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Abstract Vugs and fractures are common features of carbonate formations. The presence
of vugs and fractures in porous media can significantly affect pressure and flow behavior of
a fluid. A vug is a cavity (usually a void space, occasionally filled with sediments), and its
pore volume is much larger than the intergranular pore volume. Fractures occur in almost all
geological formations to some extent. The fluid flow in vugs and fractures at the microscopic
level does not obeyDarcy’s law; rather, it is governed by Stokes flow (sometimes is also called
Stokes’ law). In this paper, analytical solutions are derived for the fluid flow in porous media
with spherical- and spheroidal-shaped vug and/or fracture inclusions. The coupling of Stokes
flow and Darcy’s law is implemented through a no-jump condition on normal velocities, a
jump condition on pressures, and generalized Beavers–Joseph–Saffman condition on the
interface of the matrix and vug or fracture. The spheroidal geometry is used because of its
flexibility to represent many different geometrical shapes. A spheroid reduces to a sphere
when the focal length of the spheroid approaches zero. A prolate spheroid degenerates to a
long rod to represent the connected vug geometry (a tunnel geometry) when the focal length
of the spheroid approaches infinity. An oblate spheroid degenerates to a flat spheroidal disk
to represent the fracture geometry. Once the pressure field in a single vug or fracture and
in the matrix domains is obtained, the equivalent permeability of the vug with the matrix or
the fracture with matrix can be determined. Using the effective medium theory, the effective
permeability of the vug–matrix or fracture–matrix ensemble domain can be determined. The
effect of the volume fraction and geometrical properties of vugs, such as the aspect ratio
and spatial distribution, in the matrix is also investigated. It is shown that the higher volume
fraction of the vugs or fractures enhances the effective permeability of the system. For a
fixed-volume fraction, highly elongated vugs or fractures significantly increase the effective
permeability compared with shorter vugs or fractures. A set of disconnected vugs or fractures
yields lower effective permeability comparedwith a single vug or fracture of the same volume
fraction.
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Nomenclature

a Major semi-axis of spheroid
b Minor semi-axis of spheroid
c Confocal distance
e1,2,3 Normal unit vectors of the curvilinear coordinate system
ε Rate of strain tensor
Gn Gegenbauer function of first kind
Γp,v Interface of porous and vuggy domain
h1,2,3 Scale factors of curvilinear coordinate system
Hn Gegenbauer function of second kind
η Spheroidal coordinate
k Permeability
λ Beavers–Joseph–Saffman empirical coefficient
μ Fluid viscosity
n Unit normal vector to the interface
Qn Legendre polynomial of second kind and order n
p Pressure
Pn Legendre polynomial of first kind and order n
φ Spheroidal coordinate
ψ Streamline
r Distance from the origin
ρ Fluid density and spherical coordinate
s Spheroidal coordinate
τ Unit tangential vector to the interface
t Spheroidal coordinate
U∞ Constant velocity field at the infinity
u Velocity element
u Velocity vector
v Velocity element
x Cartesian coordinate
ξ Spheroidal coordinate
χ Curvilinear coordinate
x Dummy variable
y Cartesian coordinate
z Cartesian coordinate
Ωm Porous matrix
Ωv Vug domain

Subscripts

m Parameter in matrix
v Parameter in vug
in Parameter in porous inclusion
s Parameter for spherical shape of vug or inclusion
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1 Introduction

Carbonate formations, particularly naturally fractured ones, usually have connected and
nonconnected fractures, matrix (host porous media of inclusions), and connected and non-
connected vugs. A vug is a cavity, inclusion, or void pore, which is larger compared with
the intergranular pore size, and created by rock dissolution (diagenesis). Vugs normally have
almost infinite permeability and are normally elongated in one direction in the horizontal
plane. Some vugs can have irregular shapes, but can still be roughly approximated by spher-
oids. As shown in Fig. 1, several vugs can be connected with each other, referred to as
touching vugs (Lucia 1999), and create wormholes without many branches. Fractures are
mechanical breaks in rocks and create discontinuities with a displacement across surfaces or
narrow zones (Committee on Fracture Characterization and Fluid Flow 1996). Unlike vugs,
fractures normally have planar shapes, with much smaller apertures than their vertical height
and lateral length. Connected vugs are created by further rock dissolution and fracturing and
can also be enlarged by additional dissolution.

Here, we focus on microfractures, and short (less than a few tens of meters) secondary
and tertiary fractures, which are assumed to be discrete or only locally continuous and not
continuous or discrete primary (major) fractures or any long fractures (more than a few tens of
meters). Fractures and vugs are embedded in the matrix; thus, they contribute to the effective
matrix permeability and porosity. If vugs and/or secondary and tertiary open fractures are
directly connected to the major fractures, then they must be a part of the fracture system, for
which Kuchuk et al. (2015) presented the modeling details of such fracture systems.

In most carbonate formations, vug sizes vary from a few µm to thousands of µm (Arns
et al. 2005), while fracture apertures vary from 0.001 to 10 mm (Bertels et al. 2001; Detwiler
et al. 2001; Keller et al. 1999). Thus, fracture-intersecting vugs do not make any observable
change in the fracture conductivity, although they may enhance fracture conductivities for
low-conductivity fractures. Naturally fractured formations might contain many faults and
thousands of fractures with different apertures, conductivities, lengths, orientations, sizes,
and spacings and may well have a power-law distribution of these properties (Aarseth et al.
1997; Belfield and Sovich 1994; Braester 2005; Nurmi et al. 1995). This condition implies
that naturally fractured formations might contain hundreds or thousands of primary fractures,
and possibly thousands ormillions of small vertical and near-vertical fractures. Consequently,

Fig. 1 Connected and isolated vugs, and fractures
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it is important to obtain the effective permeability of the matrix with thousands or millions
small discrete and/or only locally continuous fractures.

In this paper, we deal with four possible vug/fracture systems: isolated vugs, connected
vugs, fractures, and dissolution-enlarged fractures, as shown in Fig. 1. For a given rock
volume, all or any combination of these vug/fracture systems might occur. Although the
geometry of the majority of vugs can be described by a spherical shape, a wide range of
vugs have elongated shapes, which cannot be described by a spherical shape. Spheroidal
shapes (axis-symmetric ellipsoids) are very suitable choices for describing a variety of vug
geometries. These shapes can cover geometries with an aspect ratio close to 1, spherical
geometry, as well as elongated, needle-like shapes with a large aspect ratio. Isolated vugs
will be treated as being spherical or spheroidal in shape, whereas vugs will be treated as elon-
gated spheroidal shapes and fractures will be treated as vertical spheroidal disks. Therefore,
the spheroidal geometry will provide us sufficient flexibility to work with a wide variety
of vugs and fracture shapes. A spheroid is reduced to a sphere when the focal length of
the spheroid approaches zero. A prolate spheroid degenerates to a long rod when the focal
length of the spheroid approaches infinity, and it represents the connected vug geometry (a
tunnel geometry). An oblate spheroid degenerates to a flat spheroidal disk that can approx-
imate the fracture geometry. We use the term vug to address both vug and microfracture
inclusions.

The spatial resolution of petrophysical logs and cores is still very limited for a good
quality description of vuggy and fractured media. Standard sampling methods such as thin
sections, core plugs, and even whole core are perhaps, for most cases, too small to measure
the effective permeability of a vuggy and/or fractured medium. In particular, the standard
Hassler core plugs are too small to measure the effective permeability.

