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Abstract The J -function predicts the capillary pressure of a formation by accounting for its
transport properties such as permeability and porosity. The dependency of this dimension-
less function on the pore structure is usually neglected because it is difficult to implement
such dependency, and also because most clastic formations contain mainly one type of pore
structure. In this paper, we decompose the J -function to account for the presence of two pore
structures in tight gas sandstones that are interpreted from capillary pressure measurements.
We determine the effective porosity, permeability, and wetting phase saturation of each pore
structure for this purpose. The throats, and not the pores, are the most important parameter
for this determination.We have tested our approach for three tight gas sandstones formations.
Our study reveals that decomposing the J -function allows us to capture drainage data more
accurately, so that there is a minimum scatter in the scaled results, unlike the traditional
approach. This study can have major implications for understanding the transport properties
of a formation in which different pore structures are interconnected.

Keywords Pore structure · J -function · Tight gas sandstone · Intergranular porosity ·
Intragranular porosity

1 Introduction

Washburn (1921) invented the pore-scale network modeling approach when he assumed that
the pore space could be simplified to a bundle of tubes. His model was later extended when
researchers accounted for the interconnectivity of the pores (Fatt 1956). Implementing the
interconnectivity allowed researchers to capture many transport properties such as two-phase
permeability (Bryant and Blunt 1992), three-phase permeability (Piri and Blunt 2005; Piri
and Karpyn 2007), and drainage and imbibition (Mason and Mellor 1995; Joekar-Niasar
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et al. 2008). Models with interconnectivity were also useful for understanding gelation in
porousmedia (Thompson and Fogler 1997, 1998) and formodeling the non-Newtonian fluids
(Balhoff and Thompson 2004, 2006).

In recent years, the advent of high-resolution images has produced major advances in the
area of pore-scale modeling (Blunt et al. 2013). The small-scale images help us to better
understand the topology of the void space (Spanne et al. 1994; Lindquist and Venkatarangan
1999;Wildenschild and Sheppard 2013). These images are used to reconstruct the pore space
(Dong and Blunt 2009), which provides a basis for direct pore-scale simulation (Arns et al.
2002; Oren and Bakke 2002; Oren et al. 2007; Ovaysi and Piri 2010, 2011; Mostaghimi
et al. 2012; Takbiri Borujeni et al. 2013) and for a pore-scale network modeling approach
(Oren et al. 1998; Valvatne et al. 2005; Al-Raoush et al. 2003; Thompson et al. 2008; Piri
and Blunt 2005). Researchers have adopted both approaches to analyze pore-scale physics of
multiphase flow in porous media (Joekar-Niasar et al. 2008; Bijeljic et al. 2013). However,
using high-resolution images for tight and ultra-tight formations remains difficult. It is not
yet possible to build a model based on the high-resolution images whose size is comparable
to the core size. This means that developing analytical pore-scale network models could be
critical for investigating the transport properties of ultra-tight formations.

Like every other model, the pore-scale network model has its limitations and entails mod-
ification to be realistic for different formations. The network model was originally invented
to represent the intergranular porosity of a porous medium (Washburn 1921). The intergran-
ular porosity is the void space between grains of different shapes and sizes that have been
randomly deposited by primary processes. This means that the pore throat size is randomly
distributed on a network, which is useful for capturing the transport properties when the void
space resides mainly between the grains (Oren et al. 1998). The pore-throat sizes associated
with the intergranular porosity are randomly distributed because they are between grains,
with different sizes being randomly deposited (Bryant et al. 1996).

There are formations with a significant fraction of the pore space positioned inside the
grains; these include tight gas sandstones (Milliken 2001), carbonates (Al-Shalabi et al. 2014),
and shales (Javadpour et al. 2007; Fathi and Akkutlu 2009; Sakhaee-Pour and Bryant 2012;
Kethireddy et al. 2014; Heller and Zoback 2014; Saneifar et al. 2014; Yu and Sepehrnoori
2014). This type of porosity is considered intragranular, which implies that the spatial location
of intragranular porosity is different from that of the intergranular porosity and the two types
of porosity can take different structures.

