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Abstract We discuss the governing system for oil–water flow with varying water composi-
tion. The model accounts for wettability alteration, which affects the relative permeability,
and for salinity-variation-induced fines migration, which reduces the relative permeability
of water. The overall ionic strength represents the aqueous phase composition in the model.
One-dimensional displacement of oil by high-salinity water followed by low-salinity-slug
injection and high-salinity water chase drive allows for exact analytical solution. The solution
is derived using the splitting method. The analytical model obtained analyses the effects of
wettability alteration and finesmigration on oil recovery as two distinct physicalmechanisms.
For typical reservoir conditions, the significant effects of both mechanisms are observed.

Keywords Low-salinity waterflooding · Fines migration · Wettability · Non-self-similar
solution · Analytical model · Oil recovery

List of symbols

A Fraction of the overall rock–liquid surface accessible to each phase
A132 Hamaker constant (J)
As Fraction of the overall rock–liquid surface of fines detachment
b Fraction of clay surface accessible to water
Cv Variance coefficient
D Front velocity in (xD, tD) coordinates
f Fractional flow for water
F Force (MLT−2)
g Pore-size distribution
G Density in conservation law for lifting equation
k Absolute permeability (L2)
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kr Relative permeability accounting for fines straining and wettability changes
k/
r Relative permeability accounting for wettability changes only
l Lever arm (L)
L Reservoir size (L)
n Corey exponent
u Velocity (LT−1)
p Pressure (ML−1T−2)
P Dimensionless pressure
rs Particle radius (L)
rp Pore radius (L)
s Water saturation
Sa Dimensionless concentration of attached particles
Ss Dimensionless concentration of strained particles
sor Residual oil saturation
t Time (T)
tD Dimensionless time
U Flux in conservation law for lifting equation
V Front velocity in (xD, ϕ) coordinates
x Linear coordinate (L)
xD Dimensionless linear coordinate

Greek letters

αL Dispersivity (L)
β Formation damage coefficient
γ Brine salt concentration
Γ Henry’s sorption coefficient
θ Contact angle
λ Dimensionless total mobility of two-phase flow
Λ Filtration coefficient (L−1)
μ Viscosity (ML−1T−1)
σa Volumetric concentration of attached particles
σcr Maximum volumetric concentration of attached particles
σs Volumetric concentration of strained particles
σwo Water–oil interfacial tension (MT−2)
Σ Concentration distribution of attached particles
τ Delay time (T)
φ Porosity
ϕ Stream function
ΩH Volume of injected formation water (L3)

Subscripts

d Drag
e Electrostatic
g Gravitational
H High-salinity water
I Initial value
J Injected value
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l Lifting
L Low-salinity water
o Oil
w Water

1 Introduction

Injection of low-salinity (LS) or “smart” water into oilfields for recovery enhancement has
several advantages, such as low cost relative to other enhanced oil recovery (EOR) techniques,
often readily available injectant, negligible environmental impact, and straightforward field
implementation. Planning and designing a waterflood having an alternative composition
includes study of numerous physical mechanisms of incremental recovery; the degree of
freedom for possible injection compositions highly exceeds those for “normal” flooding
(Agbalaka et al. 2009; Austad et al. 2010; Sheng 2014; Brady et al. 2015; Khorsandi et al.
2016). The injected water composition strongly affects the success of “smart” waterflooding
and is extremely sensitive to numerous factors, such as formation water and crude compo-
sition, and mineral content of the rock (Tang and Morrow 1999; RezaeiDoust et al. 2009;
Morrow and Buckley 2011; Fogden et al. 2011). Therefore, decision-making on low-salinity
waterflooding must include a multi-variant sensitivity study with reliable laboratory-based
mathematical modelling. The need for numerous multi-variant simulations motivates the
search for an analytical model.

Multiple physics effects in two-phase flow with varying salinity and the consequent EOR
mechanisms are presently not well understood (Sheng 2014). Therefore, in the current work,
we use a so-called mechanistic model for one-dimensional low-salinity waterflooding (Qiao
et al. 2015, 2016; Khorsandi et al. 2016), which is similar to the model for “multi-component
polymer flooding” (Braginskaya and Entov 1980; Pope 1980; Lake et al. 2014; Barenblatt
et al. 1989; Dahl et al. 1992). The one-component “lumped”model, presented by Jerauld et al.
(2008) and used in the current paper, groups all salts in one pseudo-component, referring to
salinity as the “ionic strength”. The multi-component models for low-salinity waterflooding
include monovalent and divalent anions with active-mass-law kinetics of chemical reactions
and adsorption on clay sites, and cations in brine (Omekeh et al. 2013; Dang et al. 2013;
Nghiem et al. 2015; Qiao et al. 2015, 2016; Khorsandi et al. 2016). The models also account
for dissolution of calcite cement in the brine, and sorption of some oleic components on the
rock surface (Al Shalabi et al. 2014a, b; Alexeev et al. 2015).

Planning and design of low-salinity waterflooding includes fines management (Civan
2007, 2010, 2011; Fogden 2012). Often the injected water salinity is chosen to avoid fines
mobilisation andmigration in order to limit the consequent formation damage, although this is
not always possible (Scheuerman and Bergersen 1990; Pingo-Almada et al. 2013).Moreover,
the fines-induced reduction in permeability decelerates the injected water, which enhances
sweep efficiency (Zeinijahromi et al. 2013). The effective management of fines migration
with varying injected water composition requires mathematical modelling. The equations for
two-phase flowwith finesmigration have been presented for homogeneous reservoirs in large-
scale approximations (Yuan and Shapiro 2011; Zeinijahromi et al. 2013). Their averaging
in layer-cake formations yields pseudo-relative permeability equations (Lemon et al. 2011).
However, to our knowledge, basic equations in the literature for low-salinity waterflooding
do not account simultaneously for wettability alteration and for finesmobilisation, migration,
and straining.
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In large-scale approximation, one-dimensional solutions of continuous injection depend
on one group x/t , i.e. are self-similar (Pope 1980; Polyanin and Zaitsev 2012; Lake et al.
2014). However, the solutions for sequential injection of high-salinity (HS) and LS slugs with
HS chase drive are non-self-similar. The corresponding interactions of saturation and concen-
tration waves have been investigated in Barenblatt et al. (1989), Entov and Zazovskii (1989)
and Bedrikovetsky (1993). Analytical solutions have not been obtained for oil displacement
by HS water followed by LS water slug and HS chase drive.

In the present work, we present a mathematical model, in which a two-phase immiscible
flow model that uses the “lumped” salt concentration in water, is merged with the model of
finesmobilisation,migration, and aqueous phase permeability impairment. For the casewhere
the initial concentration of attached fines is below its maximum, we propose the extrapolation
of the maximum retained function into the area where particle mobilisation does not occur,
in order to avoid different systems of equations in two (x, t)-domains. The one-dimensional
(1D) problem of “normal” waterflooding followed by the injection of LS water slug and
HS chase drive allows for exact solution. We obtained it by the splitting method, using
the Lagrangian coordinate instead of time in the system of governing equations. The exact
solution provides explicit formulae for concentration and saturation profiles, front velocities,
breakthrough concentration, and the recovery factor. The solution encompasses both cases of
secondary and tertiary recovery. The analytical model allows for sensitivity analysis of how
the incremental oil recovery is affected by two independent physical factors: contact angle
alteration and fines migration.

The structure of the paper is as follows. Section 2 derives the governing equations for two-
phase flow with varying salinity and fines migration in large-scale approximation. Section 3
derives an exact solution corresponding to injection of HS and LS water slugs followed
by HS chase drive. Section 4 contains the results of analytical modelling and analysis of
incremental oil recoverywith LSwaterflooding applications. Section 5 discusses applications
and limitations of the derived analytical model. Section 6 concludes the paper.

2 Governing Equations

Sections 2.1 and 2.2 introduce a maximum retention function in single-phase and two-phase
environments, respectively. The maximum retention function is a mathematical model for
fines detachment. Section 2.3 derives the basic equations for two-phase flow with varying
salinity and induced fines mobilisation and straining. Section 2.4 presents the formulation of
1D waterflooding using low-salinity water slugs with high-salinity chase drive.

2.1 Particle Detachment During Single-Phase Flow

In this section, we discuss fine particle mobilisation, migration, and straining during a
single-phase flow in porous media. Figure 1 shows a particle on a rough surface of the
rock or internal cake in a single-phase environment. The drag Fd, lift Fl, electrostatic
force Fe, and gravitational force Fg exert the particle subject to water flow in porous
space.

The mechanical equilibrium of particles on the rock surface is determined by the torque
balance for drag, lift, electrostatic, and gravitational forces, i.e. the total torque is equal to
zero (Khilar and Fogler 1998; Bradford et al. 2006, 2011):

Fdld + Flle = (Fe + Fg)le. (1)
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Effects of Fines Migration on Low-Salinity Waterflooding 217

Fig. 1 Schematic for torque balance exerted on the particle at the moment of mobilisation: a lever arm is
defined by the mutual particle-rock deformation and b the particle starts rotating around the asperity

Here ld and le are the lever arms for tangential and normal forces, respectively. The
tangential lever arm for a solid particle can be assumed to equal the particle radius, and
the normal lever arm is determined by the Hertz theory of the contact area between the
deformable particle and surface. Depending on the Young modulus and the Poisson ratio
for rock and particle matters, the lever arm ratio le/ ld varies in the interval 100–1000. In
principle, the particle could revolve around an asperity on the rough rock surface (Fig. 1b).
However, the available laboratory data on particle dislodgment are in close agreement with
the Hertz theory (Kalantariasl et al. 2014, 2015).