Mostly numerical methods have been widely used to investigate fluid flow in porous
media with vugs (Arbogast and Brunson 2007; Arbogast et al. 2004; Arbogast and Gomez
2009; Moctezuma-Berthier et al. 2002, 2004; Wieck et al. 1995; Zhao and Valliappan 1994),
where a coupled system of equations of flow including Stokes flow (Stokes’ law) in the vugs
and Darcy’s law in the matrix is solved by use of finite element or finite volume method.
Asymptotic solution to this problem through the homogenization technique was obtained
for the case of binary medium where a vug is periodically repeated through the porous
matrix (Arbogast and Lehr 2006; Bouchelaghem 2011a,b). At the fine scale, the Stokes
flow in the vug was coupled to the Darcy’s law in the matrix. A macroscopic Darcy’s law
governing fluid flow in the macroscale porous medium was obtained. The cell problem,
resulting in the macroscale effective permeability, was solved numerically for several vug
shapes byArbogast andLehr (2006).Analytical solutions for the cell problemof a similar case
for spheroidal vugs was obtained by Bouchelaghem (2011a, b). Another similar upscaling
approachwas presented by Popov et al. (2009) inwhich the Stokes–Brinkman equation rather
than the Darcy–Stokes equation was used at the fine scale to compute the upscaled effective
permeability of fractured karst carbonate reservoirs based on homogenization theory. The
Stokes–Brinkman equations can be reduced to either the Stokes or the Darcy equations by
appropriate choice of parameters to avoid the explicit formulation of the boundary conditions
at the fluid–matrix interfaces.

The exact analytical solution for fluid flow in porous media including a single circular or
slightly deformed circular-shaped vugwas obtained byRaja Sekhar and Sano (2000) andRaja
Sekhar and Sano (2003). Markov et al. (2010) developed an analytical solution for the fluid
flow and effective permeability of a vuggy porous media, including circular and spherical
vugs. Happel and Brenner (1983), using the separation of variables method, obtained for the
first time an analytical solution for Stokes flow past a spheroidal vugs. Fitts (1991) obtained
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Fig. 2 Schematic of the fluid
flow through a vuggy inclusion
located at the center of the matrix
cell

an analytical solution for fluid flow in the vuggy porous domain containing porous inclusions
in the shape of prolate or oblate spheroids.

The objective of this paper is to derive the effective permeability of a porous medium,
including spherical- and/or spheroidal-shaped vug and/or fracture inclusions. For this pur-
pose, an incompressible, steady-state, single-phase Darcian flow in the matrix medium is
coupled with Stokes flow inside the spheroidal vug. Then, analytic solutions for the Stokes
flow inside the spheroid are derived as a set of semi-separable solutions in terms of the ellip-
soidal coordinates (Charalambopoulos and Dassios 2002; Dassios 2007; Dassios et al. 1994,
2004; Iyengar and Radhika 2011, 2015; Radhika and Iyengar 2010). The fluid flow field in
the matrix medium is coupled with the Stokes flow in the vug through a no-jump condition on
normal velocities, jump on pressures, and the generalized Beavers–Joseph–Saffman condi-
tion given by Beavers and Joseph (1967) and Jones (1973) on the matrix and vug or fracture
interface. The equivalent permeability of the vug or fracture is obtained by substituting it with
a porous vug having the same external matrix pressure field. The effective permeability of the
ensemble of the system is obtained by using the volume averaging of the pressure field and
velocity over the domain (Rubin and Gómez-Hernández 1990). The effect of shape, spatial
distribution, and volume concentration of vugs on the effective permeability is investigated.

2 Mathematical Formulation of the Problem

Asteady-state axis-symmetric flowof an incompressible fluid is assumed in a porousmedium,
in which the fluid-filled vuggy inclusions of different sizes and shapes are scattered through-
out. The matrix domain is exposed to an external uniform pressure gradient. The size of a
matrix cell is assumed to be sufficiently large compared with the vug size; therefore, in the far
field the pressure field remains unaffected by the presence of vuggy inclusions. We begin our
analysis with the case of only one vuggy inclusion, Ωv, located at the center of a relatively
large matrix cell Ωm as shown in Fig. 2. The origin of the coordinate system is located at the
center of the vug. The external uniform pressure gradient is assumed to be in the x direction
of the elongated axis of the vug, denoted by the Cartesian coordinates (x, y, z).
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In the matrix domain, the conservation of mass and Darcy’s law can be expressed as

∇. um = 0, in Ωm, (1)

um = −km
μ

∇ pm, in Ωm, (2)

where um = (um, vm), pm, km , and μ denote the velocity vector, the pressure, the perme-
ability, and the fluid viscosity in the matrix domain, respectively. In general, the subscript m
refers to the matrix domain variables and properties. The fluid is assumed to be the same in
the matrix and vuggy domains. The pressure field for the matrix domain from Eqs. 1 and 2
can be written as

∇2 pm = 0, in Ωm. (3)

In a general orthogonal curvilinear coordinate system (χ1, χ2, χ3) with (eχ1 , eχ2 , eχ3) as
the base vectors and (h1, h2, h3) as the corresponding scale factors, the del and Laplacian
operator are as follows

∇ = 1

h1

∂

∂χ1
eχ1 + 1

h2

∂

∂χ2
eχ2 + 1

h3

∂

∂χ3
eχ3 , (4)

∇2 = 1

h1h2h3

[
∂

∂χ1

(
h2h3
h1

∂

∂χ1

)
+ ∂

∂χ2

(
h1h3
h2

∂

∂χ2

)]
. (5)

For the axis-symmetric fluid flow, where
∂

∂χ3
= 0, the stream function Ψm in the matrix

domain is introduced as

um = 1

h2h3

∂Ψm

∂χ2
, in Ωm,

vm = − 1

h1h3

∂Ψm

∂χ1
, in Ωm. (6)

Inside the vug, the fluid flow is assumed to be laminar and happening at small Reynolds
number with negligible inertial forces. This means that Stokes flow takes place inside the
vug, for which the steady-state mass and momentum balance equations can be written as

∇.uv = 0, in Ωv, (7)

∇ pv + μ∇ × ∇ × uv = 0, in Ωv, (8)

where, uv = (uv, vv) and pv denote the velocity vector and the pressure inside the vug
inclusion, respectively. We introduce the stream function Ψv inside the vug as

uv = 1

h2h3

∂Ψv

∂χ2
, in Ωv,

vv = − 1

h1h3

∂Ψv

∂χ1
, in Ωv. (9)

Obtaining the curl of Eq. 8, together with some mathematical manipulations, the stream
function in the Stokes domain satisfies the following equation

E4Ψv = E2(E2Ψv) = 0, in Ωv, (10)

where the differential operator E2 is given by

E2 = h3
h1h2

[
∂

∂χ1

(
h2
h1h3

∂

∂χ1

)
+ ∂

∂χ2

(
h1
h2h3

∂

∂χ2

)]
. (11)
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Using this notation, Eq. 8 can be written as

− 1

h1

∂pv
∂χ1

+ μ

h2h3

∂

∂χ2

(
E2Ψv

) = 0, in Ωv,

− 1

h2

∂pv
∂χ2

− μ

h1h3

∂

∂χ1

(
E2Ψv

) = 0, in Ωv. (12)

In the orthogonal curvilinear coordinate system, the differential operators ∇2 and E2

remain separable with respect to the spatial coordinates. The problem is closed with the
following set of regularity conditions and the boundary condition on the interface of the vug
and matrix domains.

Bounded Velocity Inside the Vug

lim
r→0

|Ψv(χ1, χ2, χ3)| < ∞, (13)

lim
r→0

|uv| < ∞, lim
r→0

|vv| < ∞, (14)

where r is the distance of any point inside the vug from the origin of coordinate system.

Regularity of Pressure Field at Infinity

lim
x→∞ pm = |∇(pm)∞|x . (15)

∇(pm)∞ is the uniform pressure gradient in the matrix in x-direction at infinity and is not
perturbed due to presence of the inclusion.