A spatially random distribution of the pore-throat size on a well-connected network leads
to a plateau-like trend of capillary pressure variation with wetting phase saturation (Sahimi
1994; Prodanovic et al. 2013; Sakhaee-Pour and Bryant 2015). The plateau-like trend, which
is relevant to intergranular porosity, is absent in the capillary pressure measurements of tight
gas sandstones (Byrnes et al. 2009; Shanley et al. 2014). Mousavi and Bryant (2012) pointed
out that it is impossible to capture the mercury intrusion capillary pressure measurements of
tight gas sandstones if we use only a spatially random distribution of the pore-throat size. This
was because of the topology of the void space (its spatial distribution), and not the pore-throat
sizes, as they picked the pore-throat sizes to be representative of the measurements. Mehmani
and Prodanovic (2014) indicated that microporosity plays an important role in controlling
such trends in tight gas sandstones based a network modeling approach. Recently, Sakhaee-
Pour and Bryant (2014) have developed a multitype void model that captures intergranular
porosity, intragranular porosity, and their interaction. The difference between the porosities
was clarified, which is something that we will take into consideration in the present study.

It is crucial to predict the capillary pressure of a formation to model the multiphase flow
behavior more accurately. Brown (1951) showed that the capillary pressures converge if
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scaled using nondimensional groups. For such convergence, we have to account for transport
properties like permeability, porosity, and wetting phase saturation. We also have to account
for the parameters concerned with the lithology of the formation, such as pore structure
and wettability. The scaled capillary pressures are calculated using the J-function as follows
(Leverett 1941):

J (Γ, Sw) = Pc
γ cos θ

√
k

ϕ
(1)

where J is the dimensionless function, often referred to as the J -function,Γ is representative
of the pore structure, Sw is the wetting phase saturation, Pc is the capillary pressure, γ is the
interfacial tension, θ is the contact angle, k is the permeability, and ϕ is the porosity. The
term relevant to the pore structure is often neglected in the J -function expression (Thomeer
1960; Brooks and Corey 1966; Thomas et al. 1968; Bentsen and Anli 1997; Alpak et al.
1999; Peters 2012; Buryakovsky et al. 2012).

There is no simple way to implement the effect of pore structure on the J -function, and the
J -function is usually plotted onlywith respect to thewetting phase saturation. Themotivation
behind the present study is to evaluate the importance of such an effect for tight gas sandstones.
We will decompose the J -function and determine the effective transport properties of two
pore structures interpreted from mercury intrusion experiment and compare the results with
those of the traditional approach.

2 Pore Structure Effect on Drainage

We begin by elaborating the effect of pore structure on the trend of capillary pressure with
wetting phase saturation during drainage. During the drainage, a nonwetting phase is injected
into a sample saturated by a wetting phase. Mercury is usually used for this purpose because
it becomes the nonwetting phase for most rock samples, whereas air, or mercury vapor, is
the wetting phase.

We consider a regular lattice model whose pore-throat size is randomly distributed on the
network, which is realistic for intragranular porosity. During the drainage, we increase the
capillary pressure gradually, which allows the nonwetting phase to invade the pore space
(Fig. 1). The invasion starts when the capillary pressure is equal to the entry pressure of the
sample. Pores accessible to the nonwetting phase with entry pressures less than or equal to the
capillary pressures are invaded at each pressure. The nonwetting phase saturation, which is
the fraction of the pore space taken by the nonwetting phase, increases when the nonwetting
phase occupies the pores (wetting phase saturation = 1 − nonwetting phase saturation). As
a result, the wetting phase saturation decreases in this process.

