows. For
example, one of the key observations from sampling hydrothermal vent fluids is their widely
varying salinities, and this fact is most easily accounted for by invoking phase separation
(Berndt and Seyfried 1990; VonDammet al. 1997, 2002; VonDamm2004).While there have
been numerical studies of saltwater heat pipes (Bai et al. 2003; Lewis and Lowell 2009b),
there are no analytical studies known to the authors.

Due to the presence of salt, phase separation leads to the formation of three layers in a
submarine heat pipe. From the seafloor downward, they are a single-phase liquid region at
seawater salinity, a two-phase region containing liquid and vapor, and a layer of brine (Bai
et al. 2003; Lewis and Lowell 2009b). After introducing the general framework, we employ it
to construct mathematical models giving the positions of the interfaces between these layers
as functions of time. The general method involves converting a partial differential equation
describing the balance of solute or energy into an ordinary differential equation for the
corresponding interface position. After determining the interface positions, we incorporate
this information in the form of moving boundary conditions to solve the equation governing
energy balance. We then use our results to test the internal consistency of a numerical heat
pipe simulation.

2 General Problem and Solution Framework

Consider a 1D column of material whose height is given by yH and whose energy balance at
each point is expressible as
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∂T

∂t
− κ(y, t)

∂2T

∂y2
= f (y, t), (1)

where κ is the thermal diffusivity, f is a function that includes the effects of heat sources or
advection, and y is the distance from the bottom of the column to a point within the column
(for a derivation, see Carslaw and Jaeger 1959). The boundary and initial conditions are given
by

T (yH, t) = TH, (2)
∂T

∂y
(0, t) = F, (3)

and

T (y, 0) = TH. (4)

We take the bottom boundary condition as one of the constant heat flux, thus imposing a fixed
temperature gradient F at y = 0. Although we have assumed a flux-type boundary condition
at the bottom of the column, the solution method presented below is easily adapted to the
case of a constant temperature bottom boundary.

Suppose the solution domain is divided into two distinct regions by an upward moving
interface initially located at y = 0 and whose propagation speed depends on the transport of
heat or solute across that interface. We designate the part of the column below the interface
as “region i ,” the part above as ”region j ,” and the position of the interface itself as yi j . We
assume that κ can be regarded as a constant in each region separately, i.e., that it is of the
form

κ(y, t) = (κi − κ j )H [yi j (t) − y] + κ j , (5)

where H is the Heaviside step function.We assume further that, in a given region, the profiles
of f (y, t) at different times are similarity transformations of each other; in particular, that

f (y, t) = f̃

(
y

yi j (t)

)
(6)

for some function f̃ .With these assumptions, Eq. (1)may be solved in each region separately,
subject to boundary and initial conditions appropriate for that region, with the temperature
required to vary continuously across the interface.

2.1 Interface Position

The position of the interface is governed by the conservation of energy or solute, depending
on the nature of the interface under consideration. We apply the balance of either of these
quantities to the column shown in Fig. 1. If C represents the volume density of solute or
energy in the expanding layer, then the total content of the layer can be written as

I (t) ≡ A
∫ yi j (t)

0
C(y, t)dy, (7)

where A is the cross-sectional area of the column. If yi j increases by an amount 	yi j , then
the expansion zone will contain C(yi j , t)	yi j A more solute or energy. Also, if the flux F0 at
the bottom of the expansion zone is larger than the flux Fi j at the top, the zone content will
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Fig. 1 Interface between regions
i and j moves upward, driven by
the difference in the fluxes of
solute or heat between the top and
bottom of the expansion zone.
These fluxes are represented by
Fi j and F0. At a given time t ,
region i is below yi j (t), and
region j is above yi j (t)

increase by an amount (F0 − Fi j )A	t . Therefore, the increase in the heat or salt content
after a time 	t is

	I = (F0 − Fi j )A	t + C(yi j , t)	yi j A. (8)

Dividing this equation by A	t and taking the limit as 	t → 0 yields

1

A

dI

dt
= d

dt

∫ yi j (t)

0
C(y, t)dy = F + C(yi j , t)

dyi j
dt

, (9)

where we have defined F ≡ F0 − Fi j . Introducing the average content density

〈C〉 ≡ 1

yi j (t)

∫ yi j (t)

0
C(y, t)dy, (10)

Equation (9) can be expressed as

d

dt
(yi j 〈C〉) = F + C(yi j , t)

dyi j
dt

. (11)

Using the product rule for differentiation and rearranging gives

dyi j
dt

(〈C〉 − Ci j ) + yi j
d

dt
〈C〉 = F, (12)

where Ci j ≡ C(yi j , t). By solving this equation in a specific scenario, the interface position
as a function of time may be obtained. “Appendix 1” contains an alternative derivation of
(12), which has the advantage of being shorter, though perhaps not as physically intuitive as
the above derivation. Also, Eq. (12) appears different from the classical “Stefan condition.”
“Appendix 2” shows how this condition may be derived from (12).

