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Abstract Natural convection in enclosures driven by heat-generating porous media has
diverse applications in fields like geothermal, chemical, thermal and nuclear energy. The
present article focuses on heat transfer and entropy generation characteristics of a heat-
generating porous bed, placed centrally within a fluid-filled cylindrical enclosure. Pressure
drop and heat transfer in the porous bed are modelled using the Darcy–Brinkmann–
Forchheimer approximation and the local thermal non-equilibrium model, respectively.
Energy flux vectors have been utilised for visualising convective energy transfer within
the enclosure. The study of a wide range of Rayleigh number (107–1011) and Darcy num-
ber (10−6–10−10) reveals that heat transfer in the porous region can be classified into
conduction-dominated and convection-dominated regimes. This is supplemented with an
entropy generation analysis in order to identify and characterise the irreversibilities asso-
ciated with the phenomenon. It is observed that entropy generation characteristics of the
enclosure closely follow the above-mentioned regime demarcation. Numerical computations
for the present study have been conducted using ANSYS FLUENT 14.5. The solid energy
equation is solved as a user-defined scalar equation, while data related to energy flux vectors
and entropy generation are obtained using user-defined functions.
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Dp Particle diameter (m)
Da Darcy number
E Dimensionless energy flux vector
Ec Eckert number
Fc Forchheimer coefficient
g Acceleration due to gravity (m/s2)
h Heat transfer coefficient (W/m2 K)
H Bed height (m)
k Thermal conductivity (W/mK)
K Permeability (m2)
L Enclosure height (m)
Nu Nusselt number
NS′′′ Dimensionless volumetric entropy generation rate
P Pressure (Pa)
Pr Prandtl number
q ′′′ Volumetric heat generation rate (W/m3)
qi Heat flux at fluid–porous interface
r, z Cylindrical co-ordinates (m)
R Bed radius (m)
Ra Rayleigh number
Re Reynolds’ number
T Temperature (K)
U, V Velocity (ms−1)

Greek Letters

α Thermal diffusivity (m2/s)
β Thermal expansion coefficient (1/K)
γ Porosity-scaled thermal conductivity ratio
ε Porosity
φ Bed angle (◦)
μ Dynamic viscosity (kg/ms)
ν Kinematic viscosity (m2/s)
θ Dimensionless temperature
ρ Density (kg/m3)
ψ Sphericity of solid particles
|ψ | Dimensionless absolute stream function
Π Dimensionless heat function
Φ Dissipation function

Subscripts

avg Average value
c Cold wall of the enclosure
f Fluid phase
max Maximum value
p Porous medium
s Solid phase
sf Solid to fluid phase of porous medium
wall Enclosure wall
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Superscript

′ Dimensionless quantities

1 Introduction

Natural convection in porous media driven by internal heating is an important phenomenon
occurring in several natural as well as industrial processes. These include convection within
the earth’s mantle (Mckenzie et al. 1974), extraction of geothermal energy (Glassley 1995),
cooling of material stockpiles (Ejlali and Hooman 2011), post-accident heat removal from
nuclear debris beds (Takasuo et al. 2012), disposal of radioactive wastes in underground
repositories (Toth 2011) etc. Of late, this phenomenon has been receiving considerable atten-
tion due to its relevance mainly in nuclear safety applications. Absence or inadequate cooling
of a nuclear reactor core may cause melting of the core and subsequently result in the forma-
tion of a heat-generating porous debris bed within the reactor pressure vessel due to molten
fuel–coolant interactions. The natural shape of such porous debris beds is a conical heap
(Takasuo et al. 2012; Chakravarty et al. 2016). Stockpiles of self-igniting material as coal are
also of a similar shape (Ejlali and Hooman 2011). The major concern in the above-mentioned
situations is to limit the temperature rise to acceptable levels for ensuring system safety. As
such, it is of considerable interest to predict the convectional fluid flow and temperature
distribution for optimal design of such systems.

Precise prediction of thermal performance of a system is essential for ensuring system
safety in the above-stated applications. Literature review shows that the local thermal equi-
librium (LTE) model of energy transfer in porous media, which assumes that the saturating
fluid and the constituent solid particles are at the same temperature, is usually followed for
analysing natural convective heat transfer involving porous media. However, this approxima-
tion is known to induce substantial error in case of certain applications, such as the problem
under consideration in the present study (Minkowycz et al. 1999; Bortolozzi and Deiber
2001; Rees and Pop 2005; Nield and Bejan 2006), and this necessitates the use of the local
thermal non-equilibrium (LTNE) model of the energy equation. In the LTNE model, a finite
temperature difference is assumed between the solid and the fluid phases leading to heat
transfer between the two phases. Thus, a more accurate modelling of thermal conditions in
a porous system is possible using the LTNE approach (Baytaş 2003). This concept has been
utilised inmodelling various natural as well as forced convection problems (Alazmi andVafai
2002; Baytaş and Pop 2002; Nield et al. 2002).

Although several works have been carried out on natural convection involving heat-
generating porous media using the LTE model (Prasad 1987; Jue 2003; Chakravarty et al.
2016), only a limited number of studies are available on heat-generating porous media using
the LTNE approach. Baytaş (2003) modelled steady natural convection in a heat-generating
porous square enclosure, bounded with isothermal cold walls utilising the LTNE approach.
It was established that for a given Ra, Da and Pr, the assumption of LTE is valid for large
values of the dimensionless heat transfer coefficient between solid and fluid phases and
porosity-scaled thermal conductivity ratio, while at smaller values the use of LTNE is indis-
pensable. Nouri-Borujerdi et al. (2007b) and Saravanan (2009) carried out linear stability
analyses to determine the onset of natural convection in fluid-saturated porous medium with
uniform heat generation using the LTNE model. Nouri-Borujerdi et al. (2007a) also studied
the effect of LTNE on conduction in a heat-generating porous layer and determined the exact
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solutions of temperature profiles within the channel. Saravanan and Senthil Nayaki (2014)
studied convective instability in a horizontal heat-generating porous layer, with temperature-
dependent fluid viscosity, and heated from below. Kuznetsov and Nield (2014) analytically
studied the effect of local thermal non-equilibrium on the onset of convection in a porous
medium consisting of two internally heated horizontal layers. A similar study by Kuznetsov
andNield (2015) focussed on internally heated horizontal porous layerswith vertical through-
flow. Mahmoudi (2015) analytically investigated forced convection in a micro-channel filled
with heat-generating porous material saturated with rarefied gas under constant heat flux
boundary condition. Wu et al. (2015a) carried out a numerical study of steady non-Darcy
natural convection in a square enclosure with partially cooled walls and filled with heat-
generating porous medium. Analysis of different cooling configurations with both LTE and
LTNE models showed that a higher local Nusselt number is achieved in the partial cooling
configuration as compared to a fully cooled wall. A similar study by Wu et al. (2015b) with
adiabatic horizontal walls and sinusoidal temperature distribution on the side walls showed
heat transfer enhancement as compared to a uniform temperature distribution.