When the spatial distribution of the pore-throat size on the network is random, the non-
wetting phase enters a considerable number of pores at some capillary pressure (Fig. 1a2,
a3). This leads to a significant decrease in the wetting phase saturation over a small range
of capillary pressure (the plateau-like trend in Fig. 1b). Pores with lower entry pressures are
invaded at a higher capillary pressure because the nonwetting phase has access to them only
through pores with higher entry pressures. This means that the spatially random distribution
of the pore-throat sizes is the main reason for the plateau-like trend observed in the capillary
pressure measurements.

We now turn to the capillary pressure measurements available for tight gas sandstones
(Byrnes et al. 2009; Sakhaee-Pour and Bryant 2014).We only consider measurements carried
out by Byrnes et al. (2009) for this study because most measurements for tight gas sandstones
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Fig. 1 Schematic of the mercury intrusion experiment at four capillary pressures (a1)–(a4) where the non-
wetting phase is indicated by solid red lines. The pore sizes, denoted by the thickness of the red lines, are
randomly distributed, which is the reason for the plateau-like trend of capillary pressure with wetting phase
saturation in b

(Sakhaee-Pour and Bryant 2014; Byrnes et al. 2009) exhibit similar trends. Figure 2 shows
the measurements for three sets of samples that are acquired under confined boundary con-
ditions (with confinement). We analyze only the data acquired under confined boundary
conditions because they are more representative of in situ conditions. We presume that the
microcracks created during recovery (Teufel 1983, 1989) are closed with confinement. The
created microcracks can have major effects on transport properties when pores are small.
The wetting phase saturation in these measurements is determined from mercury saturation
(wetting phase saturation = 1−mercury saturation). Table 1 lists other transport properties
of these samples.

The variation of the capillary pressure with wetting phase saturation shows two trends.
In the early stages of mercury intrusion (low capillary pressure and high wetting phase
saturation), the variation of the capillary pressure with the wetting phase saturation exhibits
a plateau-like trend. Later during the drainage, the variation of the capillary pressure with
the wetting phase saturation becomes almost exponential.

The observed trends are relevant to different pore structures. The plateau-like trend takes
place during the invasion of the pore structure whose pore-throat size is randomly distributed
on a well-connected network. The corresponding pore space, shown by dashed black lines in
Fig. 3a, has a random pore structure. Thus, the pore structures are indicative of the pore-throat
size distribution on the network.

The exponential trend indicates that the invasion of the pore space is not delayed due to
the limited accessibility of the nonwetting phase to the pores. Figure 3b depicts an example
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Fig. 2 Mercury intrusion
capillary pressure measurements
of tight gas sandstones for three
sets of samples (data from Byrnes
et al. 2009). The threshold
wetting phase saturation (S∗

w)

used for calculating transport
properties of the ordered pore
structure is shown in red
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Table 1 Petrophysical properties
of the samples whose drainage
measurements are shown in Fig. 2
(data from Byrnes et al. 2009)

k (md) ϕ Depth (ft)

Set 1/sample 1 0.470 0.112 3544

Set 1/sample 2 1.060 0.114 3555

Set 1/sample 3 0.162 0.119 4013

Set 1/sample 4 0.017 0.136 4416

Set 1/sample 5 0.003 0.077 5715

Set 1/sample 6 0.003 0.061 6042

Set 2/sample 1 0.390 0.120 6468

Set 2/sample 2 0.633 0.121 6486

Set 2/sample 3 0.182 0.096 6486

Set 2/sample 4 0.098 0.098 6527

Set 2/sample 5 0.036 0.090 6530

Set 2/sample 6 0.002 0.069 7279

Set 2/sample 7 0.002 0.059 7311

Set 3/sample 1 0.390 0.141 4743

Set 3/sample 2 0.633 0.148 4745

Set 3/sample 3 0.001 0.058 10,650

Set 3/sample 4 0.003 0.107 12,671

Set 3/sample 5 0.008 0.118 12,673

Set 3/sample 6 0.012 0.117 12,686

Set 3/sample 7 0.002 0.061 10,133

Set 3/sample 8 0.192 0.111 10,207

of such conditions, where the nonwetting phase, shown in red, has direct access to all the
pores that are not invaded. Figure 3b–e shows the invasion of the pore space, represented
by gray lines in Fig. 3b. This type of nonwetting accessibility to the pores is fundamentally
different from that of the plateau-like trend shown in Fig. 1 or in Fig. 3a, which has a random
pore structure. Thus, we consider the pore structure corresponding to the exponential trend
an ordered pore structure.