2.2 Column Temperatures

In the region below the interface, Eq. (1) takes the form

∂T

∂t
− κi

∂2T

∂y2
= f̃

(
y

yi j

)
. (13)

The boundary and initial conditions are

∂T

∂y
(0, t) = F, (14)

T (yi j , t) = Ti j , (15)
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and

T (y, 0) = Ti j . (16)

In Eqs. (15) and (16), Ti j is the temperature at y = yi j . Although the initial thickness of the
region below the interface is zero, condition (16) is still required in order for the governing
Eq. (13) to have a unique solution. The problem may be expressed in dimensionless form by
introducing the variables

ζ ≡ y

yi j
, (17)

τ ≡ κi t

y2i j
, (18)

and

θ ≡ T − Ti j − F(yi j − y)

Fyi j
. (19)

In the following, we neglect the time dependence of yi j in evaluating ∂T
∂t ; this approximation

is valid under the condition that

dyi j
dt

	 κi

yi j
. (20)

This condition is sufficient, though not necessary—see “Appendix 3” for a derivation. The
form of the dimensionless temperature θ(ζ, τ ) is chosen to make the boundary conditions
homogeneous. In terms of these variables, Eq. (1) becomes

∂θ

∂τ
− ∂2θ

∂ζ 2 = yi j
Fκi

f̃ (ζ ) ≡ g̃(ζ ). (21)

For now,we assume nothing further about the form of g̃(ζ ); in Sect. 4.3, however, we consider
a specific form for this function. The boundary and initial conditions for the dimensionless
problem are

∂θ

∂ζ

∣∣∣∣
ζ=0

= 0, (22)

θ(1, τ ) = 0, (23)

and

θ(ζ, 0) = 1 − ζ. (24)

We solve Eqs. (21) through (24) in two steps. First, we solve the homogeneous problem
(with g̃(ζ ) = 0) by constructing an integral operator that propagates the initial temperature
distribution θH(ζ, 0) forward in time to give θH(ζ, τ ), where the subscript H denotes the
solution to the homogeneous problem. Second, we use the propagator to construct a Green’s
function, which may then be used to solve the inhomogeneous problem, whose solution we
represent as θI (ζ, τ ). The solution θH(ζ, τ ) satisfies (24), while θI(ζ, 0) = 0; both solutions
satisfy (22) and (23). Hence, by linearity the full solution is be given by

θ(ζ, τ ) = θH(ζ, τ ) + θI(ζ, τ ). (25)
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“Appendix 4” gives the derivations of θH and θI using the propagator and Green’s function
formalism; the resulting solutions are

θH(ζ, τ ) = 2
∞∑
n=0

1

λn
e−λnτ cos(

√
λnζ ), (26)

and

θI(ζ, τ ) = 2
∞∑
n=0

1 − e−λnτ

λn
cos(

√
λnζ )

∫ 1

0
cos(

√
λnζ

′)g̃(ζ ′)dζ ′, (27)

where

λn ≡
[

(2n + 1)π

2

]2
. (28)

Solving Eq. (19) for T and reverting back to dimensional variables yields

T (y, t) = Fyi jθ

(
y

yi j
,
κi t

y2i j

)
+ Ti j + F(yi j − y). (29)

The solution to the full initial-boundary value problem is given by Eq. (25) through (29).
The temperatures above yi j are the solutions to

∂T

∂t
− κ j

∂2T

∂y2
= f̃

(
y

yi j

)
. (30)

with the boundary and initial conditions

T (yi j , t) = Ti j , (31)

T (yH, t) = TH, (32)

and

T (y, 0) = TH. (33)

This problem can be solved using the same method as for the region below yi j ; the only
difference being that, to make the boundary conditions homogeneous, the dimensionless
temperature should now be defined as

θ = TH − TS
Ti j

, (34)

where

TS = Ti j (y − yH) + TH(yi j − y)

yi j − yH
. (35)

Because the source of solute or heat is at the base of the column, one may find in practice
that a simplification is possible for the region y ≥ yi j , so that the full machinery developed
above is not required for this region. Such is the case for the example of the heat pipe.
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Fig. 2 In solving for the
temperatures inside the heat pipe,
we employ the geometry and
boundary conditions shown in the
above schematic. Q represents
the bottom heat flux, T the
temperature, B the brine region,
L + V the two-phase region, and
L the single-phase liquid region.
In subscripted variables, these
regions will be referred to by
numerals 1 through 3. Finally,
y12 represents the boundary
between the B and L+V regions,
y23 that between the L + V and L
regions; yH is the height of the
total system

3 Application to the Heat Pipe

Figure 2 shows the geometry and boundary conditions for the heat pipe, modeled as a vertical
column of NaCl–H2O-saturated porous material heated from below. No salt, mass, or heat
enters through the sides; no salt or mass enters the bottom, to which a constant heat flux is
applied. The top boundary of the system is held at constant temperature. Initially, the column
contains only single-phase liquid (shown as L). When the temperature at the bottom reaches
a critical threshold, a region of two-phase liquid plus vapor (shown as L + V) forms at the
bottom of the system and expands upward. Phase separation within this layer gives rise to a
layer of brine (shown as B) at the base of the system, which also expands upward with time.
A small volume of vapor can be present in this region as well. We seek expressions for the
position of the interface between the B and L+V zones (denoted by y12), that of the interface
between the L + V and L zones (denoted by y23), and for the temperature throughout the
pipe.

3.1 Brine Layer

We now use (12) to derive an equation governing the thickness of the brine layer as a function
of time. The volume density of salt in the brine layer is given by

C = φρX, (36)

where φ is the porosity, ρ is the bulk density, and X is the bulk salinity. No salt enters or
leaves the bottom boundary of the system, so Fbot = 0. The flux of salt into the top of the
brine layer is approximately

F12 ≈ (ρlvlX l)12, (37)

where v is the Darcy volumetric flux and the subscript l denotes the liquid phase; we assume
that salt carried in the vapor phase and diffusion of salt are both small compared to the amount
of salt advected by the liquid (this assumption is verified in Sect. 4.1). Denoting the interface
position by y12 and substituting these expressions into (12) results in
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dy12
dt

[〈φρX〉 − (φρX)12] + y12
d〈φρX〉

dt
= (ρlvlX l)12. (38)

Taking φ as a constant and defining ξ ≡ ρX , the above equation may be written as

dy12
dt

(〈ξ 〉 − ξ12) + y12
d

dt
〈ξ 〉 =

(
ξl

vl

φ

)
12

. (39)

Dividing both sides by the coefficient of dy12/dt gives

dy12
dt

+ y12η = γ, (40)

where

η ≡ 1

(〈ξ 〉 − ξ12)

d

dt
〈ξ 〉. (41)

and

γ ≡ 1

(〈ξ 〉 − ξ12)

(
ξl

vl

φ

)
12

. (42)

In Sect. 4.1, we solve Eq. (40) for specific forms of γ (t) and η(t).