Consider a mono-layer of multiple-size particles on the rock surface. The torque balance
(1) determines whether a given particle is mobilised or remains attached to the surface. The
forces in Eq. (1) depend on the carrier fluid velocity, ionic strength, temperature, effective
stress, and other parameters affecting the forces (Bedrikovetsky et al. 2011, 2012). There-
fore, this equation determines the amount of attached fines. This dependency is called the
critical retention function. Under constant flow velocity, temperature, and effective stress,
the attached concentration is a function of salinity only.

For fixed injection rate and pore size, all forces in Eq. (1) depend on salinity and particle
radius. This allows expressing the ratio between particle radius versus salinity at which the
particle is mobilised: rs = rs(γ ), where γ represents salinity. The obtained dependency is
monotonically increasing. Thus, the particles are mobilised in order of decreasing their radii
during flow with decreasing salinity. Therefore, the maximum retention function is equal to
the accumulated size distribution of particles attached to the rock surface:

σcr(γ ) = σa0

rs(γ )∫

0

Σ(r)dr , (2)

where Σ(rs) is the concentration distribution of attached particles over radii and σa0 is the
overall initial concentration of attached fine particles. The detailed derivations are given by
You et al. (2015).

Further in the text, the critical retention function for one-phase flow is denoted as

σa = σcr(γ ), (3)

where γ is the salinity, and the flow velocity, temperature, and effective stress are assumed
to be constant.

The plots ofmaximumretention functionσ = σcr(γ ) for amono-layer of fines particles are
given in Fig. 2a; black, red and blue curves correspond to velocities u = 10−4, 1.5×10−4 and
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Fig. 2 In large-scale approximation, strained concentration σs is determined by the maximum retention
function σcr (γ ); here, concentrations σs and σcr (γ ) are approximated by the vanishing function into the
domainσ < σcr (γ ), where no particles aremobilised: amaximum retention curves for different flowvelocities
and b extrapolation of the maximum retention curve into the “under-saturated” area γ < γcr of no fines release

2×10−4 m/s, respectively. Themaximum retention function defined by Eq. (3), is calculated
for mono-layers of multi-sized particles in a cylindrical capillary. It is assumed that in the
sandstone rock, the kaolinite fines are attached to the grain surfaces. The typical values of
physical properties are as follows: salinity is equal to seawater salinity γI = 28,000 ppm of
NaCl, Hamaker constant A132 = 9.5561 × 10−21 J, and electrostatic potentials for quartz-
brine and kaolinite brine are −19.1 and −10.7 mV, respectively. For salinity equal to γJ =
1500 ppm of NaCl and Hamaker constant A132 = 9.5938 × 10−21 J, electrostatic potentials
for quartz–brine and kaolinite brine are−34.9 and−23.0mV, respectively. For either salinity,
mean particle size rs = 3μm, drag factor ω = 60, and formation damage coefficient β =
1000 (Khilar and Fogler 1998; Israelachvili 2011). The permeability is k = 8×10−13 m2 and
the porosity is φ = 0.2; so the mean pore radius as calculated by the formula rp = 5(k/φ)1/2

equals 10−5 m (Barenblatt et al. 1989). Flow velocity is 1.5 × 10−4 m/s. The injected and
initial points are located on the red maximum retention curve (Fig. 2a).

The higher the velocity, the larger the drag and lift forces and the lower the maximum
retention concentration.

The maximum retention function can also be calculated for the case of poly-layers of
mono-size particles on the cylindrical pore wall. The salinity decrease yields a decrease in
electrostatic force and normal lever arm, thereby decreasing the right hand side of Eq. (1). The
corresponding decrease in drag Fd is achieved via the particle’s dislodging, cake thickness
decrease, and decrease in the interstitial velocity in the pore. The detailed derivations are
presented in Bedrikovetsky et al. (2011).

In the general case of arbitrary pore space geometry, particle size, and shape distributions,
the maximum retention function is a phenomenological function of the model.

The above two models for theoretical prediction of the maximum retention function have
been validated by laboratory experiments (Zeinijahromi et al. 2013; You et al. 2015).

The typical form of the maximum retention function σ = σcr(γ ) is given in Fig. 2b.
For the points below the maximum retention curve, the attaching torque of electrostatic and
gravitational forces exceeds those for the detaching drag and lift forces. The initial point
corresponds to the “under-saturated” state, i.e. the fine particle mobilisation can begin only
after the salinity has decreased from γI to γcr. Therefore, along the path, the horizontal line
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depicts no fines release, and the curve indicates the release of an amount of fines denoted as
σs. The critical salinity is determined as a minimum salinity where the fines are released:

σcr(γcr) = σa0. (4)

Therefore, salinity variation from γI to γcr does not cause any particle mobilisation. Salinity
decrease from γcr to γ yields release of fine particles that corresponds to decrease in the
attached particle concentration by σa0 − σcr(γ ).

In order to avoid two systems of equations, with andwithout fines release, we approximate
the maximum retention function for γ < γI by a curve that crosses point I and passes
negligibly below the horizontal line σ = σa0 (Fig. 2b). It provides negligible fines detachment
for γ > γcr; the fines release occurs at any salinity below the initial salinity and allows using
the mathematical model for flow with fines release (3) for the overall interval of salinities.

2.2 The Model for Particle Detachment During Two-Phase Flow

Following Zeinijahromi et al. (2013, 2016), this section discusses fine particle mobilisation
under two-phase flow in porousmedia. Figure 3 shows the attached and strained fine particles,
which are retained in the rock (with concentrations σa and σs, respectively). Figure 3 also
shows the fractions of the overall solid-liquid interface accessible to water Aw and oil Ao,
which is one of the schemas for oil and water distribution in mixed-wet rocks (Salathiel
1973; Kovscek et al. 1993; Kim and Kovscek 2013). The higher the water saturation and
the lower the contact angle, the greater the accessible-to-water surface fraction Aw(s, γ ).
Consequently, the surface fraction Ao is a monotonically decreasing function of s and a
monotonically increasing function of the contact angle θ . The contact angle is a salinity
function: θ = θ(γ ).

The overall specific rock–liquid surface comprises that accessible to water and that acces-
sible to oil:

Aw(s, γ ) + Ao(s, γ ) = 1. (5)

Sarkar and Sharma (1990) and Sharma and Filoco (2000) investigated the permeability
reduction resulting from the injection of low-salinity water. The permeability damage in
the presence of residual oil was observed to be significantly lower than in a single-phase
flow. This is attributed to incomplete accessibility of mobile water to the rock surface under
saturation of rock by water and oil. The formation damage in the presence of polar residual
oil was found to be lower than that under the non-polar oil. The rock is fully wet with water
in the non-polar-oil case, whereas the rock is partly wet in the case of polar oil. Thus, the
rock surface accessible for mobile water is higher for the case of non-polar oil, implying that
low-salinity water detaches more particles.

Berg et al. (2010), Cense et al. (2011), Fogden (2012) and Mahani et al. (2015a, b) found
a decrease in the contact angle during the salinity decrease, with further detachment of oil
from the clay surface and expansion of the water-accessible clay surface. Fogden et al. (2011)
observed kaolinite release by the low-salinity water flux after residual oil removal.

The poly-molecular water film covering the oil-wet rock minerals is not included into the
area Aw; the film is located in the area Ao (Mahani et al. 2015a, b). Area Aw corresponds
only to mobile water, which can remove the attached particles. We neglect the salt diffusion
through the poly-molecular water film covering the oil-wet rock minerals. Thus, the amount
of fines attached to area Ao is not affected by salinity, but that on the Aw-surface depends
on salinity (Schembre and Kovscek 2005; Schembre et al. 2006; Zeinijahromi et al. 2013,
2016).
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Fig. 3 Schematic for porosity,
phase saturations, and particle
concentrations in porous space:
the fine particles are attached to
the rock surface (σa) and strained
in thin pores (σs)

Fig. 4 The attached particles can
be detached from the rock surface
accessible to water Aw by the
injected water; fines attached to
the surface Ao remain immobile

Figures 3 and 4 show oil films covering clay surface in the area invaded by the injected
water; the corresponding saturation is equal to s − swi and water-accessible surface is
Aw(s, γ ) − Aw(swi, γ ). Oil is not present in the swith fraction of the pore space. Here
we discuss water injection into the reservoir with connate water saturation swi.

The model also assumes that the drag acting on a particle from the flowing oil is not
sufficient to mobilise it.

From the above statements on the fines state in porous media, saturated by two-phase
fluid, it follows that the overall attached fine particle concentration in the rock encompasses
the particles attached to the rock surface

(1) saturated by the connate water Aw(sI, γ );
(2) accessible to water, where oil is released by low-salinity water b(γ ){Aw(s, γ ) −

Aw(sI, γ )};
(3) accessible to water, where oil is not released [1 − b(γ )]{Aw(s, γ ) − Aw(sI, γ )}; and
(4) accessible to oil Ao(s, γ ).
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Effects of Fines Migration on Low-Salinity Waterflooding 221

Here b is the fraction of the clay surface from which the attached oil is removed. In the
case of clay particles (kaolinite, illite, etc.), the dependency b(γ ) defines the fraction of the
surface where the varying-salinity water removes the residual oil due to wettability altering.

The fines attached to the rock surface related to connate water, or accessible to water and
released from the attached oil (types 1 and 2), can be mobilised by drag’s being exerted on
particles from the carrier water. The decrease in salinity weakens the attractive electrostatic
particle-grain forces, which means that maximum retention is a monotonically increasing
function of salinity (Khilar and Fogler 1998; Israelachvili 2011).