In addition to accurate modelling of the thermal performance, an important requirement
for the safe operation of such critical systems is to ensure sufficient heat transfer from the
enclosure. One such route of ensuring sufficient heat transfer is through the reduction of
associated irreversibilities or minimisation of entropy generation within a system, the basics
of which has been detailed by Bejan (1996). This method focuses on identification of mech-
anisms or system components that contribute to thermodynamic losses, determination of the
magnitude of such losses or irreversibilities (which lead to entropy generation) and subse-
quently its minimisation, such that the overall thermodynamic efficiency could be improved.
This technique has been successfully applied to a wide range of thermal systems involving
natural convection in different geometrical configurations and composed of pure fluid as well
as porous materials (Famouri and Hooman 2008; Mukhopadhyay 2010; Kaluri and Basak
2011; Datta et al. 2016). A pertinent work in the present context is that by Baytaş (2007)
which reported an entropy generation analysis considering heat-generating porous media
using the LTNE approach.

In all the above cited studies on natural convection considering heat-generating porous
media using the LTNE approach, geometries have been considered to be fully filled with
porous media. In view of the stated applications, however, it is more probable that such
geometriesmay not be fully filledwith porousmaterials. Literature survey reveals that several
studies are available on natural convection in partially-porous geometries with internal heat
generation using theLTE approach (Schulenberg andMuller 1984;Du andBilgen 1990;Chen
and Lin 1997; Kim et al. 2001; Chakravarty et al. 2016). Schulenberg and Muller (1984)
numerically modelled turbulent natural convection in a heat-generating porous layer with
very low permeability and superposed by a clear fluid layer and developed a 1-D asymptotic
correlation for Nusselt number. Du and Bilgen (1990) found that in addition to Ra and Da,
heat transfer within a cavity is also affected by the position of the porous layer, aspect ratio,
filling factor as well as cooling asymmetry from the side walls. Chen and Lin (1997) obtained
multiple steady-state solutionswith different flowpatterns in an inclined porous layer and heat
transfer performance was found to be affected by the tilt angle as well as aspect ratio of the
enclosure. Chakravarty et al. (2016) observed that geometry of the porous zone significantly
affects fluid flow and heat transfer in a cylindrical enclosure partially filled with a heat-
generating truncated conical porous bed. In contrast, there is a dearth of such studies using
the LTNE approach. In addition, a significant number of studies exist on entropy generation
analysis in partial porous configurations (Torabi et al. 2015a, b), but none involving natural
convection in heat-generating porous media with the use of the LTNE approach.
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In a nutshell, the present study focuses on the thermal aspects of natural convection induced
by a heat-generating porous bed within a cylindrical enclosure. The shape of the porous bed
is assumed to be a truncated cone in order to approximate the heap-like structure of coal
stockpiles (Ejlali andHooman 2011) or coriumdebris beds formed as a consequence of severe
accident in nuclear reactors (Takasuo et al. 2012). Adoption of this geometry is yet another
novelty along with the LTNE approach used in this study. The analysis is carried out, and the
results are presented in a dimensionless form in terms of Rayleigh number, Darcy number,
stream function, isotherms, energy flux vectors and Nusselt number. This is supplemented
by an entropy generation analysis to determine the effect of various pertinent parameters
on system irreversibility. The entire study has been performed using the computational fluid
dynamics software ANSYS FLUENT 14.5. The solid energy equation within the porous bed
is solved with the help of user-defined scalar (UDS) equation utility, while data related to
energy flux vectors and entropy generation are obtained using user-defined functions (UDF)
in ANSYS FLUENT.

2 Problem Statement

A schematic representation of the problem under consideration is shown in Fig. 1. A fluid-
filled cylindrical enclosure contains a centrally located material bed composed of fluid-
saturated porous media. Heat generation is assumed within the solid particles constituting
the porous bed. All walls of the enclosure are impermeable, with the top and side wall
isothermally cooled and the bottomwall adiabatic. The porous bed is modelled as a truncated
conewhich approximates the general shape of amaterial debris bed such as a coal stockpile or
a corium debris bed formed subsequent to a severe accident in a nuclear reactor (Chakravarty
et al. 2016). The entire geometry is axisymmetric about the z axis.

It is assumed that the porous medium is homogeneous and isotropic, and the constituent
solid particles are perfectly spherical. Flow through the porous bed is approximated using
the Darcy–Brinkmann–Forchheimer model. Furthermore, it is assumed that the saturating
fluid and the solid particles in the porous bed are not in local thermal equilibrium and hence,
energy transfer takes place between the heat-generating solid phase and the saturating fluid.
Fluid flow is single phase and laminar. In addition, the fluid is assumed to be Newtonian and
satisfies the Boussinesq approximation.