3.2 Two-phase Layer

To derive the position of the interface between the two-phase fluid and overlying single-phase
liquid zones, we again employ Eq. (12), this time setting

C = φρh + (1 − φ)ρr cprT, (43)

where h is the fluid bulk enthalpy, cp is the specific heat at constant pressure, T is the
temperature, and the subscript r refers to the rock phase. We also set

F = ρlhlvl + ρvhvvv − λ̃
∂T

∂y
, (44)

where λ̃ is the effective medium thermal conductivity. Denoting the location of the interface
by y23, we write Eq. (12) as

dy23
dt

+ αy23 = β. (45)

where

α ≡
d
dt 〈C〉

(〈C〉 − C23)
(46)

and

β ≡ F
(〈C〉 − C23)

. (47)

We solve this equation and compare the solution with that from a numerical simulation in
Sect. 4.2.
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3.3 Pipe Temperature

The equation governing energy balance is approximately

∂

∂t

[
(1 − φ)ρrcprT + φρh

] + ∂

∂y
(ρlvlhl + ρvvvhv) = λ̃

∂2T

∂y2
. (48)

For a derivation of the full equation and a discussion ofwhen termswe have neglected become
important, see Stauffer et al. (2014). For present purposes, it is useful to rewrite this equation
as

(1 − φ)ρr cpr
∂T

∂t
+ φρ

∂h

∂t
− λ̃

∂2T

∂y2
= −φh

∂ρ

∂t
− ∂

∂y
(ρlvlhl + ρvvvhv). (49)

The time dependence of y23 derived above encapsulates the effects of latent heat as single-
phase liquid is converted into two-phase liquid and vapor. Moreover, this interface splits
the system into two parts, in each of which latent heat effects are negligible. Therefore,
we employ the machinery developed in Sect. 2 to solve the energy equation and construct
temperature profiles in the regions below and above y23 separately. For a discussion of how
it can be conceptually useful to split the term involving φρh and move the density derivative
to the right-hand side of (48), see Sect. 5.2.

In the zones below and above y23, we may replace h with cpT , where cp is the fluid
bulk specific heat at constant pressure. Making this replacement on the left-hand side of (49)
yields

ρ̃cp
∂T

∂t
− λ̃

∂2T

∂y2
= −φh

∂ρ

∂t
− ∂

∂y
(ρlvlhl + ρvvvhv), (50)

where we have defined the medium bulk quantity ρ̃cp ≡ (1 − φ)ρr cpr + φρcp. Dividing

through by ρ̃cp and introducing the thermal diffusivity κ ≡ λ̃/ρ̃cp gives

∂T

∂t
− κ

∂2T

∂y2
= − 1

ρ̃cp

[
φh

∂ρ

∂t
+ ∂

∂y
(ρlvlhl + ρvvvhv)

]
≡ f (y, t), (51)

The governing equation is nowwritten in the form of (1), and the solution for the temperatures
below y23 is given in Sect. 2.2; we now discuss the temperatures above y23 separately. The
resulting pipe temperature profile is compared with that from a numerical simulation in
Sect. 4.3.

3.4 Temperatures Above y23

The fluid above y23 moves upward due to the fact that fluid in the column below is thermally
expanding. However, the y23 boundary itself moves upward at a rate dy23/dt , which we
assume is much greater than the thermal expansion speed of the liquid. It is then convenient
to solve the problem in the frame of reference that moves upward in time with the y23
interface, and thereafter to revert back to the frame of reference that is at rest with respect to
the rock matrix. Defining

Y ≡ y − y23, (52)
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using the approximation h ≈ cpT , and keeping in mind that the liquid phase is the only one
present, Eq. (51) takes the form

∂T

∂t
− κ

∂2T

∂Y 2 = −
(

φcpT

ρ̃cp

)
∂ρ

∂t
+ u

∂T

∂Y
, (53)

where u = v−dy23/dt is the volumetric flux relative to themoving interface.We assume that
the dominant balance in this equation is between the diffusive and advective terms, giving

∂2T

∂Y 2 + u

κ

∂T

∂Y
= 0, (54)

where partial derivatives have been maintained because T depends on time through y23.
Solving this equation and reverting back to Earth-frame coordinates leads to

T (y, t) = (TH − T23)

[
e(v−ẏ23)(y−y23)/κ − 1

e(v−ẏ23)(yH−y23)/κ − 1

]
+ T23. (55)

4 Comparison with a Numerical Solution

We now indicate how the solutions generated in the previous sections may be used to inves-
tigate the internal consistency of a numerical heat pipe simulation. For this purpose, we use
the code FISHES, which was designed by K.C. Lewis (for details, see Lewis and Lowell
2009a, b) and used in many previous studies involving multi-phase, multi-component fluid
flow in hydrothermal systems (Choi and Lowell 2015; Lowell et al. 2015; Singh et al. 2013;
Han et al. 2013; Steele-MacInnis et al. 2012a, b). The code and a user’s manual are available
publicly at http://wlb-physics-01.monmouth.edu/fishes.htm.