For the case of instant fines release, the attached concentration is equal to the maximum
retention function of the rock σcr(s, γ ) and is the total of four concentrations of the above-
mentioned particles:

σa = σcr(s, γ ) = σcr(γ )Aw(sI, γ ) + σcr(γ )b(γ )
[
Aw(s, γ ) − Aw(sI, γ )

]
+ σa0[1 − b(γ )] [Aw(s, γ ) − Aw(sI, γ )

] + σa0[1 − Aw(s, γ )], (6)

where the function σcr(γ ) corresponds to single-phase water flow through the rock.
Only types 1 and 4 are present in the rock under connate water saturation. Substituting

s = sI in Eq. (6) yields the expression for initial amount of attached particles in the rock:

σa = σcr(sI, γI) = σcr(γI)Aw(sI, γI) + σa0
[
1 − Aw(sI, γI)

]
. (7)

The assumption of instant capture of the released fines leads to

σs = σcr(sI, γI) − σcr(s, γ )

= [
σcr(γI) − σcr(γ )

]
Aw(sI, γ ) + [

σa0 − σcr(γ )
]
b(γ )

[
Aw(s, γ ) − Aw(sI, γ )

]
. (8)

Using the extrapolated maximum retention curve (Fig. 2b) allows deriving the “saturated”
state of the initial fines, i.e.

σa0 = σcr(γI). (9)

The expression (8) for strained concentration (9) becomes

σs = [
σa0 − σcr(γ )

] {Aw(sI, γ ) + b(γ ) (Aw(s, γ ) − Aw(sI, γ ))} . (10)

Now we introduce the rock surface fraction As from which the fines can be detached:

As(s, γ ) =
{
Aw(sI, γ ), s < sI
Aw(sI, γ ) + b(γ ) (Aw(s, γ ) − Aw(sI, γ )) , s > sI

. (11)

Figure 5 shows the water-accessible area Aw(s, γ ) and the particle detachment area As(s, γ )

for the formation and injected water salinities.
The expression (10) for strained concentration (8) can be simplified to

σs = [
σa0 − σcr(γ )

]
As(s, γ ). (12)

In particular, the amount of strained particles during the overall displacement period is

σs = [
σa0 − σcr(γJ )

]
As (1 − sor, γJ ) . (13)

For the case of water-wet particles (silica, lousy sand, feldspar), the attached concentration
is a total of the particles on the rock surface accessible to water, and the attached particles
on the accessible-to-oil surface (Yuan and Shapiro 2011; Zeinijahromi et al. 2013, 2016):

σa = σcr(s, γ ) = σcr(γ )Aw(s, γ ) + σa0(1 − Aw(s, γ )). (14)
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Fig. 5 The functions that determine the rock surface fraction of the clay detachment: a plots of the water-
accessible area Aw (s, γ ) (solid curves) and the particle detachment area As (s, γ ) (dashed curves) and b the
fraction of clay area b(γ ) released from the attached residual oil by low-salinity water

2.3 Model Assumptions and Governing System

Let us discuss the governing equations for oil displacement by low-salinity water that account
for particle detachment and straining, causing damage to the aqueous phase.

We assume the conditions of large-scale approximation,where dissipative fluxes (capillary
pressure and dispersion) are negligible compared with the advective fluxes of phases and
components, and the relaxation times of non-equilibrium processes (kinetics of wettability
alternation and fines release and straining) are negligible compared with the injection of one
pore volume (Bedrikovetsky 1993). The conditions of large-scale approximation assume that
the following dimensionless groups vanish for large L:

σwo(γI) cos θ(γI)
√
kφ

μouL
,

αL

L
,�L ,

uτθ

φL
,

uτσ

φL
� 1, (15)

where σwo is the interfacial tension between oil and water, μo is the oil viscosity, L is the
reservoir (core) length, αL is the rock dispersivity, Λ is the filtration coefficient, τθ is the
relaxation time of the contact angle alteration, and τσ is the delay in fine particles release.

To be more specific, the large-scale conditions (15) mean that the viscous pressure drop
highly exceeds capillary pressure. So, the capillary pressure is negligible comparedwith oil or
water pressure. Salt dispersion is negligible compared with the advective mass transfer of the
salt component by the carrier aqueous phase. The free-run length of particle is significantly
smaller than the core length.

The delay in establishing the salinity-dependent contact angle is negligible compared with
the residence time in the core (reservoir). Also, salt diffuses from the particle-rock contact
space to the bulk solution in the pore centre, which means that the attached concentration
takes values of the maximum retention function with some delay (Mahani et al. 2015a, b).
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In large-scale approximation, it is assumed that the delay is negligible compared to the time
of injection of one pore volume, implying that the dependency (10) is established instantly.

Therefore, instant straining of the released fine particles occurs, and there are no suspended
particles. Straining concentration in Eq. (10) is the difference between the initial and current
values of the maximum retention function. Concentration of strained particles σs in Fig. 2b
is the difference between the initial and current values of the maximum retention function
for a single-phase flow.

The overall molar concentration of cations is represented by the equivalent sodium ion
concentration (so-called ionic strength γ ). Two phases are assumed to be immiscible and
incompressible (Fig. 3). Variation in small sodium concentration does not change the aque-
ous phase density and viscosity. Other assumptions of the model are that relative phase
permeabilities depend on the contact angle; the equilibrium contact angle depends on salin-
ity; and porosity is constant. It is also assumed that small fines concentrations yield significant
permeability decline but do not affect water viscosity or density (Muecke 1979; Khilar and
Fogler 1998).

A fraction of attached particles is mobilised into the suspension with the following strain-
ing in thin pore throats (Figs. 3, 4). The attached fines coat the grain surfaces and pore walls.
As a consequence, the particle detachment by the drag force negligibly increases porosity
and permeability. The significant permeability reduction by a small number of suspended
mobilised particles is explained by the clay fines’ being thin, large plates of kaolinite and
shells of chlorite, accompanied by long illite fines, where a small-volume fine particle can
strain even a large pore throat (Muecke 1979; Lever and Dawe 1984; Sarkar and Sharma
1990). So, the straining of low-concentration fines suspension can alter the pore structure.
Therefore, fines mobilisation is assumed not to change water viscosity, but the water relative
permeability and capillary pressure are strained concentration dependent. Fines are strained
by the rock fraction where the aqueous suspension flows. Therefore, relative permeability of
water depends on the strained fine concentration, and oil relative permeability is indepen-
dent of the concentration of strained fines. The mobilised fine particles are assumed to be
water-wet and transported by the aqueous phase (Muecke 1979; Yuan and Shapiro 2011).

Mass balance equations for incompressible immiscible water and oil phases (Lake et al.
2014) are

φ
∂s

∂t
+ ∂uw

∂x
= 0, φ

∂ (1 − s)

∂t
+ ∂ uo

∂x
= 0. (16)

Here uw and uo are velocities of water and oil, respectively.
The modifying Darcy’s law with equal phase pressures depicts momentum balances for

aqueous and oil phases:

uw = − kkrw(s, γ, σs)

μw

∂p

∂x
, uo = − kkro(s, γ )

μo

∂p

∂x
, (17)

where p is the pressure, and krw and kro are relative permeabilities for water and oil, respec-
tively.

The salinity dependency of the relative permeability in Eq. (17) depicts the effect of
wettability variation with salinity.

For a single-phase flow, straining of porous media by particles yields the permeability
decrease as

k(σs) = k(0)

1 + βσs
, (18)
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where k(0) is the initial permeability and β is the empirical formation damage coefficient.
This expression is obtained from the zero- and first-order terms in Taylor’s series for the
function k(0)/k(σs). For fines transported by water, we apply the same expression for water
relative permeability. Thus, the formation damage to the aqueous phase due to straining of
the released fines is

krw(s, γ, σs) = k′
rw(s, γ )

1 + βσs
, (19)

i.e. the effect of attached particles on relative permeability for water is negligible (Civan
2007, 2010). Here, k/

rw(s, γ ) is relative permeability for water for fines-free flow.
In the mass conservation law for salt, we account for advective transport of salt by the

carrier aqueous phase only:

φ
∂γ s

∂t
+ ∂γ uw

∂x
= 0. (20)

It is follows from the above assumptions, the mobilised particles are instantly strained, i.e.
Eqs. (10, 11) determine the amount of strained fines.

For the reservoir part where the critical salinity is exceeded, the reservoir fines remain
attached (γ > γcr, σs = 0) and the model comprises the Buckley–Leverett equations with
changing salinity (16, 17) without fines migration, i.e. σs = 0 and σa = σa0. Extrapolation
of the maximum retention function in the semi-interval [γ < γI] allows using the governing
system for the overall interval of salinity variation [γJ , γI].

Adding Eq. (16) results in conservation of the total flux of two incompressible phases:

u (t) = uw + uo. (21)

Calculation of the total flux u by adding Eq. (17) yields

u = −k

(
krw(s, γ, σs)

μw
+ kro(s, γ )

μo

)
∂p

∂x
. (22)

Expressing the pressure gradient fromEq. (22) and substituting it into the first Eq. (17) results
in the following expression for water flux:

uw = f u, f (s, γ, σs) =
krw(s,γ,σs)

μw

krw(s,γ,σs)
μw

+ kro(s,γ )
μo

. (23)

where f is the fractional flow function.