2.1 Governing Equations

Under the above-stated assumptions, the dimensionless form of the steady-state, two-
dimensional governing equations for the clear fluid region can be written in the following
form
Mass Balance :

1

r ′
∂(r ′U ′)

∂r ′ + ∂V ′

∂z′
= 0, (1)

Momentum Balance:

(
U ′ ∂U ′

∂r ′ + V ′ ∂U ′

∂z′

)
= −∂P ′

∂r ′ + Pr

(
1

r ′
∂

∂r ′

(
r ′ ∂U ′

∂r ′

)
− U ′

r ′2 + ∂2U ′

∂z′2

)
, (2)

123



358 A. Chakravarty et al.

Fig. 1 Schematic representation
of the problem geometry

(
U ′ ∂V ′

∂r ′ + V ′ ∂V ′

∂z′

)
= −∂P ′

∂z′
+ Pr

(
1

r ′
∂

∂r ′

(
r ′ ∂V ′

∂r ′

)
+ ∂2V ′

∂z′2

)
+ RaPr

H ′3 θf , (3)

Heat transport:

U ′ ∂θf

∂r ′ + V ′ ∂θf

∂z′
=

(
1

r ′
∂

∂r ′

(
r ′ ∂θf

∂r ′

)
+ ∂2θf

∂z′2

)
. (4)

In a similar manner, the dimensionless form of the governing equations for the porous
region following the Darcy–Brinkmann–Forchheimer model and the local thermal non-
equilibrium (LTNE) approximation is written as

Mass Balance :
1

r ′
∂(r ′U ′)

∂r ′ + ∂V ′

∂z′
= 0, (5)

Momentum Balance:

1

ε2

(
U ′ ∂U ′

∂r ′ + V ′ ∂U ′

∂z′

)
= −∂P

∂r ′ + Pr

ε

(
1

r ′
∂

∂r ′

(
r ′ ∂U ′

∂r ′

)
− U ′

r ′2 + ∂2U ′

∂z′2

)

− Pr

Da H ′2U
′ − Fc

√
U ′2 + V ′2

√
Da H ′ε3/2

U ′, (6)

1

ε2

(
U ′ ∂V ′

∂r ′ + V ′ ∂V ′

∂z′

)
= −∂P ′

∂z′
+ Pr

ε

(
1

r ′
∂

∂r ′

(
r ′ ∂V ′

∂r ′

)
+ ∂2V ′

∂z′2

)
− Pr

Da H ′2 V
′

− Fc
√
U ′2 + V ′2

√
Da H ′ε3/2

V ′ + RaPr

H ′3 θ, (7)
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Heat transport in fluid phase:

U ′ ∂θf

∂r ′ + V ′ ∂θf

∂z′
=

(
1

r ′
∂

∂r ′

(
r ′ ∂θf

∂r ′

)
+ ∂2θf

∂z′2

)
+ h′ (θs − θf ) , (8)

Heat transport in solid phase:

0 =
(
1

r ′
∂

∂r ′

(
r ′ ∂θs

∂r ′

)
+ ∂2θs

∂z′2

)
+ γ.h′ (θf − θs) + 2

H ′2 . (9)

The above equations are derived using the following dimensionless variables

r ′ = r

L
, z′= z

L
, H ′=H

L
, R′= R

L
, α = kf(

ρcp
)
f

, U ′=UL

α
, V ′ = V L

α
, P ′ = PL2

ρα2 ,

θ = T − Tc
ΔTref

, ΔTref = q ′′′H2

2ks
, Pr = ν

α
, Da = K

H2 , Ra = gβΔTrefH3

να
,

h′ = hai L2

εkf
, γ = εkf

(1 − ε) ks
.

In case of a packed porous bed composed of uniformly distributed spherical particles of
same size, the permeability (K ) and the Forchheimer coefficient (Fc) are expressed as

K = ψ2D2
pε

3

150 (1 − ε)2
and Fc = 1.75√

150
. (10)

In the above expression of permeability, ψ represents the shape factor or sphericity of
the particles and is defined as the ratio between area of the equivalent-volume sphere and
surface area of the particle. Since surface area of a perfectly spherical particle is equal to the
area of an equivalent sphere, sphericity becomes unity and as such, in the present study ψ is
assumed to be unity.

The assumption of local thermal non-equilibrium between the solid particles and the fluid
medium saturating the porous bed necessitates the use of a heat transfer correlation between
the solid and fluid phases. Rees and Pop (2005) summarises various heat transfer correlations
that have been used over the years in evaluating solid to fluid heat transfer in porous media.
Some of these correlations take into account the effect of solid thermal conductivity (Dixon
and Cresswell 1979) while others, such as that reported by Wakao et al. (1979), do not
explicitly consider solid thermal conductivity.Alazmi andVafai (2000) analysed the variances
among the different correlations with respect to various parameters, including the solid to
fluid thermal conductivity ratio (ks/kf ), and concluded that solid thermal conductivity has a
significant impact on interfacial heat transfer only at a very high thermal conductivity ratio
(ks/kf ∼ O(50)). In the present study, the magnitudes of thermal conductivity assumed
for the solid (ks = 2.0 W/mK) and fluid phases (kf = 0.61057 W/mK) of the porous bed
result in a thermal conductivity ratio of 3.275. As such, it can be inferred that solid thermal
conductivity will not have any substantial impact on the interfacial heat transfer. This also
justifies the use of a heat transfer correlation which does not explicitly consider solid thermal
conductivity.

The Ranz andMarshall (1952) model is a standard correlation generally used for flow over
spherical particles (Mahapatra et al. 2013). Although it does not have explicit consideration of
solid thermal conductivity, it has been extensively used in numerical modelling of situations
involving porous media (Kakaç et al. 1991) and especially in case of nuclear debris beds
(Takasuo 2015). As such, in the present study, the interfacial heat transfer coefficient (h)
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between the solid particles and the fluid saturating the porous medium is evaluated using the
correlation of Ranz and Marshall (1952). This is expressed in this work as

h = Nusfkf
Dp

=
(
2 + 0.66Re1/2Pr1/3

)
kf

Dp
, (11)

where the suffix sf represents heat transfer from the solid particles to the saturating fluid.
Reynolds number (Re) used in Eq. (11) is calculated based on the intrinsic velocity U∗
(U∗ = U/ε) in the porous bed and expressed as

Re = ρfDp |U∗|
μf

. (12)

The interfacial area density is defined as:

ai = 6 (1 − ε)