The geometry and boundary conditions for the simulation are shown in Fig. 3. A 100-m-
long vertical, fluid-saturated, porous column is heated from below with a constant flux of 1
W/m2. The porosity is 0.1, the permeability is 10−15 m2, and the relative permeability of
each phase is set equal to the volume saturation of that phase. The bottom is maintained at
zero salt and total mass flux. The interior of the pipe is initially at 393 ◦C and at a salinity
of 3.2wt%NaCl. The temperature is chosen to be near the critical point of NaCl–H2O for
the system pressure, which increases hydrostatically starting from a fixed 260 bars at the top
boundary. The top boundary has “flow-through” conditions imposed on heat and salinity.
The meaning of this condition is as follows: If the fluid velocity at the top boundary is
directed out of the system, the temperature and salinity at that boundary are set to those
of the computational node directly below; if the fluid velocity is directed into the system,
then the salinity is set to 3.2wt% NaCl while the temperature is set to 393 ◦C. This type of
boundary condition treats the upper boundary as being in contact with an infinite reservoir of
fluid above it, having a salinity of 3.2wt% NaCl and a temperature of 393◦C. The system is
simulated for 40years, long enough for the two-phase zone to propagate a significant distance
into the system but not so long that it interacts significantly with the top boundary.

Figures 4, 5, and 6 show the results of the simulation. Starting after about 2years of
simulation time, a liquid-plus-vapor region grows from the bottom and has reached 60meters
from the bottom of the system by 40years. Meanwhile, a layer of brine forms at the bottom
of the system, reaching a height of about 2.3m by 4years.
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Fig. 3 For comparison with the
analytic solution, a numerical
solution is generated using
FISHES, employing the geometry
and boundary conditions shown
above. The column consists of
100 computational nodes, each
with 1m length except toward the
bottom of the system, where the
resolution starts at 0.2m and
increases linearly to 1m over 20
nodes. The meaning of the
“flow-through” boundary
conditions at the top is addressed
in the text

Fig. 4 Dotted curves show temperatures within a heat pipe at times of 10–40years simulated using the code
FISHES. The orange dashed line represents the location of the interface between the brine and liquid-plus-
vapor layers, which is stable at times >3years. The solid black, red, green, and blue horizontal lines show the
location of the interface between the liquid-plus-vapor and single-phase liquid layers
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Fig. 5 These system salinities correspond to the same simulation times as in Fig. 4, with horizontal lines
showing the same interface positions. The interface between the brine region and the liquid-plus-vapor region
is defined as the height below which the salinity is greater than 3.2wt% NaCl (i.e., <5m). Note that the
liquid-plus-vapor region has salinities lower than this value

Fig. 6 Three regions have characteristic liquid volume saturations: unity for the single-phase liquid region;
much less than unity (on average) for the liquid-plus-vapor region; and just below unity for the brine region.
We note, however, that these saturations likely depend strongly on the relative permeability model employed,
a linear model in this case (see Sect. 4)

4.1 Brine Layer Model

To compare these results with the brine layer model from Sect. 3.1, we approximate the
numerically derived values of γ (t) at the top of the brine layer as

γ (t) = γ1

(t − tγ s)5/4
+ γ2, (56)
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Table 1 Numerically derived
constants used in the models of
this study

Constant Value

γ1 2.198 × 102 m s1/4

γ2 6.0 × 10−10 m/s

tγ s 4.0×10−9 m/s

a 2.26 m

b 3 × 10−8 s−1

α1/2 5.63 × 10−10 s−1

β0 6.8 × 10−8 m/s

S 0.7

n 1/2

Fig. 7 Above values of γ (t) were obtained numerically by tracking the interface between the brine and two-
phase regions from the FISHES heat pipe simulation. The red curve shows the continuous approximation to
this curve

where the values of γ1, γ2, tγ s , and all other constants employed in this study are given in
Table 1. Figure 7 shows the numerical values of vl/φ together with those given by (56),
starting from the time at which the brine layer begins to form. The black dots in Fig. 8 show
the simulated brine layer thickness as a function of time; based on this curve, we attempt to
solve (40) by assuming a solution of the form

y12(t) = a tanh (bt), (57)

where a and b are constants to be determined. Substituting (57) into (40), we find that η(t)
must have the form

η(t) = γ (t) − ab sech 2(bt)

a tanh (bt)
(58)

for this proposed solution to be successful; this form can be fit to the numerically generated
η(t) with the values of a and b shown in Table 1 (see Fig. 9). Thus, the numerical forms
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Fig. 8 Solution, y12(t), of Eq. (40) (solid red curve) is plotted over the simulated values for the height of the
interface between the brine and the overlying two-phase region (black dots)

Fig. 9 Numerical values of η(t) (black dots) are compared with those given by (58) (solid red curve) together
with the constants a and b from Table 1

for γ and η determine the constants a and b, and the resulting brine layer thicknesses given
by (57) are shown in Fig. 8 together with simulated values. Finally, we test the assumption,
from Sect. 3.1, that the salt contained in the brine layer is delivered primarily through the
liquid-phase advection of salt. Figure 10 shows a comparison between the time-integrated
flux of salt through the top of the brine layer, obtained from the numerically derived values of
(ρlvlX l)12, and the simulated salt content of the brine layer. This comparison also shows that,
for the progression of the brine interface, the second term on the right-hand side of equation
(9) is small compared to the first; such is not the case for the interface between the two-phase
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Fig. 10 Simulated values of the amount of salt contained in the brine layer as a function of time (black dots),
together with those determined by integrating Eq. (37) with respect to time

and single-phase zones; this difference is due to the fact that, contrary to salt transport, heat
is transported through the rock phase as well as through the fluid.