2.4 Dimensionless Equations

The following dimensionless coordinates and parameters will apply to the system of dimen-
sional equations (16–20):

xD = x

L
, tD = 1

φL

t∫

0

u(τ )dτ, Sa = σa

σa0
, Ss = σs

σa0
, P = kp

μouL
. (24)
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Substituting the dimensionless parameters (24) along with expression (23) into the governing
system (16, 20, 22) yields (Zeinijahromi et al. 2013; Hussain et al. 2013):

∂s

∂tD
+ ∂ f (s, γ )

∂xD
= 0 (25)

Ss = (Sa0 − Scr(γ )) As(s, γ ), f (s, γ ) = f (s, γ, Ss(γ )) (26)
∂γ s

∂tD
+ ∂γ f (s, γ )

∂xD
= 0 (27)

1 = −λ(s, γ )
∂P

∂xD
, λ(s, γ ) = krw(s, γ, Ss)μo

μw
+ kro(s, γ ). (28)

The governing system (25–27) is a 2 × 2 hyperbolic system of quasi-linear equations for
two variables s and γ (Courant and Friedrichs 1976). Equation (28) separates from system
(25–27), i.e. pressure distribution calculation follows the solution of system (25–27).

The initial conditions correspond to reservoir saturation and salinity of formation water
before the injection:

tD = 0 : s = sI, γ = γI. (29)

Points I in Figs. 6a, 8a, and 11a correspond to initial conditions (29).
Entrance boundary conditions for continuous low-salinity water injection are a fixed frac-

tion of injected water and injected salt concentration:

xD = 0 : f (sJ , γJ ) = 1, γ = γJ . (30)

Points sLJ in Figs. 6a, 8a, and 11a correspond to boundary conditions (30) for the case of
low-salinity water injection. The inlet points sHJ in those figures correspond to high-salinity
waterflooding.

For formation water injection followed by the injection of low-salinity-water slug with
high-salinity drive, the volume of injected formation water ΩH is used to dimensionalise
coordinates x and t in Eq. (24); the dimensionless coordinate of the core outlet (production
well row) becomes φL/ΩH. The inlet boundary conditions are

xD = 0 : f (sJ , γJ ) = 1, γ =
⎧⎨
⎩

γI 0 < tD < 1
γJ 1 < tD < ts
γI ts < tD < ∞

. (31)

Point sHJ in Fig. 8a corresponds to boundary condition (31) during high-salinity water
injection. The inlet point changes up to the value sLJ for tD > 1.

Here for the sake of simplicity, it is assumed that the compositions of formation and high-
salinity injected waters are identical. In this case, no ion exchange, wettability alteration, or
finesmobilisation occur after high-salinitywaterflooding. This case is suitable for comparison
between low-salinity-water injection and “normal” waterflooding.

3 Analytical Models for Low-Salinity Waterflood with Fines Migration

This section presents exact solutions for fines-assisted LS waterflooding given the large-
scale approximation, Eqs. (25–27). The splitting procedure is used for the exact integration
(“Appendix 1”). Secondary recovery corresponds to continuous injection of LSwater yielding
an xD/tD-dependent self-similar solution (Sect. 3.1). Tertiary recovery by LS water slug
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Fig. 6 Analytical model and graphical solution for continuous low-salinity water injection: a solutions for
formation water injection (sHJ → 6 → I ), medium salinity (sLJ → 4 → 5 −→ 6 → I ), and low-salinity

flooding (sLJ −→ 2 → 3 → I ) using the fractional flow curves, b saturation profiles for three displacement
cases and c water-cut history for the three cases of displacement

Fig. 7 Mapping using the stream-function ϕ(xD, tD): a initial and boundary conditions and front velocity at
the plane (xD, tD); b mapped initial and boundary conditions and front velocity at the plane (xD, ϕ) and c
graphical presentation of Lagrangian speed V and Eulerian speed D at the (s, f )-plane
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Fig. 8 Graphical solution for 1D displacement of oil by formation water followed by LS slug and HS water
chase drive: a fractional flow curves and typical saturations corresponding to points 2, 3, . . ., 6; b zoom near
to residual oil saturation; c lifting of the solution for the auxiliary problem in the (U, F)-plane and d zoom
near to injection points sJ

injection with high-salinity chase drive follows “normal” waterflooding; the solution is non-
self-similar (Sect. 3.2).

3.1 Self-Similar Solutions for Continuous Injection of Low-Salinity Water

The solutions of the continuous injection problem (29, 30) for system (25–27) are well known
(Pope 1980; Jerauld et al. 2008; Lake et al. 2014). The solutions s(xD, tD), γ (xD, tD) are
self-similar and depend on the group xD/tD. Figure 6a presents the graphical solution. Points
6, 2, and 4 are tangent points of straight lines I–6, 0–2, and 0–4, respectively, to the fractional
flow curves γ = γI and γ = γJ . The corresponding slopes are the speeds of the jumps, where
the points ahead and behind the jumps are located on those straight lines I–6, 0–2, and 0–4.
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Fig. 9 Solution for injection of HS and LS slugs followed by HS water chase drive in (xD, ϕ) coordinates: a
solution of the auxiliary system and b solution of the lifting equation

Following Courant and Friedrichs (1976), we denote rarefaction waves linking points A
and B by A–B. We denote a shock from point A to point B as A → B, i.e. points A− and B+
corresponds to states behind and ahead of shocks, respectively. The solution corresponds to
the path in the (s, f )-plane consisting of a rarefaction wave from the saturation sLJ to point
2, γ -jump from 2 to 3, and s-jump from 3 to sI:

sLJ − 2 → 3 → I (32)

for the case where point 3 is located below point 6 (s3 < s6).
Figure 6b shows the saturation profiles for injection of formation water (green curve),

low-salinity water (blue curve), and medium-salinity water (red curve). The salinity profile
is a step-function, given by a γ -jump from γJ to γI with velocity D2. Water-cut history is
shown in Fig. 6c. The graphic analytical technique for the solution is available from Lake
et al. (2014) and Bedrikovetsky (1993).
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Fig. 10 Analytical model for 1D injection problem of HS and LS slugs followed byHSwater drive in (xD, tD)

coordinates: a trajectories of saturation and concentration waves in the (xD, tD)-plane along with typical zones
I, II, . . ., XII; b saturation profiles at four different times and c salinity profiles at three different times

Figure 6a shows the fractional flow curve (in red) where the intersection point 5 is located
above point 6 (s3 > s6). The corresponding path is

sLJ − 4 → 5 − 6 → I. (33)

Figure 6b, c shows profiles of saturation and water-cut history for normal waterflooding
(green curves), intermediate-salinity waterflooding (red curves), and low-salinity waterflood-
ing (blue curves). Blue and red fractional flow curves correspond to the cases with the same
residual oil saturation. It follows from the curve shapes that for 1D continuous water injec-
tion, low-salinity waterflooding results in a later breakthrough than with formation water
injection; it also decreases water-cut during production of an oil–water bank and for a short
period after the breakthrough of the injected water. It also results in lower oil residual at
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Fig. 11 Fractional flow curves
for injection of formation water
and low-salinity water: green
curve corresponds to injection of
formation water; red curve
encompasses effects of both
wettability alternation and
induced fines migration; black
curve presents the case of
fines-free and wettability-affected
low-salinity flood; blue curve
corresponds to no wettability
alteration and fines mobilisation
with straining during low-salinity
waterflood

Fig. 12 Comparison of four cases of oil displacement by formation of HS water (green), by LS water
accounting for wettability alteration effect only (black), by LS water accounting for fines migration effect
only (blue), and by LS water accounting for both effects (red): a water-cut history, b recovery factor versus
PVI and c pressure drop across the reservoir

the later stage of waterflooding. Oil production with intermediate-salinity water injection
coincides with normal flooding from the beginning of injection to beyond the water break-
through. Afterwards, normal waterflooding exhibits higher water-cut and higher residual
oil.
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Fig. 13 The effect of formation
water volume injected before LS
water slug on the recovery factor:
oil displacement by formation HS
water (green); injection of 0.1,
0.3, and 1.0 PV of HS water
before LS water injection (red,
blue, and brown, respectively);
continuous LS flood (black)

Table 1 Exact solution for 1Doil displacement by formationwater and low-salinity slug in the (xD,ϕ)-domain

Zone U (xD, ϕ) γ (xD, ϕ) Domain

0 sI γI ϕ = −sIxD

I sHJ γI 0 < ϕ < 1, ϕ > F/
U

(
UH
J , γI

)
xD

II ϕ
xD

= F/
U (U, γI) γI ϕ < 1, −sIxD < ϕ <

F/
U

(
UH
J , γI

)
xD, xD < xL2(ϕ)

III sLJ γJ 1 < ϕ < ts, ϕ > F/
U

(
UL
J , γJ

)
xD + 1

IV ϕ′−1
x ′
D

= F/
U (U, γJ ) γJ 1 < ϕ < ts, F/

U (U5, γJ ) xD + 1 < ϕ <

F/
U

(
UL
J , γJ

)
xD + 1

V s5 γJ 1 < ϕ < ts, F/
U (U5, γJ ) (xD − xN ) + 1 <

ϕ < F/
U (U5, γJ ) xD + 1

VI ϕ′−1
x ′
D−xD

= F/
U (U, γJ ) γJ 1 < ϕ < ts, ϕ < F/

U (U5, γJ ) (x − xN ) + 1

VII s3 γI ϕ (xL2) < ϕ < 1

VIII sLJ γI ϕ > ts, ϕ > F/
U

(
UL
J , γJ

)
(xD − xz) + ts

IX ϕ′−ts
x ′
D−x ′′

D
= F/

U (U, γI) γI ϕ > F/
U

(
UH
J , γ I

)
(xD − xP ) + ts

X sHJ γI ts < ϕ, F/
U

(
UH
J , γI

)
(xD − xT ) + ts<ϕ <

F/
U

(
UH
J , γI

)
(xD − xP ) + ts

XI ϕ′−ts
x ′
D−x ′′′

D
= F/

U (U, γI) γI ts < ϕ, F/
U (U4, γI)