Dp
. (13)

Heat transfer at the enclosure walls is estimated in terms of Nusselt number at the isother-
mal walls (Nuwall). This is expressed as follows, with n denoting the radial or axial directions

Nuwall = −∂θf

∂n
and Nuwall, avg =

1∫
0
Nuwalldn

1∫
0
dn

. (14)

The dimensionless forms of the boundary conditions are stated as

U ′ = V ′ = 0, θf = θs = 0 at r ′ = 0.5, 0 ≤ z′ ≤ 1.0,

U ′ = V ′ = 0, θf = θs = 0y at z′ = 1.0, 0 ≤ r ′ ≤ 0.5,

U ′ = V ′ = 0,
∂θf

∂z′
= ∂θf

∂z′
= 0 at z′ = 0, 0 ≤ r ′ ≤ 0.5. (15)

The clear fluid region and the porous bed are modelled by creating two distinct cell zones
in ANSYS Fluent. Interfaces of the two cell zones serve as the boundary between the porous
bed and the fluid region. The dimensionless form of the fluid–porous interface conditions is
expressed as

Fluid flow condition:

U ′∣∣
f = U ′∣∣

p and Pr

(
1

r ′
∂

∂r ′
(
r ′ ∂U ′

∂r ′
)

− U ′
r ′2 + ∂2U ′

∂z′2

)∣∣∣∣∣
f

= Pr

ε

(
1

r ′
∂

∂r ′
(
r ′ ∂U ′

∂r ′
)

− U ′
r ′2 + ∂2U ′

∂z′2

)∣∣∣∣∣
p

,

V ′∣∣
f = V ′∣∣

p and Pr

(
1

r ′
∂

∂r ′
(
r ′ ∂V ′

∂r ′
)

+ ∂2V ′
∂z′2

)∣∣∣∣∣
f

= Pr

ε

(
1

r ′
∂

∂r ′
(
r ′ ∂V ′

∂r ′
)

+ ∂2V ′
∂z′2

)∣∣∣∣∣
p

, (16)

Heat transfer condition:

θf |f = θf |p ,

∇· (∇θf )|f = qi,

∇· (∇θf )|p = ε qi,

∇· (∇θs)|p = (1 − ε)qi. (17)
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2.2 Energy Flux Vectors

In convective heat transfer processes, streamlines and isotherms are the most frequently used
tools for visualisation and analysis of fluid flow and heat transfer. However, isotherms do
not yield adequate information regarding the direction and magnitude of heat transfer. In
this respect, the concept of heatlines and heatfunction was introduced by Kimura and Bejan
(1983) for proper visualisation and analysis of heat transfer. Heatfunction takes into account
the simultaneous transfer of energy by conduction and convection and as such, presents a
comprehensive picture of energy transfer in a medium. However, it is not possible to define
heat function in transient problems or for systems involving source terms due to the lack
of a closed form solution. This shortcoming has been addressed by Hooman (2010) with
the development of energy flux vectors. Since the present problem involves internal heat
generation, the concept of energy flux vectors has been used for visualisation of convective
energy transfer within the system. Mathematically, the energy flux vector can be expressed
as 	E =

(
∂Π

∂z′

)
	i −

(
1

r ′
∂Π

∂r ′

)
	j . (18)

Following Ejlali and Hooman (2011) and Ejlali et al. (2009), the dimensionless form of
energy flux vectors is separately defined for the fluid and porous regions as follows

Fluid region:

∂Π

∂z′
= U ′θf − r ′ ∂θf

∂r ′ , (19)

− 1

r ′
∂Π

∂r ′ = V ′θf − ∂θf

∂z′
, (20)

Porous region:

∂Π

∂z′
= U ′θf − r ′ ∂θf

∂r ′ − r ′ ∂θs

∂r ′ −
[
(1 − γ )

h′

4
(θs − θf )r

′2
]

− r ′2

2H ′2 , (21)

− 1

r ′
∂Π

∂r ′ = V ′θf − ∂θf

∂z′
− ∂θs

∂z′
−

[
(1 − γ )

h′

2
(θs − θf )z

′
]

− z′

H ′2 . (22)

2.3 Entropy Generation

A literature survey reveals inconsistencies related to solid-fluid heat transfer and heat gen-
eration in entropy generation formulation for heat-generating porous media (Baytaş 2007;
Betchen and Straatman 2008; Ting et al. 2015; Torabi et al. 2015a). In order to resolve this,
the local volumetric entropy generation rates for the present system have been derived using
volume-averaging technique as detailed in Faghri and Zhang (2006). These are expressed
separately for the fluid region as well as the solid and the fluid phases of the porous medium
in a dimensionless form as follows

Fluid region:

NS′′′
f = NS′′′

f,θ + NS′′′
f,ψ

= 1

(θf + T ∗)

((
∂θf

∂z′

)2

+
(

∂θf

∂r ′

)2
)

+ EcPr

(θf + T ∗)
Φ, (23)
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Porous region:

NS′′′
pf = NS′′′

pf,θ + NS′′′
pf,ψ + NS′′′

pf,Da + NS′′′
pf,θ fs

= 1

(θf + T ∗)

((
∂θf

∂z′

)2

+
(

∂θf

∂r ′

)2
)

+ EcPr

(θf + T ∗)
Φ + EcPr

(θf + T ∗) Da

(
U ′2 + V ′2)

+ h′ (θs − θf )
2

(θf + T ∗) (θs + T ∗)
, (24)

NS′′′
ps = NS′′′

ps,θ

= 1

(θs + T ∗)

((
∂θs

∂z′

)2

+
(

∂θs

∂r ′

)2
)

. (25)

The quantityΦ represents the dissipation function and is expressed for a two-dimensional,
cylindrical coordinate system as

Φ = 2

[(
∂U ′

∂r ′

)2

+
(

∂V ′

∂z′

)2

+
(
U ′

r ′

)2
]

+
(

∂U ′

∂z′
+ ∂V ′

∂r ′

)2

. (26)

The first two terms in Eqs. (23–24) represent irreversibility associated with heat transfer
(NS′′′

f,θ , NS
′′′
pf,θ ) and viscous effect of fluid flow (NS′′′

f,ψ , NS
′′′
pf,ψ ), respectively. In Eq. (24), the

third term is due to irreversibility caused by viscous drag in porousmedia (NS′′′
pf,Da), while the

last term is associated with local heat transfer between the fluid and solid phases (NS′′′
pf,θ fs).