We now define the pore structures mathematically by classifying them into two groups as
follows:

Γ = Γr ∪ Γo (2)

where Γ is the overall pore structure (the dashed black and solid gray lines in Fig. 3a), Γr

is the random pore structure (the dashed black lines in Fig. 3a), and Γo is the ordered pore
structure (the solid gray lines in Fig. 3a). This classification is more realistic for two-phase
flow than for single-phase flow because it is based on the spatial distribution of the pore-throat
size interpreted from two-phase displacement.

3 J-function Decomposition for Tight Gas Sandstones

We take into account the effect of the pore structure on the J -function here. We express the
J -function, although it is not possible to calculate it yet, for each pore structure as follows:
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Fig. 3 a Dashed black lines show the random pore structure (Γr), and solid gray lines show the ordered pore
structure (Γo), where the pore size is represented by the line thickness. The mercury intrusion experiment at
five capillary pressures is shown in a–e, where the nonwetting phase is indicated by solid red lines. b The
beginning of the drainage in the ordered pore structure where the random pore structure is fully invaded

J = Jr (Γr, Sw) ∪ Jo (Γo, Sw-o) (3)

where Jr (Γr, Sw) is the corresponding function for the random pore structure and
Jo (Γo, Sw-o) for the ordered pore structure. Sw and Sw-o are the wetting phase saturations
of the random and the ordered pore structures, respectively. We drop the pore structure term
(Γr and Γo) from now on because each function represents only a single pore structure.
These functions are exclusive, because the pore structures accessible to the nonwetting phase
are separated where the trend of capillary pressure variation with wetting phase changes.
The wetting phase saturation at which this exponential trend starts is the threshold value
(Sw = S∗

w). This means we can decompose the J -function for the entire range of wetting
phase saturation as follows:

J = Jr (Sw) = Pc
γ cosθ

√
kr
ϕr

Sw > S∗
w

J = Jo (Sw-o) Sw ≤ S∗
w

(4)

where Jr and Jo are the corresponding values of the J -function for random and ordered pores
structures, respectively, Sw is the wetting phase saturation obtained from mercury intrusion
experiment, Pc is the capillary pressure, γ is the interfacial tension, θ is the contact angle,
kr is the permeability of the random pore structure, ϕr is the porosity of the random pore
structure, and Sw-o is the wetting phase saturation of the ordered pore structure.

For the ordered pore structure, we present the corresponding function with respect to its
wetting phase saturation (Sw-o) instead of Sw as follows:

J = Jo (Sw-o) = Pc
γ cosθ

√
ko
ϕo

0 ≤ Sw-o ≤ 1 (5)

123



460 A. Sakhaee-Pour

where ko is the effective permeability of the ordered pore structure and ϕo is its porosity. We
elaborate subsequently how the effective transport properties of the ordered pore structure
are obtained.

3.1 Transport Properties of Random and Ordered Pore Structures

We determine the transport properties of the ordered pore structure such as permeability and
porosity here. This will allow us to implement parameters that are more representative of the
pore space invaded during the drainage. For the random pore structure, we will use laboratory
measurements available for tight gas sandstones without modification. This is a common
practice used for samples with significant intergranular porosity. These measurements give
us an estimate of the overall properties that are plausible when the spatial distribution of the
pore-throat size on the network is random.