Continuity of the Normal Velocities on the Interface This condition guarantees the conserva-
tion of mass between porous matrix and the vug.

uv.n = um.n, on Γm,v, (16)

where n is the unit normal to the interface and Γm,v is the interface of the matrix cell and the
vug as shown in Fig. 2.

Pressure Jump on the Interface This condition represents the balance of two driving forces in
the normal direction along the interface, the kinematic pressure in the matrix and the normal
component of the normal stress in the vug.

− pm = −pv + 2μ n.ε.n, on Γm,v, (17)

where ε = 1

2

(∇uv + ∇uTv
)
is the rate of strain tensor given in the orthogonal coordinate

system as

εχ1,χ1 = 1

h1

∂uv
∂χ1

+ vv

h1h2

∂h1
∂χ2

, (18)

εχ2,χ1 = εχ1,χ2 = h2
h1

∂

∂χ1

(
vv

h2

)
+ h1

h2

∂

∂χ2

(
uv
h1

)
. (19)

Slip Condition for Tangential Velocities on the Interface This condition addresses the impor-
tant issue of how the porous media affect the flow at the interface. Beavers and Joseph (1967)
showed experimentally that a free fluid in contact with a porous medium flows faster than
a fluid in contact with a solid surface. This observation is taken into account by imposing a
slip boundary condition on the interface of the matrix and free fluid contact. Later, Saffman
(1971) showed that this slip is independent from the tangential velocity in the porous domain.
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Fig. 3 Spheroidal coordinates and a schematic of a spheroidal vug in the matrix

In the current work, we use the generalized form of Beavers–Joseph–Saffman slip bound-
ary condition proposed by Jones (1973). Thus, for complicated interface geometries other
than the plane interface, the generalized form of the slip boundary condition can be expressed
as

n.ε.τi = λ√
τi .km.τi

uv.τi , i = 1, 2 on Γm,v, (20)

where λ is an empirical coefficient, km is the permeability of the matrix domain, and τi is the
tangential unit vector to the interface (Fig. 2). Note that for axis-symmetric problems, i = 1
in the slip boundary condition.

3 Spheroidal Vug

Stream function in the vug domain and pore pressure in the host homogeneous porous media
can be analytically solved for certain geometries. Knowing these two functions, the other
characteristics of flow can be determined in the ensemble of the domain. In this study, we
present analytic solutions for vugs of prolate spheroidal shapes. The analytic solution for
oblate spheroid can be easily obtained using the same methodology.

Let us consider one prolate spheroidal fluid-filled vuggy inclusion Ωv located in the
homogeneous matrix medium Ωm with major axis a in the x-direction and minor axis b in
the y, z directions with a > b as shown in Fig. 3.

We employ the prolate spheroidal coordinate system (ξ, η, φ) with unit normal vectors
(eξ , eη, eφ), which is related to the Cartesian coordinate system through
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x = c cosh ξ cos η,

y = c sinh ξ sin η sin φ,

z = c sinh ξ sin η cosφ,

(21)

with
0 ≤ ξ < ∞, 0 ≤ η ≤ π, 0 ≤ φ ≤ 2π, (22)

and the focal length of the spheroid c as

c =
√
a2 − b2, (23)

For the sake of the notational convenience, the following change of variables is introduced

s = cosh ξ, t = cos η, (24)

and then,

x = cst,

y = c
√
s2 − 1

√
1 − t2 sin φ,

z = c
√
s2 − 1

√
1 − t2 cosφ.

(25)

The coordinates of any point inside of the spheroidal vug is given by

Ωv = {(s, t, φ) : 1 ≤ s ≤ so, −1 ≤ t ≤ 1, 0 ≤ φ ≤ 2π}, (26)

with so = a/c, which defines the prolate spheroid of semi-axes a, b. One can see that use
of the spheroidal coordinate system facilitates the definition of the boundary condition on
the contact of vug and porous media in terms of the boundary condition on s = so. Besides,
the E2 and ∇2 operators remain separable with respect to the spheroidal coordinate system
variables.

The prolate spheroidal coordinate scale factors are as follows

h1 = h2 = c
√
s2 − t2, h3 = c

√
s2 − 1

√
1 − t2. (27)

Using (s, t, φ) as the new coordinate variables leads to the following differential equation

∂

∂ξ
=

√
s2 − 1

∂

∂s
,

∂

∂η
= −

√
1 − t2

∂

∂t
. (28)

3.1 Fluid Flow Inside the Spheroidal Vug

We apply the same method introduced by Dassios et al. (1994) to solve the axis-symmetric
Stokes flow in the spheroidal coordinate system. Inside the spheroidal vug, the Stokes stream
function should satisfy Eq. 10, where the differential operator E2 in the spheroidal coordinate
system is given as

E2 = 1

c2(s2 − t2)

[
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂2

∂t2

]
. (29)

We define the kernel of E2 denoted by KerE2 as ensemble of all functions f that f satisfies
E2 f = 0. Similarly, if a function f satisfies E4 f = 0, it belongs to the kernel of E4

denoted by KerE4. We introduce the following series expansion for the stream function Ψv
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decomposed into two parts, the part already in KerE2 and the part not in KerE2, but still in
KerE4; thus, resulting in

Ψv(s, t) = c2Φ(s, t) + c2Θ(s, t), in Ωv. (30)

Θ(s, t) belongs to the KerE2 which gives

E2Θ = 0. (31)

Θ(s, t) is a trivial solution for KerE4. Φ(s, t) represents the remainder of the functions in
KerE4 which do not belong to KerE2

E2Φ �= 0, E4Φ = 0. (32)

The coefficient c2 preceding either of the terms on the right-hand side of Eq. 30 is for addi-
tional formulation convenience. In the following subsections, we define Θ and Φ separately.

Functions in Ker E2

Using the technique of separation of variables, it becomes possible to verify that Θ(s, t) ∈
KerE2 can be expressed in the form of a series as

Θ(s, t) =
4∑

i=1

∞∑
n=0

ai,nΘi,n(s, t), (33)

where ai,n are the constants to be defined and Θi,n is given by

Θ1,n(s) = Gn(s)Gn(t), (34a)

Θ2,n(s) = Gn(s)Hn(t), (34b)

Θ3,n(s) = Hn(s)Gn(t), (34c)

Θ4,n(s) = Hn(s)Hn(t), (34d)

where Gn and Hn are the Gegenbauer polynomials of first and second kind and of degree
− 1

2 , which is given in “Appendix 1.”

Functions in Ker E4

We look for the functions Φ(s, t) with E2Φ ∈ KerE2, and then Φ ∈ KerE4. Let us introduce
the following series expansion for Φ(s, t) as

Φ(s, t) =
4∑

i=1

∞∑
n=0

Φi,n(s, t). (35)

Then, the stream function inside the vug will be rewritten as

Ψv(s, t) =
4∑

i=1

(Ψv)i (s, t) = c2
4∑

i=1

∞∑
n=0

Φi,n(s, t) + c2
4∑

i=1

∞∑
n=0

Θi,n(s, t). (36)

The functions Φi,n(s, t) are defined so that

E2Φi,n(s, t) = Ci,nΘi,n(s, t), in Ωv, (37)

for i = 1, . . . , 4, n = 0, 1, 2, . . ., where Ci,n is the constant to be defined later. One can
deduce from the previous equations that

E4Φi,n(s, t) = E2 (
E2Φi,n(s, t)

) = Ci,n E
2Θi,n(s, t) = 0. (38)
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Let us study Eq. 37 for i = 1[
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂2

∂t2

]
Φ1,n(s, t) = c2 C1,n(s

2 − t2)Gn(s)Gn(t). (39)

In general, the equation in the form of[
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂2