Form drag in porous media has negligible effects on entropy generation (Baytaş 2007) and
has been neglected in the current study. Similarly, Eq. (25) represents irreversibility caused
by heat transfer in the solid phase (NS′′′

ps,θ ). The total irreversibility due to heat transfer
(NS′′′

θ ), fluid friction (NS′′′
ψ), viscous drag (NS′′′

Da), heat transfer between solid and fluid
phases (NS′′′

θ fs) and total entropy generation (NS′′′) is expressed as follows, where Ω and Λ

represent the clear fluid and porous domains, respectively,

NS′′′
θ =

∫
Ω

NS′′′
f,θdΩ +

∫
Λ

(
NS′′′

pf,θ + NS′′′
ps,θ

)
dΛ, (27)

NS′′′
ψ =

∫
Ω

NS′′′
f,ψdΩ +

∫
Λ

NS′′′
pf,ψdΛ, (28)

NS′′′
Da =

∫
Λ

NS′′′
pf,DadΛ, (29)

NS′′′
θ fs =

∫
Λ

NS′′′
pf,θ fsdΛ, (30)

NS′′′ = NS′′′
θ + NS′′′

ψ + NS′′′
Da + NS′′′

θ fs. (31)

Equations (23–25) introduce twoadditional dimensionless quantities—Ec and T∗—which
are expressed as

Ec = α2

L2CpΔTref
= gβ H3

L2CpRaPr
, (32)

T ∗ = Tc
ΔTref

. (33)
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In order to assess the dominancy of entropy generation due to heat transfer irreversibility,
with respect to that of fluid friction irreversibility and vice-versa, the average Bejan number
(Be) is defined as the ratio of entropy generation due to heat transfer irreversibility to the
total entropy generation. Mathematically, it is expressed as

Be = NS′′′
θ + NS′′′

θ fs

NS′′′ . (34)

It is worth mentioning here that Be > 0.5 represents dominancy of heat transfer irre-
versibility, while Be < 0.5 represents dominancy of fluid friction irreversibility. Be = 0.5
indicates equal contribution from heat transfer irreversibility and fluid friction irreversibility
towards total entropy generation.

3 Numerical Procedure

Numerical solution of the governing equations, Eqs. (1–9), is obtained following a control
volume approach using the computational fluid dynamics software ANSYS FLUENT 14.5.
PRESTO (PREssure STaggering Option) is used as the numerical scheme for solving the
mass balance equation, while the momentum and the energy equations are solved using the
QUICK (Quadratic Upstream Interpolation for Convective Kinematics) scheme. Pressure–
velocity coupling is achieved using the well-known SIMPLE algorithm. For the purpose of
solution, the entire domain is divided into 17,345 nodes corresponding to 16,929 elements.
A convergence criterion of maximum residual below 10−8 is followed for determining con-
vergence of the solution. The order of accuracy of all computed variables is ensured at least
up to 4 significant digits after decimal point.

The solution of the aforementioned system of governing equations requires solving the
energy balance equation for the solid phase of porous media as represented by Eq. (9). This
is accomplished in ANSYS FLUENT by defining the solid-phase temperature (θs) as a user-
defined scalar (UDS) (ANSYS 2012). The diffusive term in Eq. (9) is modelled using the
DEFINE_DIFFUSIVITY module of user-defined function. Heat transfer between the solid
and the fluid phases as well as the internal heat generation in the solid phase is modelled
as user-defined source terms using the DEFINE_SOURCE module. All these functions are
then coupled and solved using the UDS equation utility in ANSYS FLUENT. The individual
components of the energy flux vector as well as all terms of entropy generation are also
calculated by post-processing using user-defined functions.

4 Results and Discussion

The following results and discussion highlight the thermal non-equilibrium natural convec-
tive process in a cylindrical enclosure induced by heat generation in a truncated conical
porous bed. Dimensions of the bed are maintained constant throughout the study at H ′ =
0.5, R′ = 0.25 and φ = 75◦. Water at 300 K (corresponding Pr of 5.83 and kf = 0.610572
W/mK) is assumed to fill the cylindrical enclosure and saturate the porous bed. Solid thermal
conductivity is taken to be of the order of that found in nuclear debris beds or coal stockpiles
(ks = 2.0 W/mK). Porosity (ε) of the porous bed is assumed to remain constant at 0.4. For
the purpose of entropy generation analysis, height of the porous bed (H) is assumed to be 0.5
m and the thermo-physical properties are calculated at the ambient temperature (Tc) of 300
K. Effects of Ra andDa on fluid flow, heat transfer and entropy generation characteristics are
sequentially discussed after reporting the grid independence and validation of the numerical
model.

123



364 A. Chakravarty et al.

Table 1 Grid Independence
study using Nuavg at the side wall
(top row) and the top wall
(bottom row) of the enclosure

Ra Da Configuration (number of nodes)

7802 17345 30650

107 10−7 0.02289 0.02314 0.02319

(1.29%) (0.21%)

0.07807 0.07895 0.07907

(1.26%) (0.15%)

1011 10−7 0.09671 0.09789 0.09808

(1.39%) (0.2%)

0.4341 0.4376 0.438

(0.89%) (0.091%)

4.1 Grid Independence Study

In order to ensure that the solutions obtained are not influenced by the structure of computa-
tional domain, a grid independence study has been carried out with different configurations of
the computational domain. Table 1 lists the Nuavg values for both cold walls of the enclosure
with three different configurations. It can be seen that as the grid is refined beyond 17,345
nodes, only a minor change takes place in Nuavg for either cold wall of the enclosure. As
such, this configuration has been utilised for performing further computations reported in the
present work.