4.2 Two-Phase Layer Model

In contrast to the brine layer thickness, the two-phase zone thickness increases throughout
the simulation; this property leads to a different shift in the dominant terms of the balance
expressed by (45) than was the case for (40). As the initial interface position is y23 = 0,
we assume that, at early times, the dominant balance in equation (45) is between dy23/dt
and β. This balance implies that β is the initial speed of propagation of the interface. On the
other hand, αy23 increases with time while β decreases, so that at late times αy23 becomes
important. Replacingα andβ with initial andmid-simulation values,α1/2 andβ0, the solution
to equation (45) is given by

y23(t) = β0

α1/2

(
1 − e−α1/2t

)
. (59)

Taking a Taylor series expansion of the exponential term for small times shows that (59) does
incorporate an initial interface speed of β0. Figure 11 compares the solution above with that
from the numerical simulation, where the numerically derived values used for α1/2 and β0

appear in Table 1.

4.3 Pipe Temperature Model

Using equation (29) (with i = 2 and j = 3) and (55), we compare the temperatures predicted
by our model with those derived numerically; however, before (29) can be used, a form must
be given for the function g̃(ζ ), appearing in equation (27). This function includes terms
representing heat transport due to convection as well as the thermal expansion effect. First,
we note that thermal expansion is most pronounced near the bottom of the system, where
the temperature increases most rapidly; second, the vapor and liquid volumetric fluxes are in
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Fig. 11 Solution, y23(t), of Eq. (45) (solid red curve) is plotted over simulated values (black dots) for the
height of the interface between the two-phase zone and the overlying single-phase fluid

opposite directions in the two-phase zone, approximately balancing one another at the y23
interface. With these considerations in mind, we parameterize g̃(ζ ) as

g̃(ζ ) = S(1 − ζ )n, (60)

where S and n are dimensionless constants. Finally, we note that the temperature at y23
varies slightly as the interface moves upward because the pressure decreases and lowers the
temperature of phase transition. To include this effect, we use the linear formula

T23(t) =
[
T23, f − T23,i

t f − ti

]
(t − ti ) + T23,i , (61)

where the subscript i denotes initial values and the subscript f denotes final values. We
take 10years as the initial time and 40 years as the final time. With equation (61) and the
above values of S and n (given in Table 1), analytical temperatures are plotted against the
numerically simulated temperatures in Fig. 12.

5 Discussion

5.1 Brine Sequestration

From the brine layer model of Sect. 3.1 and 4.1, we derive and discuss an expression for the
quasi-steady-state brine layer thickness. Setting dy12/dt = 0 in equation (40) and solving
for y12(t → ∞) ≡ y12,∞ gives

y12,∞ = γ

η
= (ρlvlX l)12

φ d
dt 〈ρlX l〉

, (62)

where the numerator is evaluated at the top of the brine layer, while the angle brackets indicate
averaging over the entire layer. We note that, although y12 no longer increases with time,
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Fig. 12 Temperatures derived from an analytical model (solid curves) are plotted over those derived from a
numerical simulation (yellow dots)

the salt content of the brine layer does, hence the presence of time derivative term in the
denominator. The presence of this term suggests why the steady state is only approximate or
“quasi”: The salinity in the layer will increase until the dynamics of the system changes and
the balance expressed by (40) is no longer applicable.

As the salinity increases, eventually either halite will precipitate or the effect of diffusion,
which we have so far neglected, will become important. We may estimate the salinity at
which diffusion becomes important by considering the case in which salt diffusion out of
the top of the brine layer balances salt delivered into the top via advection. This balance is
expressed as

∂

∂y
(ρlvlX l) = Dφρl

∂2X l

∂y2
, (63)

where D is the salt diffusivity. Because the brine forms a boundary layer, we may make the
approximation

∂

∂y
(ρlvlX l) ≈ 	(ρlvlX l)

	y
= (ρlvlX l)top − (ρlvlX l)0

y12,∞ − 0
= (ρlvlX l)12

y12,∞
, (64)

where the last equation follows because the volumetric flux at the bottom boundary of the
system vanishes. Similarly,

Dφρl
∂2X l

∂y2
≈ Dφρl

	X l

y212,∞
, (65)

where	X l is the increase in salinity from the top to the bottom of the brine layer. Substituting
(64) and (65) into (63) yields

	X l ≈ (vlX l)12y12,∞
Dφ

. (66)
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Substituting values of these quantities from the simulation of Sect. 4 yields 	X l ≈ 60wt%
NaCl; halite precipitation would start to occur well before achieving this threshold.

Equation (62) suggests that increasing the permeability, and hence the volumetric flux,
may increase the thickness of the quasi-steady-state brine layer. Complicating matters is the
fact that the d〈ρlX l〉/dt and (ρlvlX l)top are not independent—more salt entering the top con-
tributes to faster buildup of salt within the layer. Nevertheless, increasing the permeability
does increase the thickness of the brine layer, as a simulation with increased permeabil-
ity compared to that in Sect. 4 (10−14 m2, compared to 10−15 m2) showed an increase in
thickness of the layer (4.8m, compared to 2.3m).