We assume that mercury begins to enter the pore space with ordered pore structure when
the wetting phase saturation becomes equal to the threshold value (Sw = S∗

w). Thus, the
threshold wetting phase saturation is the ratio of the void space accessible to the mercury
with ordered pore structure to the total void space as follows:

S∗
w = Vp-o

Vp
(6)

where S∗
w is the threshold wetting phase saturation, Vp-o is the pore volume of the ordered

pore structure, and Vp is the total pore volume. The pore volume of the ordered pore structure
is represented by the gray lines in Fig. 3a and the total pore volume is represented by both the
gray and the black lines in Fig. 3a. This relation enables us to calculate the effective porosity
of the ordered pore space. Porosity, by definition, is the ratio of the void space to the bulk
volume. Thus, we can calculate the effective porosity of the ordered pore space as follows:

ϕo = Vp-o
Vb

= Vp-o
Vp

× Vp
Vb

= S∗
w × ϕ (7)

where ϕo is the effective porosity of the ordered pore structure, Vp-o is the pore volume of
the ordered pore structure, Vb is the bulk volume, Vp is the total pore volume, ϕ is the total
porosity, and S∗

w is the threshold value
Next, we turn to the calculation of the wetting saturation for the ordered pore structure that

is required for plotting the results after scaling. The wetting phase saturation of the ordered
pore structure is equal to the ratio of the wetting phase volume to the total pore volume of
the ordered pore structure. For this purpose, we use the wetting phase saturation reported for
each capillary pressure as follows:

Sw-o = Vw
Vp-o

= Vw
Vp

× Vp
Vp-o

= Sw
S∗
w

(8)

where Sw-o is the wetting saturation of the ordered pore structure, Vw is the wetting phase
volume, Vp-o is the pore volume of the ordered pore structure, Vp is the total pore volume,
Sw is the wetting phase saturation, and S∗

w is the threshold wetting phase saturation. Sw-o
is equal to unity, or 100%, when the drainage in the ordered pore structure starts (Fig. 3b)
and becomes equal to zero when the pore space is fully occupied by the nonwetting phase
(Fig. 3e).

Next, we derive a relation for the effective permeability of the ordered pore structure by
accounting for the spatial distribution of the pores, their characteristic sizes, and the effective
porosity. For this purpose, we consider the pressure distribution of the pore space when
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Fig. 4 Pressure distribution in tight gas sandstones when nonwetting phase flows from high pressure (Ph)
to low pressure (Pl). Black arrows show the flow directions from random pore structure to the ordered pore
structure, which are used for permeability calculation (Eq. 9)

mercury enters the ordered pore structure. The pressure is higher in the random pore model
(Ph) and lower in the ordered pore model (Pl). Figure 4 shows the corresponding pressure
distribution; black arrows indicate the flow directions. Considering the flow directions allows
us to calculate the effective permeability of the ordered pore structure, in a manner similar
to that of Purcell (1949), as follows:

ke-o = ϕo

0∑
Sw-o=1

ki�Sw-o = ϕo

0∑
Sw-o=1

r2i
8

�Sw-o = ϕo

S∗
w

0∑
Sw=S∗

w

r2i
8

�Sw (9)

where ke-o is the effective permeability of the ordered pore structure, ϕo is the effective
porosity of the ordered pore structure, �Sw is the change in wetting phase satura-
tion, and ri is the characteristic size of the pores accessed at each capillary pressure,
which is calculated using the Young–Laplace relation. In the present study, we deter-
mine the change in wetting phase saturation from the change in mercury saturation
injected into the sample during the drainage experiment (wetting phase saturation = 1 −
mercury saturation).

In the ordered pore structure, the accessibility of the nonwetting phase to the pores
is not limited (Fig. 3b). This unlimited accessibility is the reason that the effective per-
meability of the ordered pore structure is equal to that of the bundle-of-tubes model
(Purcell 1949). The ordered pore structure, as defined in this study, is not necessarily
equivalent to the bundle-of-tubes model because the pores in the ordered pore structure
do not necessarily form connected-through paths, unlike the bundle of tubes. Compare the
flow paths indicated by the black arrows in Fig. 4 with the flow paths in the bundle of
tubes.
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4 Results

Weevaluate the importance of pore structure effect for the J -function here.We first determine
the J -function without modification, using the traditional approach, where the results are
presented with wetting phase saturation. We then implement the pore structure effect by
decomposing the J -function and compare the results of the two methods.