(
xD − xQ

) + ts<ϕ <

F/
U

(
UH
J , γI

)
(xD − xT ) + ts
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Table 2 Exact solution for 1D oil displacement by formation water and low-salinity slug in the (x , t)-domain

Zone s γ Domain

0 sI γI 0 < tD < f /
s (s6, γI)

−1 xD, xD < xE ,tD
<

s3−sI
f3

(xD − xE ) , xD > xE

I sHJ γI tD < 1 + sHJ xD, tD

> f /
s

(
sHJ , γI

)−1
xD,

II xD
tD

= f /
s (s, γI) γI tD < tD (xL1) , f /

s (s4, γI)
−1 xD < tD

< f /
s

(
sHJ , γI

)−1
xD, xD < xM

tD < tD (xL2) , f /
s (s6, γI)

−1 xD < tD
< f /

s (s4, γI)
−1 xD, xM < xD < xE

III sLJ γJ tD (xL1) < tD < tD (xH ) , tD

> f /
s

(
sLJ , γJ

)−1
xD + 1

IV
x ′
D

t ′D−1
= f /

s (s, γJ ) γJ tD (xL1) < tD <

tD (xH ) , f /
s (s5, γJ )−1 xD + 1 < tD

< f /
s

(
sLJ , γJ

)−1
xD + 1

V s5 γJ tD (xL1) < tD <

tD (xH ) , f /
s (s5, γJ )−1 (xD − xN ) + 1

< tD < f /
s (s5, γJ )−1 + 1

VI
x ′
D−xD
t ′D−tD

= f /
s (s, γJ ) γJ f /

s (s2, γJ )−1 (xD − xM ) + tM < tD
< f /

s (s5, γJ )−1 (xD − xN ) + tN ,

tD (xL1) < tD < tD (xH )

VII s3 γI tD (xL2) < tD <

f /
s (s2, γJ )−1 (xD − xM ) + tM , xM <

xD < xE

tD >
s3−sI
f3

(xD − xE ) , xD > xE

VIII sLJ γI tD > sLJ xD + ts, 0 < xD < xG

IX
x ′
D−x ′′

D
ts−t ′′D

= f /
s (s, γI) γI tD(xH ) < tD, xG < xD < xC

X sHJ γI tD(xH ) < tD, f /
s

(
sHJ , γI

)−1
(xD − xT )

+tT <tD < f /
s

(
sHJ , γI

)−1
(xD − xP )+tP

XI
x ′′′
D −x ′

D
t ′′′D −t ′D

= f /
s (s, γI) γI tD(xH ) < tD, f /

s (s4, γI)
−1 (

xD − xQ
)

+tQ<tD < f /
s

(
sHJ , γI

)−1
(xD − xT )+tT

3.2 Non-self-similar Solutions for Displacement of Oil by Formation Water
Followed by Low-Salinity Water Slug

In this section, we derive an exact solution for the displacement of oil by HS water followed
by injection of LS water slug with HS water chase drive. The splitting derivations as applied
to the problem (25–27) are presented in “Appendix 1”. The method uses the stream-function
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(Lagrangian coordinate) ϕ(xD, tD) as an independent variable in the governing system (25–
27), instead of using time tD (Eq. 55). Figure 7 shows the corresponding mapping K , which
transforms mass balance for water, given by Eq. (25), into conservation law Eq. (58). The
graphical solution of the slug problem (63) is presented in the plane of fractional flow curves
(s, f ) in Fig. 8a, b and is presented in the plane of flux and density (U,G) of conservation
law (58) in Fig. 8c, d. The corresponding characteristics and front trajectories are presented
in planes (xD, ϕ) and (xD, tD) (Figs. 9, 10). The figures show different flow zones; the exact
formulae for salinity and saturation in each zone are presented in Tables 1 and 2.

In contrast to the continuous injection discussed in the previous section, the solution of the
large-scale system (25–27) subject to boundary conditions (31) is non-self-similar. Decays
of three Riemann discontinuities occur. The solution of the Riemann problem in origins of
planes (xD, ϕ) and (xD, tD) corresponds to oil displacement by HS water: sHJ —6 → I . We
show the corresponding path in blue in Fig. 8a, c. In points (0, 1) of the planes (xD, ϕ) and
(xD, tD) occur displacement of HS water by LS water under residual oil saturation with the
followingRiemann solution: sLJ —5 → sHJ . The corresponding path is shown in red in Fig. 8a,
c. Displacement of LS water by HS water under residual oil saturation occur in points (0, ts)
of planes (xD, ϕ) and (xD, tD); the corresponding solution consists of γ -jump sLJ → sLJ . The
path is shown in green in Fig. 8b, d.

Auxiliary problem The auxiliary equation (60) shows that in different domains of the (xD, ϕ)-
plane, salinity depends on Lagrangian coordinate ϕ only. The solution of Eq. (60) subject to
initial and boundary conditions (62) and (63) is

γ

(
ϕ

xD

)
=

⎧⎪⎪⎨
⎪⎪⎩

γI, −sI <
ϕ
xD

< 0
γI, 0 < xD < ∞, 0 < ϕ < 1
γJ , 0 < xD < ∞, 1 < ϕ < ts
γI, 0 < xD < ∞, ts < ϕ < ∞

. (34)

Figure 9a presents three zones with constant salinities γI and γJ .

Liftingprocedure The liftingproblem is solvedby investigatinghowa simple s-wave interacts
with s- and γ -shocks. The method and nomenclature follow Courant and Friedrichs (1976)
and Bedrikovetsky (1993).

According to the initial and boundary conditions (62, 63), the decay of discontinuity from
(sHJ , 1) to I occurs in the origin of the plane (xD, ϕ). The corresponding points are shown
in Fig. 8. The Riemann solution is given by the sequence of rarefaction wave and the shock,
(sHJ ) − 6 → I , where point 6 is a tangent of the straight line I–6 and the curve γ = γI.
Saturation in zone I in Fig. 9b is equal to sHJ . The rarefaction wave sHJ -6 propagates from the
origin in zone II. The characteristic lines transport the values from sHJ to s4 until the shock
trajectory ϕ = 1, where the jump γJ → γI occurs. It follows from (65) that density G is
continuous where speed V tends to infinity, [G] = 0. Therefore, the G-values above and
below axis ϕ = 1 are equal. In particular, G4 = G2. The above determines the values of
saturation above the axis ϕ = 1:

ϕ

xD
= G ′

U

(
U+ (xD, ϕ) , γI

)
(35)

G
(
U+ (xD, ϕ) , γI

) = G
(
U− (xD, ϕ) , γJ

)
. (36)

The corresponding points above the “front” ϕ = 1 vary from 5 to 2.
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The saturation values above axis ϕ = 1 propagate into zone VI in a simple s-wave:

ϕ′ − 1

x ′
D − xD

= G ′
U

(
U

(
x ′
D, ϕ′) , γJ

)
,U

(
x ′
D, ϕ′) = U− (xD, 1) . (37)

i.e. γ = γJ in this zone, and fluxU is constant along the characteristic lines in solution (37).
Saturation above axis ϕ = 1 reaches value s2 at point M in Fig. 9b:

G(xM , 1) = G2, (38)

where γ -jump 2 → 4 occurs. Point 2 is held above the line ϕ=1, where x > xM . G2 is the
maximum value along the curve γ = γJ . The rarefaction wave spreads the values above G4

below the point M . Therefore, the transition γJ → γI cannot be performed for G+ > G4.
For this case, the decay configuration is 2 → 3 → s+ (Fig. 8a, c). Point 3 is held below line
ϕ = 1, where x > xM . As a result, zone VII has constant saturation s3.

Trajectory ϕ = ϕL2(xD) separates the portion of rarefaction wave 4–6 that appears in zone
II, from constant state 3 that appears in zone VII. The trajectory is defined by the condition
on characteristic line

ϕ

xL2(ϕ)
= G ′

U

(
U− (xL2(ϕ)) , γI

)
, (39)

and the Hugoniot–Rankine condition that corresponds to conservation law (58):

dϕL2

dxD
= G

(
U− (ϕL2 (xD)) , γI

) − G3

U− (ϕL2 (xD)) −U3
. (40)

Here ϕ = ϕL2(xD) is the inverse function to xD = xL2(ϕ).
Integrating Eq. (58) along the contour ω : (0, 0) → (xM , ϕM ) → (xL2, ϕL2) → (0, 0),

and applying Green’s theorem yields

∫ ∫
�

(
∂G

∂ϕ
+ ∂U

∂xD

)
dxDdϕ =

∮
Udϕ − GdxD =

(xM ,1)∫

(0,0)

Udϕ − GdxD

+
(xL2(ϕ),ϕ)∫

(xM ,1)

+
(0,0)∫

(xL2(ϕ),ϕ)

= 0

ω = ∂� (41)

resulting in the first integral for ordinary differential equation (40), defining the trajectory
x = xL2(ϕ):

xL2(ϕ) =
(G4 − G3)

(
1
V4

)
−U4 +U3

�3 (U,G)

�3 (U,G) =
(
G

(
ϕ

xD

)
− G3

)
+ G ′

U

(
U

(
ϕ

xD

)
, γI

) (
U3 −U

(
ϕ

xD

))
. (42)

The intersection between the front trajectory ϕ = ϕL2(xD) and straight line ϕ = −sIxD
corresponds to point 6 behind the shock. It gives the intersection moment ϕ = ϕE . Point E
in Fig. 9b corresponds to the intersection. The jump 3 → I appears after the intersection.