We consider the possibility of allowing brine to flow laterally out the sides of the heat
pipe, which may more closely approximate brine sequestration in an actual hydrothermal
system. Consider a segment of the pipe with vertical extent 	y, centered around a height
y within the brine layer. We assume that the amount of brine, 	Q, leaving this segment is
proportional to y12 − y (i.e., the distance from the top of the brine layer), the amount of time
	t that has passed, and the exposed surface area of the segment, 	σ :

	Q = q(y12 − y)	σ	t, (67)

where q is a constant. The surface area is given by

	σ = 2	y(	x + 	z), (68)

where 	x is the width of the front of the pipe and 	z is the width of the side. Defining the
circumference of the pipe as σ̃ ≡ 2(	x + 	z), the salt lost from the sides of the entire brine
layer is

Q = 	tqσ̃

∫ y12

0
(y12 − y)dy = q

2
	t σ̃ y212. (69)

Incorporating the sink term (69) and making the appropriate replacements for F and C (see
Sect. 3.1), equation (9) becomes

1

A

dI

dt
= (ρlvlX l)12 + φ(ρX)12

dy12
dt

− q

2

(
σ̃

A

)
y212. (70)

Following the same steps as in the derivation of equation (40), and using the abbreviation
ξ ≡ ρX , the resulting equation is

dy12
dt

(〈ξ 〉 − ξ12) + y12
d〈ξ 〉
dt

=
(

ξl
vl

φ

)
12

− q

2

(
σ̃

φA

)
y212. (71)

Setting the time derivative to zero and rearranging yields

q

2

(
σ̃

φA

)
y212,∞ + y12,∞

d

dt
〈ξ 〉 −

(
ξlvl

φ

)
12

= 0. (72)

This equation can be solved via the quadratic formula; however, if the amount of lateral
salt loss is small, the solution can be expressed perhaps more informatively as a series of
corrections to (62) as follows.

It is first necessary to non-dimensionalize (72) so that the magnitudes of the coefficients
can be meaningfully compared. A dimensionless height may be defined as

ζ = y12,∞
(ξlvl)12

φ
d

dt
〈ξ 〉, (73)
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and then (72) may be expressed as

q

2

(
σ̃

φA

) ⎡
⎢⎣ (ξlvl)12

φ
(
d
dt 〈ξ 〉

)2
⎤
⎥⎦ ζ 2 + ζ − 1 = 0. (74)

Define the coefficient of ζ 2 as ε and suppose it is small compared to unity. Then the solution
to (74) can be expanded in a perturbative series as

ζ = ζ0 + εζ1 + ε2ζ2 · · · , (75)

where the ζi are successive approximations to ζ . Putting (75) into (74) and keeping terms to
the first order in ε gives

ε(ζ 2
0 + ζ1) + (ζ0 − 1) = 0. (76)

Setting coefficients of differing powers of ε to zero yields the solution

ζ = 1 − ε, (77)

which is the same as

y12,∞ = γ

η

⎡
⎣1 − q

2

(
σ̃

φA

) (
γ

η

) ⎛
⎝ 1

d
dt 〈ξ 〉

⎞
⎠

⎤
⎦ (78)

We note the presence of the geometrical factor σ̃ /φA in the correction term. If the cross
section is increased, for example, the overall effect is to lower the magnitude of this factor
and hence also of the correction term.

5.2 Energy Balance

In deriving equation (45), we integrated the equation expressing energy balance from the
bottom of the system to the height of the two-phase layer; we now consider how each term
in the equation contributes to the energy balance within the layer. The energy balance (48)
can be expressed as

(1 − φ)ρr cpr
∂T

∂t
+ φρ

∂h

∂t
+ φh

∂ρ

∂t
+ ∂

∂y
(ρlvlhl + ρvvvhv) = λ̃

∂2T

∂y2
= − ∂

∂y
Fc, (79)

where we have defined the conductive flux as Fc = −λ̃ ∂T
∂y . The term φh∂ρ/∂t is negative

due to thermal expansion, which also induces mass and heat fluxes across the y23 interface.
To consider these fluxes explicitly, we note that, according to the mass continuity equation,

φ
∂ρ

∂t
= − ∂

∂y
(ρlvl + ρvvv). (80)

Substituting this equation into (79) and rearranging gives

(1 − φ)ρr cpr
∂T

∂t
+ φρ

∂h

∂t
= h

∂

∂y
(ρlvl + ρvvv) − ∂

∂y
(ρlvlhl + ρvvvhv) − ∂

∂y
Fc. (81)
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Integrating the above equation from y = 0 to y = y23 yields

(1 − φ)ρr cpr

∫ y23

0

∂T

∂t
dy + φ

∫ y23

0
ρ

∂h

∂t
dy

=
∫ y23

0
h

∂

∂y
(ρlvl + ρvvv)dy − (ρlvlhl + ρvvvhv)23 − Fc,23 + F0, (82)

whereF0 is the applied flux at the bottom boundary of the system. By the second mean value
theorem for integrals, there exists a point yb between y = 0 and y = y23 such that∫ y23

0
h

∂

∂y
(ρlvl + ρvvv)dy = h(yb)

∫ y23

0

∂

∂y
(ρlvl + ρvvv)dy. (83)

If we define h(yb) = hb, we can therefore write (82) as

(1 − φ)ρr cpr

∫ y23

0

∂T

∂t
dy + φ

∫ y23

0
ρ

∂h

∂t
dy

= hb(ρlvl + ρvvv)23 − (ρlvlhl + ρvvvhv)23 − Fc,23 + F0. (84)

As long as it is remembered that hb is a constant, this equation may be expressed as

(1 − φ)ρr cpr

∫ y23

0

∂T

∂t
dy + φ

∫ y23

0
ρ

∂h

∂t
dy = [ρlvl(hb − hl) + ρvvv(hb − hv)]23

−Fc,23 + F0. (85)

Both terms on the left-hand side of (85) are positive, because both the rock and fluid gain
energy as the column is heated from below; therefore, the right-hand side must also be
positive. If we had not considered the expansion effect explicitly and had instead employed
the term φ

∂(hρ)
∂t in equation (79), this term could be negative (and indeed is, in the simulation

discussed in section (4)), even though both rock and fluid gain energy with time. We would
have instead obtained

(1 − φ)ρr cpr

∫ y23

0

∂T

∂t
dy + φ

∫ y23

0

∂(ρh)

∂t
dy

= −[ρlvlhl + ρvvvhv]23 − Fc,23 + F0, (86)

and then both sides of the above equation can turn out to be negative when there is strong
thermal expansion, the negative right hand giving the impression that more energy is being
transferred from the top of the two-phase layer than is being delivered at the bottom. Equation
(85) makes manifest that such is not the case.