We begin by calculating the J -function using the traditional approach where the effect of
pore structure is neglected. We use the drainage data shown in Fig. 2 for this calculation, and
in Fig. 5 we present the results for three sets of samples. The scaled results converge at high
wetting phase saturations where there is a minimum scatter in the scaled results, but there
is a significant scatter at low wetting phase saturations. The ratios of the highest to lowest
values are equal to 13, 5, and 8 for sets 1, 2, and 3, respectively. The pore structure is random
at high wetting phase saturation and changes to ordered at low wetting phase saturations.
This reveals that the J -function fails to capture the scaled capillary pressures at low wetting
phase saturation when we do not account for the effects of pore structure.

Next, we implement the pore structure effect on the J -function. We first identify the
threshold wetting phase saturation (S∗

w) at which the pore structure changes from random to
ordered in drainage. At this threshold, the trend of capillary pressure variation with wetting
phase saturation changes from plateau-like to exponential as the wetting phase saturation
decreases. These threshold wetting phase saturations of different samples are listed in Table 2
and shown in blue in Fig. 2.

We should emphasize that the data used in this study are for real samples, and thus, the
prefect exponential trend may not be observed. The samples were provided by different
groups for measurement (Byrnes et al. 2009), presumably from different places, which is
why they are listed as sets 1, 2, and 3 here. We do not sort them to improve the results
and only analyze the measurements reported. We choose the threshold value that honors the
exponential trend when the highest capillary pressure is included. Our main objective is to
determine whether we can improve the results by using a threshold value and distinguishing
the pore structures. Subsequently, we discuss the sensitivity of the results to the threshold
value.

We also calculate the effective permeability and porosity of the ordered pore structure
(Table 2) based on the transport properties listed in Table 1. In most cases, the effective
permeability of the ordered pore structure (ko in Table 2) is significantly smaller than the
measured value (k in Table 1). This means that the ordered pore structure contribution to
the effective permeability is negligible. Thus, knowing transport properties of the ordered
pore structure is important, not only because of its contribution to the effective permeability
(Apourvari and Arns 2016), but also because it can constitute a significant fraction of the
pore space. The pore space fraction associated with the ordered pore structure is equal to
the threshold wetting phase saturation, when expressed in fraction. This fraction varies from
0.11 to 0.98 and its mathematical average is equal to 0.32. Knowing this fraction, when ko
is significantly smaller, also helps us determine which part of the pore space dominates the
effective permeability.

The effective permeability of the ordered pore structure is close themeasured permeability
in few cases and even larger in one case. This is because we do not include the tortuosity
effect—often referred to as the formation or the lithology factor in the Purcellmodel (1949)—
in the effective permeability. The tortuosity effect, if included, appears as a tuning factor in
the denominator of Eq. 9 and lowers the permeability value. We do not include the tuning
factor because our main objective in this study is to determine the pore structure effect
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Fig. 5 J -function presentations
of the drainage results shown in
Fig. 2 without accounting for the
effect of the pore structures.
There is a significant scatter in
the scaled results at low wetting
phase saturation corresponding to
the ordered pore structure
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Table 2 Computed
petrophysical properties of the
ordered pore structure for the
samples with petrophysical
measurements listed in Table 1
and the drainage data shown in
Fig. 2