The boundary value of saturation sLJ appears for ϕ > 1 due to change in salinity. The
corresponding rarefaction sLJ -5 connects the points along the curve γ = γJ in Fig. 9b (zones
IV and V). Saturation is constant and equal to s5 in zone V.
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Table 3 Recovery factor calculations during sequential injection of formation- and low-salinity water

Case sI krwor sor krowi nw no β

HS water 0.15 0.40 0.3 0.80 2.77 4.5 0

LS water, W-LS 0.15 0.40 0.20 0.80 4.46 3.5 0

LS water, FM-LS 0.15 0.40 0.30 0.80 2.77 4.5 3000

LS water, LS 0.15 0.40 0.2 0.80 4.46 3.5 3000

The salinity jump γJ → γI occurs along the front ϕ = ts. Saturation γ -jumps occur
along this shock, with conservation of density G(U, γ ). The saturation values behind this
shock are determined from the continuity of the densityG(U, γ ), analogous to Eq. (38). The
saturation values above axis ϕ = ts propagate in zones VIII to XI along the characteristic
lines in simple waves, analogous to Eqs. (35–37). The corresponding formulae are presented
in Table 1. Finally, the lifting solution for s(xD, ϕ) is obtained for the overall domain xD >

0, −sI < ϕ/xD < ∞.

Inverse transformation K−1 Calculating tD (xD, ϕ) for each point of the domain by formula
(66) maps the solution of the auxiliary and lifting problems into variables (xD, tD). Each
point of zones I to IX in the plane (xD, ϕ) can be connected with the origin via the sequence
of characteristics, because the solution in those zones is given by simple s-waves. Because
saturation is constant along those characteristics, integrating (66) along the sequences of
characteristics yields straight-line images in plane (xD, tD). The mapping K−1 transforms
zones with constant (U,G) in plane (xD, ϕ) into zones with constant (s, f ) in plane (xD, tD).

The formulae in Table 2 are obtained from those in Table 1 by integrating (66). The points
(xD, tD) and (x/

D, t/D) in zone VI of Table 2 are located on the same characteristic line, as are

points (xD, tD) and (x//
D , t//D ) in zone IX and (xD, tD) and (x///

D , t///D ) in zone XI.
The lifting solution contains four fronts: ϕ = −sIxD and xD = xL1(ϕ) along axis ϕ =

1, xD = xL2(ϕ), and ϕ = ts. Applying the inverse mapping (66) to the front xD = xL1(ϕ)

causes it to be mapped into the following trajectory xL1(tD), determined parametrically:

xL1(tD) = ∂ f
(
s+, γI

)
∂s

tD, tD = 1

�0
(
s+, γI

) , s+ = s+ (
xL1(tD)

)
, (43)

where

�0(s, γ ) = f (s, γ ) − s f ′
s (s, γ ). (44)

Figure 7c shows how to calculate trajectory (43) geometrically. In Fig. 8a, A0 =
Δ0(s+, γI) and B0 = Δ0(s+, γI)/ f

/
s (s+, γI). This allows for graphical expression of the

dependency xL1 = xL1(tD): point A is determined by A0 = 1/tD for any arbitrary tD; point
B is determined by tangent line A− s+ to fractional flow curve γ = γI; and the front coordi-
nate xL1 is determined by B0 = 1/xL1(tD). The images of fronts xL2(ϕ) for xM < xD < xE
and ϕ = ts are given by analogous formulae and presented in Table 2. The images of fronts
ϕ = −sIxD, ϕ = 1 for 0 < xD < xN and xD > xM , and ϕ = ts for 0 < xD < xR are straight
lines.

Substitution of flux continuity condition on shocks (67) into Eq. (55) shows that there is
no mass flux through γ -shocks. Therefore, the trajectories of γ -shocks in the (xD, ϕ)-plane
are given by the lines ϕ = const (Fig. 9a). Varying saturation in simple s-waves results in
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curvilinear γ -shock trajectories. The trajectory of the γ -shock with γ − = γJ and γ + = γI,
initiated at the moment tD = 1, propagates with constant speed along straight line 1—N ;
at tD > tN the γ -shock moves sequentially along the curve xL1 and the straight line with
the jump 2 → 3; the γ -shock speed stabilizes at the moment tD = tM (Fig. 10a). Constant
saturation values sHJ and s5 maintain behind and ahead of the shock 1—N , respectively.
The points ahead of the shock xL1 vary from sHJ to 4 during time interval [tN , tM ]; the
correspondingpoints behind the front vary from5 to 2.The s-shockpropagates xL2 propagates
during time interval [tM , tE ] ahead of the γ -shock; the points ahead of the shock xL2 vary 4 to
6; point 3 maintains behind the front. From the moment tE on, the jump 3 → I occurs along
the concentration front, which coincides with the first shock in the solution for continuous
LS water injection given by Eq. (30).

At the moment ts, γ -shock with γ− = γI and γ+ = γJ appears due to beginning of
the HS chase drive injection. The trajectory of the γ -shock propagates with constant speed
along straight line ts—R; at tD > tR the γ -shock moves sequentially along the curve xH1,
the straight line PT, and the curve xH2. Constant saturation values sLJ maintain behind and
ahead of the shock ts—R. The points ahead of the shock xH1 vary from sLJ to 5 during time
interval [tR, tP ]; the corresponding points behind the front vary from sLJ to sHJ . During time
interval [tP , tT ], the values ahead and behind the shock are 5 and sHJ . The points ahead of
the shock xH2 vary from 5 to 2 during time period [tT , ∞); the corresponding points behind
the front vary from sHJ to 4.

When time tends to infinity, saturation in the low-salinity slug tends to s2. The salt flux
through the front and rear front of the slug are equal zero. Therefore, the amount of injected
salt is equal to that remained in the slug when time tends to infinity, i.e. ts—1 = s2B. This
determines the limit of the slug size B.

Flow-zone structure Figure 10presents the trajectories of saturation and concentration shocks
in the (xD, tD)-plane. The displacement zone consists of the following reference patterns:

0 Unperturbed zone of initial water saturation sI;
I Zone with residual immobile oil and injected formation water sHJ ;
II Zone of oil flow together with injected formation water, saturation changes from sHJ to

s6 at the displacement front;
III Zone with residual immobile oil and injected LS water sLJ ;
IV Zone with low-mobility oil and injected LS water, which takes the place of zone I during

the displacement;
V Oil–LS water bank with saturation s5;
VI Zone of oil flow together with injected LS water, saturation changes from s5 to s2;
VII Oil–LS water bank with saturation s3;
VIII Zone of immobile oil with saturation sLJ ;
IX Zone of immobile oil with saturation varying from sLJ to sHJ ;
X Zone of immobile oil with saturation sHJ ;
XI Zone with injected HS water, saturation changes from sHJ to s4, which take the place of

zone VII during the displacement.

Figure 10b, c presents the profiles of salinity and saturation at four moments. Horizontal
lines tk = const, k = 1, . . ., 4 in the (xD, tD) plane correspond to the profiles at those
moments. Those lines tk = const pass through different zones. The corresponding points of
the intersection with fronts that separate different zones are shown in Fig. 10b, c. The profile
t1 is taken during HS waterflood and corresponds to the Buckley–Leverett solution (Lake
et al. 2014). The oil–water bankwith reducedwater-cut f (s3, γI) follows theHS flood profile
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at moment t2; the water-cut behind the bank is also below the water-cut for the HS flood. At
moment t3, the reduced water-cut is exhibited in zones IX and VIII. If compared with the
HS flood, the lower residual oil is exhibited in zones VIII and IX. At the moment t4, both
profiles are continuous.

3.3 Pressure Drop Calculations

In this section, we calculate pressure drop across the reservoir (core) during 1D continuous
LS waterflood given by formula (30). Expressing the pressure gradient from Eq. (28) and
integrating over xD across the reservoir before the breakthrough tD < 1/D3 yields

�P(tD) = tD

s2∫

1−sor(γJ )

f ′′ (s, γJ ) ds

λ (s, γJ )
+ tD (D3 − D2)

1

λ (s3, γI)

+ (1 − tDD3)
1

λ (sI, γI)
. (45)

It follows from Eq. (45) that the pressure drop grows linearly with PVI before the water
breakthrough.

The pressure drop expression during the production of the oil–water bank (1/D3 < tD <

1/D2) contains the integral on the right side of Eq. (45); the second term becomes tD-
dependent and linear with respect to tD, and the third term disappears. Thus, the pressure
drop grows linearly with PVI during oil–water bank production.

After the salinity-front breakthrough (tD > 1/D3), the second and third terms on the right
side of Eq. (45) disappear, and the lower limit in the integral become s-dependent, where
1/tD = f /(s, γJ ).