4.2 Validation of Numerical Results

Results obtained using the present numerical model are validated with the solution of Baytaş
(2003) for a square enclosure with cold isothermal walls containing heat-generating porous
media. Figure 2 presents a comparison between the present results and that of Baytaş (2003)
in terms of Nuavg,s and Nuavg,f at the top wall for a wide range of h′ and with γ = 1.0. In all
cases, Ra and Da were kept constant at 107 and 10−2, respectively. The results show that the
numerical solution closely matches the published results and as such, use of the numerical
model for further study is well justified.

4.3 Fluid Flow and Heat Transfer Characteristics

In order to characterise the fluid flow and heat transfer patterns for the present problem, an
analysis is carried out to determine the effects of volumetric heat generation (in terms of Ra)
and porous bed permeability (in terms ofDa). The effect of heat generation is investigated by
performing a parametric study of Ra in the range of 107 to 1011, keeping Da fixed at 10−7.
In a similar fashion, the effect of bed permeability is analysed by varying Da between 10−6

and 10−10 for a fixed Ra of 1010. Table 2 quantifies the pertinent global parameters for the
range of study undertaken.

4.3.1 Effect of Rayleigh Number

The effect of Ra on fluid flow and heat transfer in the enclosure is represented in Fig. 3 with
the help of streamlines, isotherms and energy flux vectors. Heat generation within the solid
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Fig. 2 Comparison of the present numerical model with the solution of Baytaş (2003) in terms of Nuavg at
the top wall for fluid and solid phases with Ra = 107, Da = 10−2 and γ = 1.0

Table 2 Global parameters of the enclosure for the range of study undertaken in terms of Ra and Da

Ra Da RaDa |ψ |max θ f,max θs,max Nuavg,side Nuavg,top

107 10−7 1 7.9863 0.07804 0.08411 0.02314 0.07895

108 10 12.2602 0.07743 0.08348 0.030749 0.1023

109 102 21.6068 0.07597 0.08209 0.03874 0.12258

1010 103 34.4527 0.0618 0.06938 0.05239 0.16529

1011 104 51.914 0.03359 0.043796 0.097895 0.4376

1010 10−6 104 22.7519 0.02807 0.06069 0.060996 0.3223

10−7 103 34.4527 0.0618 0.06938 0.05239 0.16529

10−8 102 40.609 0.07915 0.08107 0.049 0.1426

10−9 10 41.7287 0.0812 0.0818 0.04904 0.13937

10−10 1 42.5094 0.08162 0.0818 0.04766 0.1314

phase of the porous bed results in heat transfer from the solid particles to the saturating fluid
and induces a counter-clockwise natural convective circulation such that heat transfer takes
place from the porous bed to the cold enclosure walls. Heat transfer also takes place from the
heat-generating porous bed to the adjacent clear fluid region across the fluid–porous interface.
The net heat transfer from the porous bed to the cold walls is, thus, a balance between these
two competing heat transfer mechanisms. This is clearly depicted by the energy flux vectors
in Fig. 3.

An increase in Ra is associated with a greater volumetric heat generation rate for a given
bed geometry, which results in a higher �Tref and consequently induces stronger convection
within the porous bed as well as the enclosure. This is evident from the gradually increasing
trend of |ψ |max with Ra, as shown in Table 2. Stronger convection leads to enhanced energy
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Fig. 3 Stream function, isotherm and heat function contours for various Ra at Da = 10−7

transfer within the enclosure which in turn results in greater heat transfer at the cold walls. A
visual observation of energy flux vectors for various Ra confirms the enhancement of energy
transfer within the enclosure with increase in heat generation. The increase in heat transfer at
the cold walls is evident from the magnitudes of Nuavg in Table 2. Interestingly, both θs,max

and θf,max have a decreasing trend with increase in Ra although greater heat generation
in the porous bed must result in higher temperatures for both the phases. A review of the
scaling parameters will show that the dimensionless temperature (θ) is determined by the
relative values of temperature of the individual phases with respect toΔTref . Thus, although
temperature of both phases is higher at higher Ra, the simultaneous increase in ΔTref results
in a reduced value of both θs,max and θf,max.

123



Thermal Non-equilibrium Heat Transfer and Entropy Generation. . . 367

Fig. 4 Dimensionless axial velocity profile along radial direction at z′ = 0.25 for various Ra at Da = 10−7

A comparison of energy flux vectors for different Ra in Fig. 3 reveals an interesting aspect
of heat transfermechanism from the porous bed. At lower heat generation rate (corresponding
to Ra = 107), heat transfer from the porous bed mainly takes place across the fluid–porous
interface to the adjacent clear fluid region and subsequently, by convection to the cold walls.
Heat transfer due to convection within the porous bed has a minor contribution to the overall
heat transfer at such low heat generation. This lack of convection within the bed is also
reflected by the overlapping solid and fluid isotherm in Fig. 3.With increase in heat generation
(corresponding to Ra = 109), however, the contribution of convective heat transfer within
the porous bed increases and becomes comparable to heat transfer across the fluid–porous
interface at still higher heat generation (corresponding to Ra = 1011). The corresponding
fluid and solid isotherms in Fig. 3 also reflect this effect. Dimensionless axial velocity profiles
along the radial direction in Fig. 4 at z′ = 0.25 (i.e. within the porous bed) further corroborate
the above view.

Although greater heat transfer takes place at the cold walls at higher heat generation rates,
i.e. at higher Ra, the variation in Nuavg for either wall is not linear as can be seen from
Fig. 5. The relative increase in heat transfer is higher at higher values of Ra for either wall.
However, the increase in Nuavg for the top wall is comparatively larger than that for the side
wall. This is expected since natural convection drives the fluid within the porous bed in a
counter-clockwise circulation such that maximum heat transfer takes place at the top wall and
the residual energy is transferred to the side wall. This also accounts for the wide difference
evident between the Nuavg values of the top and side walls.