S∗
w (%) ko (md) ϕo

Set 1/sample 1 29.3 0.054 0.033

Set 1/sample 2 11.6 0.005 0.013

Set 1/sample 3 41.0 0.079 0.049

Set 1/sample 4 24.0 0.012 0.033

Set 1/sample 5 43.6 0.002 0.034

Set 1/sample 6 52.4 0.002 0.032

Set 2/sample 1 21.9 0.009 0.026

Set 2/sample 2 14.9 0.002 0.018

Set 2/sample 3 30.7 0.010 0.029

Set 2/sample 4 19.1 0.003 0.019

Set 2/sample 5 39.1 0.012 0.035

Set 2/sample 6 31.3 0.001 0.022

Set 2/sample 7 49.3 0.001 0.029

Set 3/sample 1 35.2 0.098 0.050

Set 3/sample 2 32.0 0.064 0.047

Set 3/sample 3 98.7 0.003 0.057

Set 3/sample 4 25.5 0.003 0.027

Set 3/sample 5 18.6 0.004 0.019

Set 3/sample 6 20.2 0.009 0.024

Set 3/sample 7 27.6 0.002 0.017

Set 3/sample 8 20.0 0.029 0.022

on J -function, and we analyze the scatter in the results and not the absolute values. In
reality, the effective permeability of the ordered pore structure should be smaller than the
values estimated here because it may not form a connected-through path. We have access
to the nonconnected-through pores because mercury (nonwetting phase) is injected into a
sample which is filled with compressible fluid, like air or mercury vapor, during the drainage
experiment. This is different from a condition where the in situ wetting phase, such as
brine, is incompressible and may remain in the pore space as irreducible wetting phase
saturation.

We now calculate the J -function for random and ordered pore structures of tight gas
sandstones whose drainage data are shown in Fig. 2. We denote the corresponding functions
by Jr and Jo. Figures 6 and 7 present the results for random and ordered pore structures,
respectively. We observe that there is a minimum scatter where the ratios of the highest to
lowest values for the random pore structures are almost equal to unity for all formations. For
the ordered pore structures, the ratios are equal to 2, 1, and 3 for sets 1, 2, and 3, respectively.
This is a significant improvement over the traditional way of calculating J , in that the ratio
of the highest to lowest value is 13. This reveals that the effect of pore structure on the
J -function is significant, and we can collapse the data better if we account for that effect.

Next, we test the dependency of the results on the threshold value used for J -function
calculation. For this, we randomly use different threshold values for the capillary pressures
(Pc-threshold) for the samples in Set 2. The threshold capillary pressures are equal to 200, 1200,
and 2600 psi, and the computed petrophysical properties are listed in Table 3. The ordered
pore structure is invaded when the capillary pressure surpasses the threshold value.
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Fig. 6 J -function presentation
of tight gas sandstones with
random pore structure for
samples whose capillary pressure
measurements are shown in
Fig. 2. There is a minimum
scatter in the scaled results
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Fig. 7 J -function presentation
of tight gas sandstones with
ordered pore structure for
samples whose capillary pressure
measurements are shown in
Fig. 2. The results are
significantly improved compared
to the traditional presentation of
the J function shown in Fig. 3
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Table 3 Computed petrophysical properties of the ordered pore structure when the threshold capillary pres-
sures (Pc-threshold) are chosen randomly to be equal to 200, 1200, and 2600 psi for different samples in
Set 2

Pthreshold = 200 psi Pthreshold = 1200 psi Pthreshold = 2600 psi

S∗
w (%) ko(md) ϕo S∗

w (%) ko(md) ϕo S∗
w (%) ko(md) ϕo

Set 2/sample 1 52.5 0.555 0.063 21.9 0.009 0.026 13.0 0.001 0.016

Set 2/sample 2 50.5 0.599 0.061 21.6 0.012 0.026 14.9 0.018 0.002

Set 2/sample 3 74.1 0.905 0.071 30.7 0.010 0.029 18.7 0.002 0.018

Set 2/sample 4 93.0 0.961 0.091 27.6 0.012 0.027 15.5 0.003 0.027

Set 2/sample 5 97.3 0.595 0.088 39.1 0.012 0.035 23.5 0.002 0.021

Set 2/sample 6 100.0 0.014 0.069 95.7 0.013 0.066 73.1 0.006 0.050

Set 2/sample 7 100.0 0.010 0.059 97.4 0.008 0.057 80.0 0.004 0.047

Figure 8 shows the corresponding J -function

The threshold wetting phase saturation (S∗
w in Table 3) decreases with the increase in