3.4 Recovery Factor Calculations

Implicit formulae for the solution of the HS flood followed by LS slug injection and HS chase
drive, presented in Table 2, allow for explicit calculation of the recovery factor

RF(tD) = 〈s〉 (tD) − sI
1 − sI

. (46)

To derive the formula for average water saturation 〈s〉(tD), the pore volume φL is used to
dimensionalise coordinate x and time t in Eq. (24). Point (1, tD) can be linked with either of
axes via the sequence of characteristic lines

�xDk = f /
s (sk, γk) �tDk ,

n∑
k=1

�tDk = tD,

n∑
k=1

�xDk = 1, k = 1, 2, . . . , n. (47)

where ΔxDk and ΔtDk correspond to different segments in this sequence, and the saturation
values along the segments are sk, k = 1, 2, . . ., n. Equation (25) can be integrated by the
domain bounded by the contour (0, 0) → (0, tD) → (1, tD) → (1− ΔxDn, tD − ΔtDn) →
(1− ΔxDn − ΔxDn−1, tD − ΔtDn − ΔtDn−1) → · · · → (1− ΔxD1, tD − ΔtD1) → (0, 0).
Following Green’s theorem, the mass integral is equal to the integral of mass flux form
f dtD − sdxD along this contour. The integral over the side (0, tD) → (1, tD) is equal to
-〈s〉(tD). The integral over the interval (0, 0) → (0, tD) is equal to tD. The equality of the

123



238 S. Borazjani et al.

overall integral to zero implies

tD − 〈s〉 (tD) =
n∑

k=1

(
xDk+1 ,tDk+1

)
∫

(
xDk ,tDk

)
f dtD − sdxD =

n∑
k=1

fk�tDk − sk�xDk . (48)

Substituting Eq. (35) into Eq. (48) yields

〈s〉 (tD) =
n∑

k=1

(1 − fk) �tDk + sk�xDk =
n∑

k=1

(1 − fk) �tDk + sk�xDk

=
n∑

k=1

(
sk + 1 − fk

f /
s (sk, γk)

)
�xDk (49)

which can be rewritten as

〈s〉 (tD) =
n∑

k=1

〈sk〉 �xDk , 〈sk〉 = sk + 1 − fk

f /
s (sk, γk)

. (50)

Consider a point (sk, f (sk, γk)) in Fig. 8a, which is located at the fractional flow curve
γ = γk . The abscissa of the intersection between the tangent line to the fractional flow
curve at the point (sk, f (sk, γk)) and axis f = 1 is equal to 〈sk〉. This allows for graphical
calculation of the average saturation (generalisation of Welge’s method).

Average saturation (50) can be substituted into formula (46) for recovery factor calculation.

4 Results

This section compares the waterflood cases of injection of formation and LS water. The
effects of LS water on relative permeability and on fines mobilisation and straining are
treated together in the mathematical model (25–28). However, alteration of wettability and
residual oil, and fines straining with water-permeability reduction, are independent physical
mechanisms. The effect of LS is expressed in Eq. (17) by the γ -dependency of relative
permeability: salinity decrease causes the decline inwater relative permeability and in residual
oil saturation, and causes a mild increase in the relative permeability for oil. The above
mechanisms yield the reduction in fractional flow for water and the increase in fractional
flow for oil, thereby enhancing oil recovery.

As explained at the beginning of Sect. 2.1, fine particle mobilisation is triggered by weak-
ening of electrostatic particle-grain attraction,which decreases as the salinity decreases. Fines
mobilisation andmigration are followed by particle straining in thin pore throats. Because we
discuss the case where the particles are transported by water, the result is a decline in relative
permeability for water, shown in Eq. (19). The main effect of induced fines migration is the
reduction in relative permeability of water and deceleration of the aqueous phase. However,
sweep on the micro-scale can increase, thereby reducing residual oil saturation.

Those effects reduce the fractional flow function for water and cause consequent oil
recovery enhancement.

A separate effect of salinity on relative permeability, where the fines are not mobilised,
corresponds to β = 0 in Eq. (19). A separate effect of fines-induced formation damage,
where the contact angle remains constant with salinity decrease, corresponds to salinity-
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independent relative permeability of water k/
rw in Eq. (19). The effects of fractional flow

reduction on 1D displacement of oil have been described at the end of Sect. 3.1.
Relative phase permeability is given by Corey’s formulae

kro(s, γ ) = krowi(γ )

(
1 − sor(γ ) − s

1 − sor(γ ) − swi (γ )

)no(γ )

,

krw(s, γ, Ss) = krwor(γ )

(
s − swi (γ )

1 − sor(γ ) − swi (γ )

)nw(γ )/
(1 + βSs) (51)

where the values of endpoint saturations and relative permeability are presented in Table 3
for injected and reservoir salinities. The data correspond to LS waterflood in field A from
the North Sea (Kowollik 2015). The salinity dependences of all Corey parameters in Eq.
(51) are linear (Seccombe et al. 2008; Lager et al. 2007, 2008, 2011). Table 3 presents the
correspondingCorey parameters for injected and reservoir salinities. In particular, application
of LS water causes sor-reduction by 0.1, but the residual oil saturation reduction due to fines
straining and the induced diversion of water into unswept domains can be ignored.

For calculation ofwater-accessible area Aw(s, γ ), we assume the simplified rock geometry
to be a bundle of parallel cylindrical capillaries. Wetting water fills the small capillaries. The
saturation is defined by distribution of volumes of the cylinders, and the area is defined by
their surfaces:

s =

r(s)∫
0

r2g(r)dr

∞∫
0
r2g(r)dr

, Aw(s) =

r(s)∫
0

rg(r)dr

∞∫
0
rg(r)dr

(52)

The functions of the area where the fines are detached As(s, γ ) and fraction of clay area
released from attached oil b(γ ) are estimated from permeability data for HS and LS waters
under two-phase flow. Sarkar and Sharma (1990) measured the permeability decline after
the injection of LS water with and without the presence of residual oil. Two cores were
cut from the same Berea block. Switching from HS to fresh water yielded permeability
decline from 65.43 to 0.093 mD (test 1). Equation (18) allows calculating the product βσs =
713.3. For two-phase displacement, the permeability decreased from 31.45 mD for “dry”
core, to 0.193 mD in the presence of residual oil, allowing calculating the product βAs(1 −
sor, γJ )σs = 146 (test 5-1 from Sarkar and Sharma 1990). Assuming the same maximum
retention function in two sister cores, we calculate the ratio As(1− sor(γJ ), γJ ) = 0.21. The
corresponding value of the fraction of clay area released from attached oil b(γJ ) = 0.08.

Average pore radius has been calculated from core permeability and porosity using the
formula rp = 5(k/φ)1/2 (Barenblatt et al. 1989). For k = 8 × 10−13 m2 and φ = 0.20,
we obtain rp = 10−5 m. The water-accessible area Aw(s, γ ) is calculated from Eq. (52).
The bundle-of-parallel-capillaries model does not capture the effect of contact angle on Aw.
Lognormal distribution for pore radii with mean rp = 10−5 m and variance coefficient
Cv = 0.15 have been used for calculation of Aw by Eq. (52). This variance coefficient is
typical for sandstone (Jensen et al. 2007).

The above data for Aw, As, and b(γ ) have been used to calculate relative permeability for
water using Eq. (19).

For another core from test 4 by Sarkar and Sharma (1990), the obtained values are:
As(1 − sor(γJ ), γJ ) = 0.17, and b(γJ ) = 0.05.
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Fractional flowcurves forHSand the three above-mentionedLScases are shown inFig. 11.
Water-cut and recovery factors as calculated from the analytical model (25–27), subject to
initial and boundary conditions (29, 30) and using formulae (46) for the recovery factor, are
presented in Fig. 12a, b. That the blue fractional flow curve is above the black curve means
that the impact of fines-induced formation damage is lower than that of wettability alteration.
Because fines straining does not alter the residual oil saturation, the blue curve in Fig. 12b
tends towards the green curve at large times. Wettability variation does alter the residual oil,
such that the black and red curves converge at large times. Compared with HS flood, LS
flood yields 0.3 incremental oil after 1 PVI, due to both effects. Separately, the wettability
alteration and fines migration effects after 1 PVI bring 0.18 and 0.11 of incremental oil,
respectively.

The effects of wettability alteration and fines migration, induced by LS water injection
on the pressure drop across the core (reservoir) are presented in Fig. 12c. Compared with
formation water injection (HS), alteration of wettability and some decrease in relative per-
meability for water causes increase in the maximum pressure drop 1.2 times. Comparing
with the injection of formation water (HS), the permeability damage for water induced by
fines mobilisation and straining (FM-LS) yields a 4.5-fold increase in the maximum pressure
drop. Both effects (LS) results in 4.3 times increase in maximum pressure drop.

The results of recovery factor calculations for different volumes of HS water injected
before the LS water are given in Fig. 13. The trajectories of concentration and saturation
fronts in plane (xD, tD) are shown in Fig. 10a. Here, time and the linear coordinate are
dimensionalised using the volume ΩH of HS water injected, i.e. xD → φxD/ΩH, tD →
utD/ΩH. The dimensionless moment of switching from HS to LS is constant and equal to
unity, but the dimensionless coordinate of the production line xD = φL/ΩH depends on the
volume ΩH. With the increase in the volume ΩH of injected HS water, the solution in the
(xD, tD)-plane is intact, but the line of production wells xD = φL/ΩH shifts to the left.

Figure 10a shows that for a small volume ΩH of injected HS water, xF < φL/ΩH, the
bank of formation water and oil having composition 3 arrives at the production row after
water breakthrough; the injected LS water arrives after the bank production with water-cut 2
(Fig. 6a), which will monotonically rise, i.e. the solution asymptotically approaches that for
continuous injection of LS water. For larger HS volumes, the arrival time, the water-cut at the
arrival, and its further growth coincide with that of continuous HS waterflood; the water-cut
decrease occurs after the arrival of the LS water front. For sufficiently large HS volume such
that φL/ΩH is equal to the maximum coordinate of zone I, the production coincides with
HS flood exactly until the 100 % water-cut. LS water arrives at that moment, and water-cut
falls up to point 5, with further increase during oil production with LS water.

Figure 13 presents the recovery curves for different volumes of HS water injected before
the LS waterflood. The higher the injected HS volume, the lower the recovery. High HS
volumes tend towards recovery at HS water injection. At low volumes of injected HS water,
the recovery tends to that of continuous LS flood from the very beginning.