4.3.2 Effect of Darcy Number

Achange inDarcy number (Da) essentially represents amodification of the fluid flowpassage
in the porous medium. Thus, a reduction in Da means greater resistance to fluid flow and
hence, lower velocity and vice-versa. In the context of the present problem, a smaller value
of Da for a certain Ra will reduce convection induced fluid motion within the porous bed.
This is corroborated by the axial velocity profiles for various Da as shown in Fig. 6.
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Fig. 5 Variation of Nuavg for top wall and side wall with Ra at Da = 10−7

Fig. 6 Dimensionless axial velocity profile along radial direction at z′ = 0.25 for various Da at Ra = 1010

A comparison of stream function, isotherm and energy flux vectors for three different
Da (10−6,10−8,10−10) at Ra = 1010 is presented in Fig. 7. A high value of Da, i.e. greater
bed permeability allows significant convective fluid motion to take place within the porous
bed and hence, the dominant heat transfer mechanism from the bed is by convection of the
saturating fluid. A decrease in bed permeability, as represented by reduction in Da, retards
fluid motion within the bed and thereby leads to decreased contribution of convective heat
transfer from the bed towards heat transfer in the enclosure. As a result, the enthalpy content
of the porous bed increases and consequently the corresponding heat transfer across the fluid–
porous interface also increases. A comparison of energy flux vectors in Fig. 8 adequately
highlights this effect. Greater heat transfer leads to a higher fluid velocity along the interface,
and thus successively greater velocity jumps are observed at the fluid–porous interface asDa
is reduced in Fig. 6.
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Fig. 7 Stream function, isotherm and energy flux vectors for various Da at Ra = 1010

The net effect of reduced convective heat transfer from the bed is greater enthalpy content
within the porous bed. As such, temperature rise within the bed is significantly higher at low
Da as can be observed from the magnitude of θf,max and θs,max in Table 2. With the decrease
in Da values, heat transfer from the bed and subsequently at the cold walls also decreases.
This is represented in terms of Nuavg at the cold walls for a given Ra in Fig. 8. It can be
observed that the variation in Nuavg with Da at a fixed Ra is similar to the variation of Nuavg
with Ra for a given Da in Fig. 5.

The above study on the effect of bed heat generation and bed permeability reveals some
interesting aspects of natural convective flow in heat-generating porous media. Appreciable
convection takes place within the porous bed for RaDa> 100, while it becomes negligible
for RaDa< 100. As a consequence, convective heat transfer from the porous bed and heat
transfer across the fluid–porous interface becomes the dominant heat transfer mechanism for
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Fig. 8 Variation of Nuavg for top wall and side wall with Da at Ra = 1010

the two regimes, respectively. The dominancy of convective heat transfer from the porous
bed is also reflected by the rapid increase of Nuavg beyond RaDa = 100 in Figs. 5 and 8.

The above regime demarcation can also be used to identify problems with respect to the
application of local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE)
models of energy equation in porousmedia. It can be seen that forRaDa< 100, themagnitude
of θs,max tends to that of θf,max, and the respective isotherms are almost overlapping. A
significant difference, however, is evident at higher values of RaDa. Hence, it can be stated
that the LTE model of energy equation may be applied to problems with RaDa < 100 (i.e.
conductive regime), while it must definitely not be used for problems involving RaDa > 100
(i.e. convective regime).

4.4 Entropy Generation Characteristics

The major objective of the entropy generation analysis presented in this section is to char-
acterise the irreversibilities associated with natural convection, in an enclosure driven by
heat-generating porous media. In order to have a comprehensive understanding, one rep-
resentative case is presented here from each of the aforementioned heat transfer regimes.
Figures 9 and 10 represents the local entropy generation contours pertaining to the cases
with Ra = 108, Da = 10−7 (i.e. RaDa < 100) and Ra = 1010, Da = 10−7 (RaDa > 100),
respectively. This is followed by results of various factors contributing to entropy generation,
as defined in Eqs. (27–31), with parametric variation in Ra and Da.

Observation reveals that entropy generation due to heat transfer irreversibility (NS′′′
θ ) is

concentrated near the cold walls of the enclosure and in the vicinity of the heat-generating
porous bed, where the magnitude of temperature gradients is substantial. This can be seen
from Figs. 9a and 10a. Since higher volumetric heat generation rate is associated with higher
Ra, thermal gradients are also larger and consequently greater NS′′′

θ is found at higher Ra.
Figures 9b and 10b represent the contours due to fluid friction irreversibility (NS′′′

ψ).
It can be seen that, in either case, maximum entropy generation takes place in the region
above the porous bed and it progressively decreases in the counter-clockwise direction with
minimum value in the porous bed. As the cold fluid picks up heat from the porous bed, its
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Fig. 9 Entropy generation contours at Ra = 108, Da = 10−7

velocity rapidly increases and attains maximum magnitude above the porous bed. As such,
fluid friction irreversibility is also greater in this region. The heated fluid deposits energy
first at the top wall and then at the side wall, and its velocity gradually decreases with a
corresponding decrease in entropy generation. Flow resistance within the porous bed results
in a very low velocity in this region, and consequently entropy generation is also minimum in
the porous bed. Similar to the case of heat transfer irreversibility, higher Ra induces a larger
fluid velocity and thereby NS′′′

ψ is also greater at higher Ra.
The contours of entropy generation due to viscous drag (NS′′′

Da) in the porous bed are
shown in Figs. 9c and 10c. Only a minor variation is observed in the magnitude of the
contours for both the cases, with greater entropy generation in inner regions of the porous
bed. This happens since flow velocity marginally increases towards the inner regions of the
bed, as can be seen from Fig. 4. As expected, NS′′′

Da also has a greater magnitude at higher
Ra since larger volumetric heat generation induces stronger flow in the porous bed.

Entropy generation contours due to solid to fluid heat transfer in the porous bed (NS′′′
θ fs)

are represented in Figs. 9d and 10d. In the regime with Ra = 108 and Da = 10−7, i.e. RaDa
<100, a lack of convective heat transfer from the porous bed results in the establishment of an
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Fig. 10 Entropy generation contours at Ra = 1010, Da = 10−7

almost uniform temperature gradient within the bed for either phase of the porous medium.
As such, NS′′′

θ fs is also uniformwith progressively greater magnitude towards the inner region
due to a marginally higher temperature gradient. This is depicted in Fig. 9d. The effect of
greater convection within the porous bed at higher Ra is evident from the contour in Fig. 10d.