∂t2

]
U (s, t) = fm(s)gn(t), (40)

where fm and gn are the Gegenbauer polynomials of the first or second kind and of order n
and m, with n �= m and n + m �= 1, has a particular solution defined in terms of a separable
function as

Un,m(s, t) = fm(s)gn(t)

(n − m)(n + m − 1)
. (41)

Using relations given by Eqs. 85 and 86 in “Appendix 1,” the terms including s2 and t2 on the
right-hand side (RHS) of Eq. 39 are absorbed into Gegenbauer polynomials. Consequently,
the solution of Eq. 39 is

Φ1,n(s, t) = c2 C1,n

( −αn

2(2n − 1)
Gn−2(s) + βn

2(2n + 1)
Gn+2(s)

)
Gn(t)

−c2 C1,nGn(s)

(
αn

2(2n − 1)
Gn−2(t) − βn

2(2n + 1)
Gn+2(t)

)
, (42)

where αn, βn, γn for n ≥ 4 are given by Eq. 87 in “Appendix 1.” As long as we just use the
terms including Gegenbauer polynomials of first kind, one can redefine αn, βn, γn for n < 4,
as

α0 = α1 = α2 = α3 = 0,

γ0 = 1, γ1 = 1, γ2 = 1

5
, γ3 = 3

7
,

β0 = −2, β1 = 2, β2 = 4

5
, β3 = 4

7
.

(43)

Note that Φ1,n only includes the particular solution to nonhomogeneous Eq. 37 and the
solution to the homogeneous problem will be included in Θ1,n . Therefore, (Ψv)1 includes
the complete set of the solution as follows

(Ψv)1(s, t) = c2
∞∑
n=0

Φ1,n(s, t) + c2
∞∑
n=0

a1,nΘ1,n(s, t), (44)

which can be written as

(Ψv)1(s, t) = c2
∞∑
n=1

g1,n(s)Gn(t), (45)

with

g1,n = a1,nGn(s) + c2
(

βn−2C1,n−2

2(2n − 3)
− αnC1,n

2(2n − 1)

)
Gn−2(s)

+ c2
(

βnC1,n

2(2n + 1)
− αn+2C1,n+2

2(2n + 3)

)
Gn+2(s). (46)

Applying the same procedure for Φ2,n(s, t),Φ3,n(s, t),Φ4,n(s, t) in Eq. 37, and associ-
ating the terms including Gegenbauer polynomials of t of the same order, the complete set
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of solutions for Stokes stream function can be determined. In our work, the general solution
for Stokes stream function can be simplified using the following assumptions:

• The solution has to be bounded on the axis of symmetry; thus, i is limited to i = 1, 3 in
Eq. 36 regarding to the definition of Θi,n given in Eq. 34.

• The solution has symmetry with respect to t and then only the even n values are used,
n = 2k.

• The solution has to be bounded inside the spheroidal vug when s → 1 and then i is
limited to i = 1, regarding to the definition of Θi,n given in Eq. 34.

Eventually, the stream function inside the spheroidal vug is given as

Ψv(s, t) = c2
∞∑
k=1

g1,2k(s)G2k(t). (47)

Note that none of the individual terms in Eq. 47 satisfies E4Ψv(s, t) = 0, but the sum of all
the other terms do. This condition can be investigated using the method for developing the
solution.

Once the stream function in the vug is defined, we can determine the pressure field inside
the vug using Eqs. 12 and 28 as follows

(s2 − 1)
∂pv
∂s

= − μ

cρ

∂

∂t

(
E2Ψv

)
,

(1 − t2)
∂pv
∂t

= μ

cρ

∂

∂s

(
E2Ψv

)
,

(48)

and the pressure field inside the spheroidal vug is given as

pv(s, t) = −
∞∑
k=1

μ c

2k(2k − 1)
C1,2k P2k−1(s)P2k−1(t). (49)

Pn(t) is the Legendre polynomial of first kind and order n.

3.2 Fluid Flow in the Matrix Domain Outside the Spheroidal Vug

The host porous media pressure field outside the vug should satisfy the Laplacian equation
given by Eq. 3, with the Laplacian differential operator given for the spheroidal coordinate
system as

∇2 = 1

c2(s2 − t2)

[
(s2 − 1)

∂2

∂s2
+ (1 − t2)

∂2

∂t2
+ 2s

∂

∂s
− 2t

∂

∂t

]
. (50)

Considering the regularity of the far field pressure in Eq. 15 as

lim
s→∞ pm(s, t) = |∇(pm)∞|cst, (51)

the pressure field outside the spheroidal vug is given by

pm(s, t) =
∞∑
k=1

c F2k−1(s)P2k−1(t), (52)

with
F2k−1(s) = |∇(pm)∞| s δ1,2k−1 + A2k Q2k−1(s), (53)

123



Effective Permeability of a Porous Medium with Spherical and… 625

where δ1,2k−1 is the Kronecker delta function, Qn(s) is the Legendre polynomial of second
kind and order n, and A2k are the coefficients to be determined later. As the pressure field has
to be odd with respect to the axis of symmetry, only odd terms are included in this solution.
Note that

lim
s→∞

Q2k−1(s)P2k−1(t)

cst
= 0. (54)

The stream function in Darcy’s domain is obtained through the definition of the velocity field
using Eq. 6 as

(s2 − 1)
∂pm
∂s

= − μ

kmcρ

∂Ψm

∂t
,

(1 − t2)
∂pm
∂t

= μ

kmcρ

∂Ψm

∂s
. (55)

The stream function outside the spheroidal vug is given by

Ψm(s, t) = −c2km
μ

(s2 − 1)(1 − t2)

2k(2k − 1)
F ′
2k−1(s)P

′
2k−1(t), (56)

where ′ denotes derivative. It can be shown that

lim
x→∞ Ψm = 1

2
U∞r2, (57)

where r2 = c2(s2 − 1)(1 − t2) and U∞ = − km
μ

|∇(pm)∞|.
3.3 Coupling Matrix and Stokes Domains

The undetermined coefficients of the stream function in the vug and the pressure field in host
porous media can be determined by imposing the boundary conditions given in Eqs. 16, 17
and 20. The condition given by Eq. 16 in the spheroidal coordinates is as follows

∂Ψv

∂t
= ∂Ψm

∂t
, on s = so, (58)

which after associating the coefficients of the same t-dependent functions yields

g1,2k(so) = − km
2k(2k − 1)μ

(s2o − 1)F ′
2k(so). (59)

The generalized Beavers–Joseph–Saffman condition described in Eq. 20, with the tangential
component of the rate of the strain tensor εξη = εηξ given as

εξη = 1

c3

⎡
⎣

√
(s2 − 1)

(1 − t2)

( −2s

(s2 − t2)2
∂Ψv

∂s
+ 1

(s2 − t2)

∂2Ψv

∂s2

)

−
√

(1 − t2)

(s2 − 1)

(
2t

(s2 − t2)2
∂Ψv

∂t
+ 1

(s2 − t2)

∂2Ψv

∂t2

)⎤
⎦ ,

reduces to (
−2s

∂Ψv

∂s
+ (s2 − t2)

∂2Ψv

∂s2

)
−

(
2t

∂Ψv

∂t
+ (s2 − t2)

∂2Ψv

∂t2

)

= cλ√
km

√
s2 − 1(s2 − t2)

3
2
∂Ψv

∂s
, on s = so. (60)
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Replacing the Stokes stream function from Eq. 47 yields the following equation

∞∑
k=1

−2so(s2o − 1)

2k(2k − 1)
g′
1,2k(so)P

′
2k−1(t)

+
[

s2o − 1

2k(2k − 1)
g′′
1,2k(so) + g1,2k(so)

]
(s2o − t2)P ′

2k−1(t)

+2g1,2k(so)t P2k−1(t) =
∞∑
k=1

λc√
km

√
s2o − 1

2k(2k − 1)
g′
1,2k(so)(s

2
o − t2)

3
2 P ′

2k−1(t). (61)

It is complicated to separate the coefficients of P2k−1(t) or P ′
2k−1(t) for Eq. 61 in order to

equalize the coefficients of the same terms. We rewrite all the terms in the form of Legendre
polynomial expansion series. For computational purposes, this is a good technique for work-
ing with nonsimilar terms. Using the Legendre series expansion as shown in “Appendix 2,”
all of the terms in Eq. 61 are expressed in terms of P2n(t), and we can equalize the similar
terms.