5.3 Using the Framework Without a Numerical Model

When we employed the extended Stefan method to study the heat pipe, we relied on a
numerical simulation to supply the functional forms of certain key quantities; in this section,
we indicate how the method might be used in the absence of simulation output. The most
difficult part of the Stefan problem is finding the position of the advancing phase interfaces
as functions of time. Consider the problem, from Sect. 3.1, of finding the brine interface
position y12(t). To form the governing equation for y12, we require specific forms for the
functions η and γ from equations (41) and (42). In the absence of numerical results, the
variables appearing in these functions must be supplied by a separate analytic model; which
model that is depends on the context. The method presented here may be thought of as a
general framework requiring specific models as inputs. For example, suppose liquid velocity
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is given from a buoyancy-driven flow model, that the thermodynamic quantities within the
brine layer are constants, and that the average salt content of the brine layer is constant. The
second of these assumptions leads to η = 0, while the first leads to

vl = kg

μl
(ρ − ρl), (87)

which in turn gives γ = const . In this situation, the solution for the interface position is
y12(t) = γ t . Such a model could be appropriate for very early times (see Fig. 8 between
t = 2 and t = 4years).

6 Conclusion

We have presented a framework that extends the classical Stefan-type solution method to
deal with multi-component, multi-phase 1D porous flows that involve distinct propagating
interfaces. Once the partial differential equations governing solute and energy balance have
been provided, these equations may be converted into ordinary differential equations whose
solutions give the positions of the corresponding interfaces as functions of time. By splitting
the solution domain into pieces and considering the interfaces as moving boundaries, the
temperature profile for thewhole domainmay be obtained.Wehave illustrated this framework
via application to the 1D saltwater heat pipe.

The dynamics of the heat pipe system are far from trivial. Neither the interface between
the brine and two-phase zones nor that between the two-phase and single-phase zones evolve
according to any simple prescription, such as linearly with time or as (time)1/2. Fluid advec-
tion must be accounted for in all regions, even with a relatively low permeability, such as that
in the numerical simulation used for comparison with the analytical models. Large variations
in thermodynamic properties and fluid velocities must be taken into account in the two-phase
zone; volumetric fluxes in the two-phase zone are not given by any simple approach such as
a purely buoyancy-driven model.

Even though the salinity is constant at the top of brine zone, the layer stops growing
after short time; this halt in growth occurs because the salt content of the layer continues to
increase with timewhile the effect of salt diffusion is small compared to that of salt advection.
The increase in salt content is due to downward liquid salt flux at top of brine zone, with
negligible salt carried across the interface by vapor. Pipe geometry is important for the ability
of a system to store brine. For example, in a simple model, increasing the pipe circumference
decreases the amount of salt loss from the sides of the pipe.

In contrast to the brine layer, for the two-phase zone increased heat input initiates a phase
change and conduction is strong even compared to the advection of heat by the vapor phase.
The result is that the two-phase interface grows nearly linearly, but departs from linearity
because transport of heat across the top of the layer is not constant in time. Thermal expansion
is non-negligible, and in such a case it is conceptually advantageous to rewrite the energy
balance over the two-phase region as in (85), because this form makes the fact of energy
conservation evident.
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Appendix 1: Alternative Derivation of Equation (12)

The equations expressing the balance of salt or heat can both be cast in the form

∂C
∂t

+ ∂F
∂y

= 0, (88)

where C represents the content of salt or energy and F represents combined advective and
diffusive fluxes. Integrating both sides from the bottom to the top of the expansion layer
gives

∫ yi j

0

dC
dt

dy = F0 − Fi j ≡ F . (89)

According to the Leibniz integral theorem,

d

dt

∫ yi j

0
Cdy =

∫ yi j

0

∂C
∂t

dy + C(yi j , t)
dyi j
dt

. (90)

Solving for the first term on the right-hand side and substituting the result into (89) gives

d

dt

∫ yi j

0
Cdy − Ci j

dyi j
dt

= F, (91)

where Ci j ≡ C(yi j , t). Defining the average content density as in equation (10) and substi-
tuting into the above equation leads to equation (12).

Appendix 2: Derivation of the Stefan Condition

In the original Stefan problem that involves a half plane filled with melting ice, the position
of the melt interface is found by imposing the Stefan condition [see (Carslaw and Jaeger
1959], pg. 284); in this section, we show how this condition may be derived from equation
(12). Consider the upper half plane (y ≥ 0) filled with ice and heated from below. In our
notation, the Stefan condition reads

λ2
∂T2
∂y

− λ1
∂T1
∂y

= Lρ
dy12
dt

, (92)

where the subscript 1 refers to liquid, the subscript 2 refers to ice, and L is the latent heat of
fusion. In this scenario, equation (12) becomes

ρ
dy12
dt

[〈h〉 − h12] + ρy12
d

dt
〈h〉 = F0 − F12, (93)

where ρ is the liquid density, h is the liquid enthalpy, and we have made the replacement
C = ρh. For simplicity, we have assumed that the liquid is raised only slightly above freezing
so that variation of density within the liquid phase may be neglected. First, we note that the
heat flux into the y12 interface from below is equal to the flux at the bottom boundary of the
system minus the portion of that heat absorbed by the layer of liquid between the bottom
boundary and y12; mathematically, this statement translates to

F12,− = F0 − ρy12
d

dt
〈h〉. (94)
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Second, we relabel the quantity F12 as F12,+, emphasizing that it is the flux of heat upward
from y12. Making these replacements and setting

〈h〉 − h12 = L (95)

in equation (93) yields

Lρ
dy12
dt

= F12,− − F12,+. (96)

Using Fourier’s law of heat conduction, we write

F12,− = −λ1
∂T1
∂y

, (97)

and

F12,+ = −λ2
∂T2
∂y

, (98)

where both derivatives are evaluated at y12. Substituting these expressions into (96) gives
equation (92).