The global magnitudes of various entropy generation terms for parametric variations inRa
and Da are listed in Table 3. The range of Ra and Da chosen for this analysis is kept similar
to that in fluid flow and heat transfer analysis (Sect. 4.3) for enabling better interpretation
of the results. The dominant mechanism for entropy generation can easily be identified
using Bejan number (Be) as defined in Eq. (34). It is worth mentioning here that Be >

0.5 represents dominancy of heat transfer irreversibility, while Be < 0.5 indicates that fluid
friction irreversibility is the dominant mechanism. A significant variation in Be is observed
as Ra is varied at a constant Da. Only minor variations are, however, observed in case of
variations in Da at a constant Ra.

At low heat generation rates (i.e. low Ra), lower temperature rise of solid particles results
in negligible solid to fluid heat transfer in the porous region and thereby, thermal gradients
for both solid and fluid phases are weak. As such, the contribution of entropy generation
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Fig. 11 Variation of Total Entropy generation (NS′′′) with a Ra at Da = 10−7 and b Da at Ra = 1010

due to heat transfer irreversibility (combined contribution of NS′′′
θ and NS′′′

θ fs) towards total
entropy generation is small as compared to that from fluid friction irreversibility (NS′′′

ψ).

This is reflected by a small magnitude of Be (corresponding to Ra = 107). An increase
in the volumetric heat generation rate (i.e. increase in Ra) leads to a higher solid-phase
temperature in the porous bed. This necessitates a greater solid–fluid heat transfer within the
porous bed and consequently establishes a stronger thermal gradient for both phase of the
porous medium. As such, the magnitude of heat transfer irreversibility within the porous bed
becomes higher as Ra is increased. Heat transfer irreversibility in the clear fluid region is
also higher since greater energy transfer from the porous bed results in larger heat transfer
at the cold enclosure walls. As such, the overall entropy generation due to heat transfer
irreversibility becomes higher as Ra is increased. This increase in energy transfer also leads
to stronger convection within the porous bed as well as the clear fluid region. Therefore,
irreversibilities associated with fluid friction and viscous drag in porous bed also increase
simultaneously. Interestingly, the least contribution to entropy generation for the entire range
of Ra comes from viscous drag within the porous bed (NS′′′

Da) due to small flow velocities
in the region. A comparison of Be reveals that irreversibilities due to heat transfer and other
sources become almost comparable to each other at Ra = 108, while increasing Ra beyond
results in significantly greater dominancy of heat transfer irreversibility.

In case of variations in Da keeping Ra fixed, all entropy generation terms except NS′′′
θ

exhibit an increasing nature with increase in Da. An increase in Da allows greater fluid flow
in porous media leading to higher fluid velocities in the porous bed as well as in the clear
fluid region. As such, irreversibility related to both fluid friction (NS′′′

ψ) as well as viscous
drag in the porous bed (NS′′′

Da) is of a greater magnitude at higher Da. For the same heat
generation rate (since Ra is constant) at higherDa, a stronger flow leads to greater convective
energy transfer from the porous bed and as such, results in a weaker thermal gradient within
the porous bed (as is evident from Fig. 7). At the same time, a stronger convective energy
transfer establishes a marginally greater thermal gradient near the cold enclosure walls at
higherDa and thereby causes greater heat transfer at the cold walls (as represented in Fig. 8).
However, observation reveals that the relative change in thermal gradient is much larger
within the porous bed than near the cold walls. Thus, NS′′′

θ is governed by thermal gradients
within the porous bed such that it decreaseswith an increase inDa. Further, greater convection
within the porous bed with increase in Da results in a larger temperature difference between
the solid and fluid phases (as can be seen from Table 2 as well as isotherms in Fig. 7) and
hence NS′′′

θ fs also increase with Da. However, no significant change is observed in Be with
Da signifying that the dominant mode of entropy generation is independent of Da.
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Figure 11 represents the variation of NS′ with Ra and Da, respectively. Interestingly, the
variations are similar to that of Nuavg in Figs. 6 and 9 justifying the assumption that entropy
generation within the enclosure can also be demarcated into the aforementioned heat transfer
regimes at a critical RaDa of 100.

5 Summary and Conclusions

The steady-state flow, heat transfer and entropy generation characteristics have been numer-
ically investigated for a two-dimensional, laminar natural convective flow in a cylindrical
enclosure induced by a heat-generating porous bed. Darcy–Brinkmann–Forchheimer model
and local thermal non-equilibrium (LTNE) have been adopted for describing momentum and
energy transport in porous medium, respectively. Analysis has been carried out for a wide
range of Ra (107–1011) and Da (10−6–10−10) with Pr = 5.83 and ε = 0.4. Some salient
observations from the study are summarised as follows

1. Fluid flow and heat transfer within the enclosure are mainly governed by the relative
magnitudes of Ra and Da. Although heat transfer in the clear fluid region is always
convection-dominated, two distinct heat transfer regimes have been identified within the
porous bed at critical RaDa of 100—heat transfer from porous region takes place mainly
to the adjacent fluid region across the fluid–porous interface when RaDa < 100 and by
convection of the saturating fluid when RaDa > 100.

2. Significantly greater heat transfer is observed at the cold enclosurewalls in the convection-
dominated regime.

3. The case of local thermal equilibrium (LTE) has been recovered for cases in the
conduction-dominated regime, while it is observed that local thermal non-equilibrium
(LTNE) must be adopted for cases in the convection-dominated regime.

4. The least contribution to entropygenerationwithin the enclosure is fromNS′′′
Da irrespective

of heat transfer regime.
5. Major contribution to entropy generation comes from NS′′′

ψ for low heat generation rates
(i.e. low Ra), while at higher heat generation rates the contribution from NS′′′

θ and NS
′′′
θ fs

exceeds that of other factors.
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