The pressure jump condition given by Eq. 17 in the spheroidal coordinate system with

εξξ = 1

c3(s2 − t2)

(
∂2Ψv

∂s∂t
+ t

s2 − t2
∂Ψv

∂s
− s(2s2 − 1 − t2)

(s2 − t2)(s2 − 1)

∂Ψv

∂t

)
, (62)

and is given as

∞∑
k=1

c2

2

(
C1,2k P2k−1(so) + F2k−1(s)/μ

)
(s2o − t2)2P2k−1(t)

=
∞∑
k=1

g′
1,2k(so)(s

2
o − t2)P2k−1(t)

−
∞∑
k=1

g′
1,2k(so)t G2k(t) −

∞∑
k=1

g1,2k(so)
so(2s2o − 1 − t2)

s2o − 1
P2k−1(t). (63)

We rewrite all of the terms in the form of the Legendre polynomial series expansion and
equalize the similar terms. For the sake of computational ease, we replace the infinite sum∑∞

k=1 with finite sum
∑N

k=1 with N ≥ 1. Having 3N equations given by Eqs. 59, 61, and
63, we can obtain 3N unknowns C1,2k, a1,2k, A2k by solving an algebraic linear system of
equations.

In “Appendix 5,” it is shown that when the spheroidal semi-focal distance tends to zero
the flow problem reduces to problem of flow in porous domain with spherical vugs which is
expected to be so.

Figure 4 shows the pressure field and streamlines in a matrix cell, including a spheroidal
vug with aspect ratio equal to 1. The streamlines in the area near the vug tend to pass through
the fluid-filled vug, which has less resistance through which to pass. The pressure remains
constant inside the vug, which means negligible pressure drop occurs in the vug.

The effect of the Beavers–Joseph–Saffman coefficient on the flow is shown in Fig. 5. As√
km
λ

becomes larger, the streamlines are no longer continuous on the interface of the matrix
and vug domains, and the tangential component of the velocity in the vug domain becomes
much more significant. Because the tangential component of the velocity on the interface on
the matrix side is negligible, the inflow and outflow to and from the matrix domain is normal
to the interface.
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Fig. 4 Streamline and pressure field in a porous medium, including vuggy inclusion b/a = 1. a Streamline.
b Pressure field

Figure 6 shows the flow field for different aspect ratios of the vuggy inclusion. As shown,
the fluid in the matrix domain tends to pass through the vug. Inside the vug, the streamline
tends to be a straight line in the general direction of the flow close to the longitudinal axis of
the vug.

Figure 7 shows an example of fluid flow in a matrix cell, including randomly distributed
vugs with various aspect ratios. The objective here is to develop a method for determining the
effective permeability of such a domain. In the next section, we will determine the equivalent
permeability of a single spheroidal vug.

4 Equivalent Permeability of a Single Spheroidal Vug

The equivalent permeability of a fluid-filled prolate spheroidal vug Ωv in a porous matrix
Ωm will be determined in this section. We assume that the spheroidal vug can be replaced by
a porous inclusion that creates the same flow field exterior to the vug. We determine the flow
properties of this porous inclusion notably its permeability which can be considered as the

123



628 M. Rasoulzadeh, F. J. Kuchuk

Ψ
  b

/a
=1

.0
, k

m
=0

.0
01

 m
D

, λ
=5

.0

0
0.

5
1

1.
5

2
−2

−1
.5−1

−0
.50

0.
51

1.
52

(a)

Ψ
  b

/a
=1

.0
, k

m
=0

.0
01

 m
D

, λ
=2

.0

0
0.

5
1

1.
5

2
−2

−1
.5−1

−0
.50

0.
51

1.
52

(b)

Ψ
  b

/a
=1

.0
, k

m
=0

.0
01

 m
D

, λ
=0

.2

0
0.

5
1

1.
5

2
−2

−1
.5−1

−0
.50

0.
51

1.
52

(c)

Ψ
  b

/a
=1

.0
, k

m
=0

.0
01

 m
D

, 
λ=

0.
1

0
0.

5
1

1.
5

2
−2

−1
.5−1

−0
.50

0.
51

1.
52

(d)

Fig. 5 Streamlines in the matrix medium with a permeability of km = 0.001 mD through a spheroidal vug
of b/a = 1 for several Beavers–Joseph coefficients. a λ = 5. b λ = 2. c λ = 0.2. d λ = 0.1
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Fig. 6 Fluid flow in the matrix medium with a permeability of km = 0.001 mD through spheroidal vugs
with various aspect ratios. The local corrugations are due to very close numerical precision of stream function
values. a b/a = 0.75. b b/a = 0.5. c b/a = 0.25

equivalent permeability of the vug. The permeability of a porous inclusion (Ωm)in of same
size as the fluid-filled vug which generates the same pressure field in the matrix domain will
be obtained. The pressure inside the porous spheroidal inclusion should satisfy the Laplacian
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Fig. 7 Streamlines for a matrix domain with a permeability of km = 0.001mDwith spheroidal vugs scattered
through with the Beavers–Joseph coefficient λ = 0.1

equation. We apply the method of separation of variables to the Laplacian equation. In fact,
we assume that the solution to the Laplacian equation in the spheroidal coordinate system
can be found in terms of multiplication of two sets of pure functions of s , t the independent
variables of the spheroidal coordinate system. Considering the condition of bounded pressure
at the center of inclusion, the pressure inside the porous spheroidal inclusion is given as

(pm)in = c
∞∑
k=1

D2k P2k−1(s)P2k−1(t), in (Ωm)in (64)

where (pm)in represents the pressure in the porous spheroidal inclusion. This means that the
first approximation of the stream function inside the porous inclusion is a straight line, which
is a result of using Darcy’s law for describing the fluid flow inside the inclusion.

The boundary condition for coupling a porous inclusion and the matrix medium is the
no-jump boundary condition for the pressures and the normal fluxes on the interface given
as

pm = (pm)in, on s = so, (65)
km
μ

∂pm
∂s

= (km)in

μ

∂(pm)in

∂s
, on s = so, (66)

where pm is given in Eq. 52, and (km)in is the permeability of the porous inclusion which
is the equivalent permeability of the spheroidal vug that is determined. After associating the
coefficient of terms P2k−1(t), we determine the undetermined coefficients of pressure in the
porous inclusion as

D2k = F2k−1(so)

P2k−1(so)
. (67)

123



Effective Permeability of a Porous Medium with Spherical and… 631

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

b/a

(k
m
) i
n

 

 

λ=1, 2, 5

Fig. 8 Effect of aspect ratio and the Beavers–Joseph–Saffman coefficient on the equivalent permeability of
a spheroidal vug for km = 0.001mD

Finally, the equivalent permeability of a prolate spheroidal vug with outer spheroid so located
in a homogeneous matrix of permeability km is given as

(km)in = km

∑∞
k=1 F

′
2k−1(so)∑∞

k=1
F2k−1(so)

P2k−1(so)
P ′
2k−1(so)

. (68)

Note that this is the component of the permeability tensor in the direction of the larger
semi-axis of prolate spheroid.