threshold capillary pressure because a smaller fraction of the void space is uninvaded at
a higher capillary pressure. This dependency also lowers the porosity of the ordered pore
structure (Eq. 7), leading to higher threshold capillary pressures. We also observe that the
permeability of the ordered pore structure (ko) is a function of the threshold capillary pressure.
Higher capillary pressure corresponds to a narrower pore throat, based on the Young–Laplace
equation, and this leads to a lower permeability. Thus, the petrophysical properties of the
ordered pore structure depend on threshold value because they are representative of different
fractions of the pore space depending on the adopted threshold value.

Now, we turn to the dependency of the J -function on the computed petrophysical proper-
ties. Figure 8 shows the results for different samples in Set 2. The J -function can capture the
drainage data more accurately, where there is less scatter than the original case, especially
when a high threshold capillary pressure is used (Pc-threshold = 1200 psi and 2600 psi). This
suggests that the computed petrophysical properties are more representative of the ordered
pore structure and that their performance improves when evaluated for a higher threshold
capillary pressure.

The J -function decomposition enables us to differentiate the pore structures and char-
acterize their transport properties more accurately. The transport properties of each pore
structure are important because they dictate the overall transport properties of the formation.
One example of this is the ultimate recovery from tight gas sandstone, which depends on
the volume fraction and connectivity of the intragranular porosity (Sakhaee-Pour and Bryant
2014).

A better characterization of the pore structures can also have major applications for under-
standing multiphase flow rates of tight gas sandstones. The relative permeability of tight gas
sandstones is a related example, which can be considered in future extensions of this study.
We computed the petrophysical properties of the ordered pore structure here. At high cap-
illary pressures, the computed properties are more representative of the ordered pore space
than the original core-plug measurements because they explain the signature of the capillary
pressure versus wetting phase saturation curve. Our model is different from network mod-
els that are based on high-resolution images, where a sub-core-scale volume is considered,
because our model captures the core-scale measurements.
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Fig. 8 J -function of tight gas
sandstones with ordered pore
structure for all samples of Set 2.
The threshold capillary pressures
are randomly chosen to be equal
to 200, 1200, and 2600 psi
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The tight gas sandstone samples analyzed in this study are water wet. Thus, brine (or
water) first fills the ordered pore structure and gas occupies the random pore structure under
capillary equilibrium conditions. The ordered pore structure is associated with narrower
pore throats, and the random pore structure is accessible from wider pore throats. Hence,
the transport properties of the wetting phase at the pore scale are controlled by the ordered
pore structure, which can be estimated as described in the present study, whereas standard
laboratory measurements seem realistic for the random pore structure.

5 Conclusions

In this study, we have for the first time decomposed the J -function to account for the effect
of pore structure. The importance of pore structure for the J -function was mentioned in
earlier studies, but was never evaluated systematically. To decompose the J -function, we
interpreted the pore structures of connected pores in tight gas sandstones from mercury
intrusion capillary pressure measurements (drainage) under confined boundary conditions.
We then determined the effective transport properties (permeability, porosity, and wetting
phase saturation) of the interpreted pore structures from laboratory measurements. In future
works, it may become possible to test the interpreted pore structures by observing the three-
dimensional pore space directly using experimental techniques such as nuclear magnetic
resonance (NMR) imaging, X-ray computed tomography (XRCT), and focused ion beam
and scanning electron microscopy (FIBSEM) imaging.

Implementing the effect of the pore structure on the J -function enabled us to capture the
capillary pressuresmore accurately where there is aminimum scatter in the scaled results.We
used the ratio of the highest to lowest values of the J -function to test the proposed method.
With the traditional approach, the ratios are equal to 13, 5, and 8 for three tight formations.
Those numbers reduce to 2, 1, and 3 when the effect of pore structure is implemented. This
study provides a better way to collapse data from a set of measurements by accounting for
the pore structure effect.
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