In the problem of the receding ice sheet, the classical Stefan condition can be used to
find the form of y12(t) together with the temperature profile; however, this technique only
works under very restricted conditions. For example, imposing a heat flux condition at the
bottom boundary of the system instead of a constant temperature condition already leads to
problems (see (Carslaw and Jaeger 1959)) for details). The generalized condition (12) avoids
this difficulty by representing yi j (t) as the solution of its own differential equation instead
of as an auxiliary quantity to be determined simultaneously with T (y, t).

Appendix 3: Derivation of Condition (20)

Using the definitions

T = Fyi jθ + Ti j + F(yi j − y), (99)

and

τ = κi t

y2i j
, (100)

we find that

1

F

∂T

∂t
= ẏi j (θ + 1) + κi

yi j

∂θ

∂τ
− 2τ ẏi j

∂θ

∂τ
. (101)

We seek the condition under which the second term on the right-hand side of (101) dominates
the first and the third terms. The first and third terms are both of the order ẏi j , while the second
term is of order κi/yi j . Hence, the desired condition is that

ẏi j 	 κi

yi j
, (102)

which is identical with (20). This condition is sufficient but not necessary, because the first
and third terms on the right-hand side of (101) are of opposite sign, and somay approximately
cancel one another even if (102) is not satisfied.
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Appendix 4: Derivation of Propagator and Green’s Function

To solve for θH(ζ, τ ) and construct the propagator, we begin by finding the eigenfunctions
ψn(ζ ) and eigenvalues λn satisfying

− d2

dθ2
ψn(ζ ) = λnψn(ζ ), (103)

where the eigenfunctions are required to satisfy the homogeneous boundary conditions (22)
and (23). The solutions, normalized on the interval 0 ≤ ζ ≤ 1, are

ψn(ζ ) = √
2 cos(

√
λnζ ), (104)

with

λn =
[

(2n + 1)π

2

]2
, (105)

and n ∈ N. Now we search for a solution of the form

θH(ζ, τ ) =
∞∑
n=0

an(τ )ψn(ζ ), (106)

where the time-dependent coefficients an(τ ) are to be determined. Substituting (106) into
(21), setting f̃ (ζ ) = 0, and keeping in mind that the ψn satisfy (103), we obtain

∞∑
n=0

ψn

(
dan
dτ

+ λnan

)
= 0. (107)

The eigenfunctions are all linearly independent, so the only way the above equation can be
satisfied is if each coefficient of ψn vanishes; the resulting differential equation in an(τ ) has
the solution

an(τ ) = Ane
−λnτ , (108)

where An is a constant for each n. Equation (106) now takes the form

θH(ζ, τ ) =
∞∑
n=0

Ane
−λτψn(ζ ). (109)

It remains to choose the constants An so that the initial condition (24) is satisfied. Applying
the initial condition to (109) gives

θH(ζ, 0) =
∞∑
n=0

Anψn(ζ ). (110)

Multiplying both sides of this equation by ψm(ζ ), integrating from 0 to 1, and keeping in
mind the orthonormality of the eigenfunctions results in

Am =
∫ 1

0
θ(ζ ′, 0)ψm(ζ ′)dζ ′. (111)

Changingm back to n, substituting the above expression into (109), and rearranging give the
solution to the homogeneous problem as

θH(ζ, τ ) =
∫ 1

0

[
n=∞∑
n=0

ψn(ζ
′)ψn(ζ )e−λnτ

]
θ(ζ ′, 0)dζ ′. (112)
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The expression in brackets is the kernel of the desired integral operator, which propagates
the solution at τ = 0 to that at a later time τ . Therefore, the kernel that propagates a solution
at τ = τ ′ to a later time τ is

P(ζ, ζ ′, τ, τ ′) =
∞∑
n=0

ψn(ζ
′)ψn(ζ )e−λn(τ−τ ′). (113)

It can be shown that multiplying the propagator with the Heaviside step function H(τ − τ ′)
produces the Green function required for solution of the associated inhomogeneous problem
(see Bayin 2006); hence, the desired Green function is

G(ζ, ζ ′, τ, τ ′) = P(ζ, ζ ′, τ, τ ′)H(τ − τ ′). (114)

The solution to the inhomogeneous problem is then

θI(ζ, τ ) =
∫ ∞

0

∫ 1

0
G(ζ, ζ ′, τ, τ ′)g̃(ζ ′)dζ ′dτ ′. (115)

Carrying out the integral as far as possible with general g̃(ζ ′) results in

θI(ζ, τ ) =
∞∑
n=0

ψn(ζ
′)

∫ 1

0
ψn(ζ

′)g̃(ζ ′)dζ ′
∫ τ

0
e−λn(τ−τ ′)dτ ′

=
∞∑
n=0

1 − e−λnτ

λn
ψn(ζ )

∫ 1

0
ψn(ζ

′)g̃(ζ ′)dζ ′, (116)

which is the same as equation (27). Using equation (24) and completing the integral in (112)
yields

θH(ζ, τ ) =
∞∑
n=0

√
2

λn
e−λnτψn(ζ ), (117)

which is the same as equation (26). The full dimensionless solution θ(ζ, τ ) is now given by
(25).
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