In Fig. 8, the equivalent permeability for a spheroidal vug is plotted for various aspect
ratios. The highest permeability is for the spherical vug when the aspect ratio b/a is equal to
1. For a fix value of a, as the vug becomes more elongated, its volume fraction reduces and,
respectively, the equivalent permeability reduces. For low aspect ratios, i.e., in the case of
this figure for b/a < 0.1 the medium can be assumed as a homogeneous medium. In other
words, nonconnected narrow fractures can be ignored.

The effect of Beavers–Joseph–Saffman boundary condition on the equivalent permeabil-
ity of the spheroidal vug is shown in Fig.8. For larger values of the Beavers–Joseph–Saffman
coefficient λ, as the streamlines on the interface are semi-continuous, the equivalent perme-
ability of the vug is higher than the case of lower values of λ, where a rotation zone appears
inside the vug due to the inclination of the streamlines.

Figure 9 shows that the equivalent permeability of a spheroidal vug located in a higher
permeable matrix is less than the equivalent permeability of the same vug placed in a lower
permeable matrix. The higher permeable host media reduces the effect of presence of vugs.

Figure 9, illustrates the role of the host matrix permeability on the equivalent permeabil-
ity of a spheroidal vug. The equivalent permeability of a spheroidal vug placed in a high
permeable matrix is less than the equivalent permeability of the same vug placed in a low

123



632 M. Rasoulzadeh, F. J. Kuchuk

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

b/a

(k
m
) i
n

 

 

km = 1e − 3 md

km = 1e − 4 md

km = 1e − 5 md

Fig. 9 Effect of the matrix permeability on the equivalent permeability of a spheroidal vug for λ = 1

permeable host matrix. The more permeable the host matrix is the role of the vug is less
significant.

5 Effective Permeability of the Matrix Medium Including Spheroidal Vugs

Previously, we substituted the fluid-filled vug with its equivalent porous inclusion having an
equivalent permeability, but greater than the permeability of the host matrix. Now, the matrix
domain under consideration consists of a set of locally homogeneous porous regions. The
effective permeability of the entire nonhomogeneous porous domain is desired.

The effective medium theory provides the effective permeability for a binary medium,
where all the inhomogeneities are identical in shape, orientation, size, and physical prop-
erties. The effective medium theory is based on analyzing the perturbation of one single
inhomogeneity located at the center of porous matrix and superposition of the remaining
inhomogeneities effect, assuming they can be considered to be at the center and have no
interference with other inhomogeneities.

Three formulas widely used in the field of effective medium theory are the Maxwell
formula, the self-consistent (or symmetric Bruggeman) formula and the differential or
asymmetric (Bruggeman 1935) formula. The Maxwell formula is widely used of the three
equations. The Maxwell formula for the effective permeability of a binary domain including
porous spheroidal inclusions is given as

(k)eff = km + ω((km)in − km)

1 + di (1 − ω)((km)in − km)/km
, (69)

where keff is the effective permeability of the entire porous medium, ω is the volume fraction
of inclusions, km is the permeability of the host matrix, (km)in is the equivalent permeability
of one inclusion, and di is the depolarization coefficient for a given direction. In general, the
Maxwell formula provides reasonable results for isotropic assemblages of nonoverlapping
inclusions in binary media.
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Another method for determining the effective permeability of a nonhomogeneous porous
medium is by upscaling through the direct solution of the steady-state problem. In this
method, the equivalent permeability tensor for an arbitrary nonhomogeneous upscaling cell
is calculated from the solution of the steady-state flow equation in a domain that corresponds
to the upscaling cell itself. The equivalent permeability tensor is computed in such a way that
Darcy’s law between the volume averages of the small-scale fluxes and field-scale volumetric
fluxes and gradients is satisfied (Rubin and Gómez-Hernández 1990), i.e.,

− keff = −〈k∇ p〉
〈∇ p〉 , (70)

where k is the local permeability, and the angular brackets imply the volume integral defined
as

〈 f 〉 =
∫
V

f dv. (71)

Let us determine the effective permeability of a spherical porous cell of radiusρ1, including
one spherical fluid-filled vug of radius ρo < ρ1 located at the center of a matrix volume. The
pressure field (pm)in,s inside the vug’s equivalent spherical porous inclusion and the pressure
field (pm)s outside the spherical vug in the matrix are given in “Appendix 4” in Eqs. 105,
115 as

(pm)in,s = Dinρ cos θ, 0 ≤ ρ ≤ ρo,

(pm)s =
(
D

ρ2 + |∇(pm)∞|
)
cos θ, ρo ≤ ρ ≤ ρ1, (72)

where D, Din are coefficients to be determined later. The volume average of the pressure
field in the entire domain is expressed as the sum of volume average of pressure in the porous
inclusion and in the matrix written as〈

∂p

∂x

〉
=

〈
∂(pm)in,s

∂x

〉
in

+
〈
∂(pm)s

∂x

〉
m

. (73)

In the spherical coordinates, the volume integral is given by

〈 f 〉 =
∫ 2π

0

∫ π

0

∫ ρo

0
f (ρ, θ, φ)ρ2 sin θdρdθdφ. (74)

Because x = ρ cos θ , the pressure gradient in the x direction is given as

∂(pm)in,s

∂x
= Din,

∂(pm)s

∂x
= ∂(pm)s

∂ρ

1

cos θ
− ∂(pm)s

∂θ

1

ρ2 sin θ
= − D

ρ3 + |∇(pm)∞|. (75)

Substituting this equation in Eq. 70 and performing the volume average of the steady-state
solution yield the effective permeability of the porous volume, including one spherical vug
in the center given by

keff = km + ω((km)in,s − km)

−ω((km)in,s − km)

km
ln

ρo

ρ1
+ 1 + 1

3

(km)in,s − km
km

(1 − ω)

, (76)

with (km)in,s given in Eq. 118. This equation is equivalent to Maxwell’s formula given in

Eq. 69 if
ρo

ρ1
∼ 1. As one can see, using Maxwell’s formula would result in overestimating

the effective permeability.
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Fig. 10 Normalized effective permeability of the porous domain, including spheroidal vugs versus ω as vug
volume fractions and n as number of vugs

Fig. 11 Effective permeability of a vuggy porous domain for a fixed-volume fraction of vugs ω = 0.0049
and various aspect ratios versus number of vugs with λ = 1, km = 0.001 mD

Fig. 12 Effective permeability of a vuggy porous domain with several spheroidal vugs randomly distributed
in domain and with random aspect ratios for λ = 1, km = 0.001 mD
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Fig. 13 Example of pressure field for a random distribution of vugs

Using the pressure averaging approach for obtaining effective permeability as given in
Eq. 70 for a spheroidal vug, one can use the pressure field that has already been obtained
in the previous sections to determine the effective permeability. Note that in the spheroidal
coordinate system, the volume integral is given as

〈 f 〉 =
∫ 2π

0

∫ 1

−1

∫ s

1
f (s, t, φ)c3(s2 − t2)ds dt dφ, (77)

and
∂ f

∂x
= ∂ f

∂s

1

ct
+ ∂ f

∂s

1

cs
. (78)

Figure 10 shows the normalized effective permeability of porous matrix including spherical
and spheroidal vugs with various sizes. It can be seen that Maxwell method results in overes-
timating the effective permeability. Also, the effective permeability increases as the volume
fraction of vugs increases. The elongated vugs result in more effective permeability, for the
same volume fraction of vugs.

123



636 M. Rasoulzadeh, F. J. Kuchuk

In Fig. 11, the effective permeability of a vuggy porous domain for a fixed-volume fraction
of vugs is plotted vs. various numbers of vugs as well as for various aspect ratios. It can be
seen that for the same volume fraction of vugs, the narrower the vugs are, the higher the
effective permeability is. One vug enhances effective permeability more than several vugs
with the same volume fraction, but the effect of the increase in number of vugs is not very
significant. The small fluctuation in the results might be because of numerical error during
calculating the volume integral.

The pressure field at the extents of the matrix domain is assumed to be uniform and
unperturbed by the presence of the vugs; that is why the spatial position of the vugs has no
significant effect on the effective permeability of the ensemble of domain.

The effective permeability of several cases of random distribution and various sizes of
spheroidal vugs within a matrix medium is shown in Fig. 12. Overall, we can state that the
parameter having the largest impact on the effective permeability is the volume fraction of
the vugs. For a fixed-volume fraction, the less the number of vugs is, the higher the effective
permeability will be. Examples of pressure field of some of the cases the authors considered
are shown in Fig. 13.

6 Conclusions

The analytical solutions for the problem of the axis-symmetric flow of an incompressible
fluid in a porousmatrix including spherical and spheroidal vugs have been presented. Darcian
flow in the matrix was coupled with Stokes flow in the vug through a no-jump condition of
normal velocities, jump on pressures, and generalized Beavers–Joseph–Saffman condition,
on the interface of the matrix and vug. The generalized form of the Beavers–Joseph–Saffman
boundary condition allowed us to consider even very small sizes of vugs. The equivalent
permeability of the vug was obtained by substituting it with a porous vug having the same
external matrix pressure field. The developed solution reduces to the solution for spherical
vugs when the focal length of the spheroid approaches zero.

In general, the equivalent permeability of the vug and the effective permeability of the
entire domain are directly proportional to the volume fraction of the vug. The bigger the vugs
volume is, the higher the effective permeability of the ensemble of the domain will be. For a
fixed spheroidal major axis length, when the aspect ratio (the ratio of major spheroid axis to
the minor spheroid axis) approaches one, the spheroid becomes a sphere, the volume fraction
increases, and as a result, the equivalent permeability of the vug reaches its maximum. In
contrary, for a given volume fraction, the minimum equivalent permeability is related to the
minimum (unit) aspect ratio, that is when the vug becomes a sphere. The spatial position of
the vugs has negligible effect on the effective permeability of the ensemble domain. Different
spatial arrangement of one same set of vugs of various sizes does not change the effective
permeability of the medium. This is a result of the regularization conditions at infinity that
we imposed on the problem. For a fixed aspect ratio and same total vug volume fraction,
increasing the number of vugs can reduce the effective permeability; however, the effect is
not very significant. This is somehow a trivial result; a single big vug placed at the center of
the porous domain enhances the effective permeability more compared to the case when the
same vug volume is divided to smaller vugs spread out in the porous domain. The interaction
of the streamlines through the passages between the vugs reduces a little bit the effective
permeability. The difference is negligible.

Acknowledgements The authors are grateful to Schlumberger for permission to publish this article.
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Appendix 1: Gegenbauer Polynomials

The nth degreeGegenbauer polynomials of first and second kind and of degree− 1
2 are defined

as

Gn(x) = 1

2n − 1
(Pn−2(x) − Pn(x)) , (79)

G0(x) = 1, (80)

G1(x) = −x, (81)

Hn(x) = 1

2n − 1
(Qn−2(x) − Qn(x)) , (82)

H0(x) = −x, (83)

H1(x) = −1, (84)

with the following properties

x2G0(x) = G0(x) − 2G2(x), (85a)

x2G1(x) = G1(x) + 2G3(x), (85b)

x2G2(x) = 1

5
G2(x) + 4

5
G4(x), (85c)

x2G3(x) = 3

7
G3(x) + 4

7
G5(x), (85d)

x2Gn(x) = αnGn−2(x) + γnGn(x) + βnGn+2(x), (85e)

and

x2H0(x) = x2G1(x), (86a)

x2H1(x) = −x2G0(x), (86b)

x2H2(x) = −1

3
G1(x) + 1

5
H2(x) + 4

5
H4(x), (86c)

x2H3(x) = 1

15
G0(x) + 3

7
H3(x) + 4

7
H5(x), (86d)

x2Hn(x) = αnHn−2(x) + γnHn(x) + βnHn+2(x), (86e)

with

αn = (n − 3)(n − 2)

(2n − 3)(2n − 1)
, n ≥ 4 (87a)

βn = (n + 1)(n + 2)

(2n − 1)(2n + 1)
, n ≥ 4 (87b)

γn = 2n2 − 2n − 3

(2n + 1)(2n − 3)
, n ≥ 4. (87c)
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Appendix 2: Series Expansion in Terms of the Legendre Polynomials

The orthogonality of the Legendre polynomials permits any function f (x) to be expressed
in terms of a series in the basis of the Legendre polynomials Pn(x) as

f (x) =
∞∑
n=0

an Pn(x), (88)

with

an = 2n + 1

2

∫ 1

−1
f (x)Pn(x)dx . (89)

If f (x) is an even function, then the expansion includes only even terms; thus,

f (x) =
∞∑
k=0

a2k P2k(x), (90)

with

ak = (4k + 1)
∫ 1

0
f (x)P2k(x)dx . (91)

Appendix 3: Reduction to the Spherical Coordinate System

As it is shown in Fig. 14, when the semi-focal length c of the spheroidal coordinate system
approaches zero, the coordinate system (ξ, η, φ) reduces to a spherical coordinate system
(ρ, θ, φ) where

Fig. 14 Spheroidal coordinate and spherical coordinate systems
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ρ =
√
x2 + y2 + z2 =

√
s2 + t2 − 1, (92)

when c → 0+, noting that s ≥ 1 and −1 ≤ t ≤ 1; thus,

lim
c→0+ c s = ρ, (93)

lim
c→0+ t = cos θ. (94)

As a result, the term in the spheroidal coordinate system representing the radius is pro-
portional to the radius in the spherical coordinate system.

It is possible to show that the results obtained in the spheroidal coordinate system can be
converted to the actual results in the spheroidal coordinate if one replaces s by s/c, and then
takes the limit of cnGn(s/c) and c1−nHn(s/c) as c → 0+ and then replaces s by r . We can
show that

lim
c→0+

1

2c
ln

x + 1

x − 1
= 1

ρ
, (95)

where we have used the expansion

1

2
ln

x + 1

x − 1
= coth−1 x = 1

x
+ 1

3x3
+ 1

5x5
+ · · · . (96)

The Gegenbauer polynomials have the equivalents when c → 0+ given by

c0 G0(s) → 1, c G1(s) → −ρ,

c2G2(s) → −1

2
ρ2, c3G3(s) → −1

2
ρ3,

c4G4(s) → −5

8
ρ4, cnGn(s) → (const)ρn, n ≥ 5, (97)

1

c
H2(s) → 1

3ρ
,

1

c2
H3(s) → 1

15ρ2 ,

1

c3
H4(s) → 2

105ρ3 ,
1

cn−1 Hn(s) → const

ρn−1 , n ≥ 5. (98)

Prior to that, we have the following

cn Pn(s) → (const)ρn, n ≥ 0,

c−(n+1)Qn(s) → (const)

ρn+1 , n ≥ 0. (99)

Appendix 4: Fluid Flow in the Matrix Medium Including a Spherical Vug

Flow field in the matrix and in the spherical vug

For a spherical vug with a radius ρ = ρo located in the center of the porous domain of
permeability km, the spherical coordinate system (ρ, θ, φ) with unit vectors (eρ, eθ , eφ) is
used. The scale factors for the spherical coordinate system are given as

h1 = 1, h2 = ρ, h3 = ρ sin θ. (100)

The solution to Stokes stream function that satisfies E4Ψs = 0 in the spherical coordinate
system together with the conditions in Eqs. 13 and 14 is given as

(Ψv)s(ρ, θ) = (Bρ2 + Cρ4) sin2 θ, in (Ωv)s, (101)
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(uv)s(ρ, θ) = 2(B + Cρ2) cos θ, in (Ωv)s, (102)

(vv)s(ρ, θ) = −2(B + 2Cρ2) sin θ, in (Ωv)s, (103)

where we have used Eq. 9. The subscript “s” is used to point out that it is for a spherical vug.
The pressure field can be determined by using Eq. 12 as

(pv)s(ρ, θ) = 20C μ ρ cos θ, in (Ωv)s. (104)

Outside the spherical vug, the pressure field satisfies the Laplacian equation previously given
in Eq. 3. This equation together with the condition of regularity of the pressure gradient at
infinity (Eq. 15) gives the following determination for the matrix pressure as

(pm)s(ρ, θ) = (
D

ρ2 + |∇(pm)∞|ρ) cos θ, in (Ωm)s. (105)

Consequently, the velocity in the matrix domain is given as

(um)s(ρ, θ) = km
μ

(
2
D

ρ3 − |∇(pm)∞|
)
cos θ, in (Ωm)s,

(vm)s(ρ, θ) = km
μ

(
D

ρ3 + |∇(pm)∞|
)
sin θ, in (Ωm)s. (106)

Using Eq. 6, the stream function exterior to the vug can be written as

(Ψm)s(ρ, θ) =
(
km
μ

D

ρ
+ 1

2
U∞ρ2

)
sin2 θ, in (Ωm)s, (107)

where U∞ = − km
μ

|∇(pm)∞|. The three sets of boundary conditions given in Eqs. 16, 17,
and 20 are applied on the interface of the matrix and Stokes domain as

(uv)s = (um)s, on ρ = ρo,

−(pv)s + 2μ
∂(uv)s

∂ρ
= −(pm)s, on ρ = ρo,

λ√
km

(vv)s = ρ
∂

∂ρ

(
(vv)s

ρ

)
+ 1

ρ

∂(uv)s
∂θ

, on ρ = ρo. (108)

Applying the boundary conditions of Eq. 108 to the velocity and pressure fields already
obtained for the interior and exterior of the vug, which results in a system of three equations
and three unknowns B,C, D, solvable as

C =
3

2

km
μ

λ|∇(pm)∞|
λρ2

o + 12λkm − 3
√
kmρo

, (109)

B = C(3
√
km − 2λρo)ρo, (110)

D = −|∇(pm)∞|ρ3
o + 18kmλ|∇(pm)∞|ρ3

o

λρ2
o + 12λkm − 3

√
kmρo

. (111)

Instead of the generalized form of the Beavers–Joseph–Saffman boundary condition,
Markov et al. (2010) have used the simplified form for the boundary condition expressed
as

λ√
km

vs = ∂vs

∂ρ
, on ρ = ρo. (112)
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If one uses the simplified form of the Beavers–Joseph–Saffman boundary condition as in
Eq. 112, then the matrix pressure field is different and is given as

D = −|∇(pm)∞|ρ3
o + 18kmλ|∇(pm)∞|ρ3

o

λρ2
o + 12λkm − 4

√
kmρo

. (113)

Equivalent Permeability of a Single Spherical Vug

A porous spherical inclusion (Ωm)in,s of radius ρ = ρo is located in the center of porous
medium. The effective permeability of this porous inclusion (km)in,s is chosen so that the
pressure and flow field out of the inclusion stay the same as in the case of a fluid-filled vug.
The pressure field inside the porous inclusion should satisfy the following equation

∇2(pm)in,s = 0, in (Ωm)in,s, (114)

where (pm)in,s represents the pressure in the porous inclusion.When considering the bounded
pressure at the center of inclusion, the following applies

(pm)in,s = Dinρ cos θ, in (Ωm)in,s. (115)

This means that the first approximation of stream function inside the porous inclusion is
a straight line which is a result of the use of Darcy’s law to describe the flow inside the
inclusion. The boundary condition for coupling two porous domains inside and outside the
inclusion is the no-jump boundary condition on the pressure and the normal fluxes on the
interface as

(pm)s = (pm)in,s, on ρ = ρo, (116)
km
μ

∂(pm)s

∂ρ
= (km)in,s

μ

∂(pm)in,s

∂ρ
, on ρ = ρo, (117)

where (pm)s is given in Eq. 105 and (km)in,s is the effective permeability of equivalent
spherical porous inclusion to be found. Solving the system of Eqs. 116 and 117 for D and
(km)in,s, we obtain

(km)in,s = km

(
1 − 3D

(D + |∇(pm)∞|ρ3
o )

)
, (118)

or

(km)in,s = ρ2
o

6

(
1 − 3

√
km

λρo

)
. (119)

Note that the simplified form of the Beavers–Joseph–Saffman boundary condition in Eq. 112
yields the effective permeability of the porous inclusion as

(km)in,s = ρ2
o

6

(
1 − 4

√
km

λρo

)
. (120)

Appendix 5: Reduction in a Spheroidal Vug to Spherical Vug

In this section, we investigate the behavior of the flow for the coupled Stokes flow andDarcy’s
law in a vuggy porous medium with a spheroidal vug in the limit when the semi-focal length
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of the spheroid approaches zero. This behavior is expected to comply with the results of the
solution for the vuggy porous medium with a spherical vug presented in Appendix D.1.

Stream Function Inside the Vug Equation 47 gives the first approximation for the stream
function inside the spheroidal vug. In the limit c → 0+, and using Eqs. 93, 94, and 97, the
stream function reduces to the same form as the stream function inside the spherical vug
given in Eq. 101 as

Ψv(s, t) =
(
c2a2G2(s)︸ ︷︷ ︸

≡−a2
2

ρ2

+ c4
(

β2C2

10

)
G4(s)

︸ ︷︷ ︸
≡−C2

20
ρ4

)
G2(t)︸ ︷︷ ︸

≡1

2
sin2 θ

. (121)

which is
Ψv(ρ, θ) = (

Bρ2 + Cρ4) sin2 θ, (122)

with

B = −a2
4

, C = −C2

40
. (123)

Pressure Field Inside the Vug The first approximation for the pressure field inside the spher-
oidal vug is given in Eq. 49 as

pv(s, t) = −1

2
μ c C2st, (124)

and when c → 0+, using Eqs. 93 and 94, Eq. 124 reduces to

pv(ρ, θ) = 20μ Cρ cos θ, (125)

which is in accordance with the results obtained for the pressure inside the spherical vug
given in Eq. 104.

Pressure Field Outside the Vug The first approximation for the pressure field outside the
spheroidal vug in the matrix medium is given in Eq. 52 as

pm(s, t) = c A2

(
1

2
s log

(
s + 1

s − 1

)
− 1

)
t + c|∇(pm)∞|st, (126)

when c → 0+, and using Eqs. 93, 94, and 96, Eq. 126 reduces to the same form as the
pressure outside the spherical vug given in Eq. 105, i.e.,

pm(ρ, θ) =
(

D

ρ2 + |∇(pm)∞|ρ
)
cos θ, (127)

where

D ≡ c3A2

3
. (128)

Stream Function Outside the Vug The first approximation of the stream function outside the
spheroidal vug is given in Eq. 56, and when c → 0+, this equation reduces to

Ψm(s, t) = −c2
km
μ

A2

2
sin2 θ

(
− 2c

3ρ
− c3

3ρ3

)
− 1

2

km
μ

c2|∇(pm)∞|ρ
2 − c2

c2
sin2 θ. (129)

This equation is equivalent to the stream function external to the spherical vug given in
Eq. 107, i.e.,

Ψm(s, t) = km
μ

(
D

ρ
− 1

2
|∇(pm)∞|ρ2

)
sin2 θ. (130)
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