Table 3 presents calculations for a specific contribution of wettability alteration and fines
migration and for oil recovery. For both effects, compared with “normal” 1D waterflooding,
injection of water with salinity with typical conditions results in the increase of the water-
less production period from 0.25 to 0.34, decrease of water-cut from 0.82 to 0.41 before the
salinity front breakthrough, and increase of recovery factor after 1 PVI from 0.36 to 0.66.

For only the wettability alteration effect (the case of zero formation damage coefficient),
compared with “normal” 1D waterflooding, injection of LS water results in increase of the
water-less production period from 0.25 to 0.3, decrease of water-cut from 0.82 to 0.52 before
the salinity front breakthrough, and increase of recovery factor after 1 PVI from 0.36 to 0.54.
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Comparing the effect of fines migration only (water relative permeability in the numerator
in Eq. (19)), independent of salinity, against “normal” 1Dwaterflooding, injection of LSwater
results in increase of the water-less production period from 0.25 to 0.28, decrease of water-cut
from 0.82 to 0.59 before the salinity front breakthrough, and increase in the recovery factor
after 1 PVI from 0.36 to 0.47.

5 Discussion

Impact of wettability alteration and fines migration on LS waterflood The distinguished
physical effects of LS waterflood are wettability alteration and fines-migration-induced for-
mation damage, both triggered by the difference between salinities of formation and of
injected waters. In order to compare LS and “normal” waterflooding, we discuss waterflood
by formation water, where no salinity alteration occurs. So, the term “high-salinity” in this
paper assumes equality of connate and injected HS waters.

Wettability alteration results in the decrease in sor and krw (Omekeh et al. 2013; Dang et al.
2013; Nghiem et al. 2015), leading to displacement coefficient enhancement, as is the case
for chemical EOR (Lake et al. 2014). Fines-migration-induced formation damage for water
yields the redirection of injected water into un-swept zones, leading to sweep enhancement,
as is with mobility control EOR.

The explicit analytical formulae for sequential injection of HS slug, LS slug, and HS drive
that are presented in Tables 2 and 3 can be implemented in Excel or MATLAB and used for
sensitivity study and LS EOR screening.

The 1D analytical modelling presented in Sect. 4 shows that for typical values of wet-
tability alteration and induced formation damage by application of LS water, either effect
can greatly increase incremental oil recovery compared with HS water. For example, for
typical conditions of secondary LS waterflood (Table 3), the incremental recovery after 1
PVI due to collective effects of wettability alteration and fines migration is 0.3, but for each
effect separately the incremental recovery is 0.18 and 0.11, respectively. For tertiary LS slug
injection with wettability alteration effect only, the incremental recovery after 1.5 PVI is 0.2,
0.18, and 0.05, with secondary injection of 0.1, 0.3, and 1.0 PVI of HS water, respectively.

Wettability alteration and fines migration affect also 2D LSwaterflooding. The wettability
alteration reduces residual oil and causes more complete oil displacement from the swept
areas. The induced fines migration and consequent permeability damage in the swept area
decrease water flux and divert it into unswept zones, enhancing sweep efficiency. The 2D
effects of increased sweep with LS water injection have been discussed in detail by Lemon
et al. (2011) and Zeinijahromi et al. (2013). The derived analytical model can be used for
3D reservoir simulation in stream-line models (Blunt et al. 1996; Crane and Blunt 1999;
Oladyshkin and Panfilov 2007).

Roles of dissipative and non-equilibrium effects Large-scale approximation for displacement
of oil by varying salinity water with wettability alteration and fines mobilisation, migration,
and straining is assumed in the current paper and expressed by inequalities (15), i.e. the
dissipative effects of capillary pressure, dispersion of components, kinetics of the contact
angle alteration, and kinetics of fines detachment and straining are disregarded. Yet, those
effects must be considered with interpretation of the coreflood data. The capillary pressure
effect smoothers the saturation shocks, but other effects of dispersivity and non-equilibrium
smooth the concentration shocks.
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Thickness of smoothed zones for the saturation-concentration shocks is determined from
the travelling wave solutions (Duijn and Knabner 1992; Duijn et al. 1997). A travelling wave
converges to each shock, with the dissipative dimensionless groups (15) tending to zero. The
condition that the shock thickness is significantly smaller than the core length results in a
more precise estimate of large-scale approximation than the vanishing conditions for small
dimensionless groups (15) (Bedrikovetsky 1993).

In large-scale approximation, relative phase permeability can be determined from HS and
LS corefloods using the generalised Weldge-JBN method (Jerauld et al. 2008; Zeinijahromi
et al. 2016). If large-scale approximation conditions (15) are not fulfilled for the coreflood
test, the solution depends on unknown dissipative and non-equilibrium terms. This increases
the uncertainty in determining the relative phase permeability from coreflood data (Hussain
et al. 2013). The above advantages foster reaching the conditions of large-scale approximation
by selecting proper velocity, oil viscosity, core length, etc. in laboratory tests.

Recently obtained semi-analytical and exact solutions for two-phase multi-component
systems with dissipation and non-equilibrium (Schmid and Geiger 2013; Geiger et al. 2012;
Borazjani et al. 2016) simplify the solution of the inverse problem for the general system,
but do not eliminate the uncertainty.

More complex mathematical models Different behaviour of oil-wet, mixed-wet, and water-
wet fines during LS waterflooding has been reported by Sarkar and Sharma (1990) and Tang
andMorrow (1999), etc. Here, we discuss initially oil-wet fine particles, like those of kaolinite
or illite. Residual oil coats the oil-wet particles, so there is no direct contact between the
particles and water. However, arrival of LS water alters wettability, resulting in the oil sweep
from the rock surface and exposing it to the injectedwater (Berg et al. 2010; Cense et al. 2011;
Mahani et al. 2015a). From this moment forward, particle equilibrium on the rock surface
is determined by torque balance of drag and electrostatic forces. The electrostatic particle-
rock attraction decreases with salinity decrease, resulting in particle mobilisation. Therefore,
particle detachment occurs when oil is already immobile, supporting the assumption of the
current model that fines are transported by water only.

However, a more detailed model that accounts for non-equilibrium effects should reflect
transport of mixed-wet and partial-wet fines by the capillary oil–water menisci. Basic equa-
tions for movement of oil–water interface, developed by Shapiro (2015, 2016), can be used
to describe transport of mixed-wet fines by the oil–water interface.

The current paper discussed two EOR mechanisms of LS waterflooding: the wettabil-
ity and interfacial tension alterations resulting in change to the relative permeability, and
the induced formation damage to the aqueous phase through mobilising and straining of
the natural reservoir fines. However, numerous other EOR mechanisms are currently under
investigation. More sophisticated multi-component ionic exchange models reflect the effect
of different cations on rock surface and wettability alteration during their adsorption on clay
sites (Omekeh et al. 2013; Nesterov et al. 2015). Sheng (2014) and Qiao et al. (2015, 2016)
reviewed the mechanisms of fines migration, mineral dissolution, increased pH effect, and
reduced interfacial tension, saponification, multicomponent ion exchange, wettability alter-
ation, etc. Morrow and Buckley (2011) cited osmotic pressure as an important factor leading
to incremental oil recovery. Sandengen and Arntzen (2013) described in detail how osmosis
could operate. These works noted that the mechanisms for LS waterflooding are not yet well
understood, and their modelling is a subject of forthcoming research.

The model (25–28) uses the maximum retention function for two-phase flow (Zeini-
jahromi et al. 2013). In particular, the model uses the dependency Aw(s, γ ) for the area of
water-accessible rock surface, whose pore geometry is approximated as a bundle of parallel
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cylindrical capillaries. Using the triangular pores would introduce contact angle dependency
of the area Aw(s, θ ) (Patzek and Kristensen 2001). The percolation or network model can
incorporate the geometric grid properties of the porous space (Blunt 2001). The single-phase
maximum retention model for fines detachment has been validated by comparison with
numerous laboratory studies (Zeinijahromi et al. 2013; You et al. 2015); validation of the
two-phase model still needs to be performed.

Exact analytical solutions for LS slug problems The exact solution (35–50) is obtained using
the mapping where the Lagrangian coordinate ϕ substitutes for time tD. The same technique
can be used for a multi-component ion-exchange system for the cases of Henry’s and Lang-
muir’s sorption. The mapping splits the general (n + 1)× (n + 1) system with unknowns
(s, γ1. . .γn) into the auxiliary n×n systemwith unknowns (γ1 . . . γn) and the lifting equation
that determines the saturation distribution s(x, ϕ) (“Appendix 1”). The auxiliary system is
equivalent to a set of single-phase solute-transport equations in coordinates (xD, tD − xD)

and includes the adsorption isotherms; the solution is independent of viscosities and relative
permeabilities of oil and water. For the case of Henry’s sorption, the concentration fronts in
plane (xD, ϕ) are straight lines (Fig. 9a). The auxiliary solution can be revealed from labo-
ratory corefloods or reservoir data by plotting the concentrations and fractional flow in the
produced fluid, versus the produced water volume ϕ(1, tD).

The exact solution (35–50) significantly differs from the front-tracking method (Holden
andRisebro 2013),where the rarefaction s-wave is approximated by the sequence of s-shocks;
the front-tracking solution converges to the exact solution with jumps [s] in approximated
shocks tending to zero.

6 Conclusions

Derivation of the exact solution for the 1D LS slug problem that accounts for wettability
alteration and fines migration, and recovery prediction by the analytical modelling, allows
drawing the following conclusions:

1. In large-scale approximation, the excess of the attached particle concentration over the
maximum retention value instantly transferees to strained concentration, yielding instant
permeability damage for the aqueous phase. The governing equations are equivalent to
the fractional flow model of oil displacement by chemical solution.
Extrapolation of the maximum retention function for the salinity values that are above
the critical salinity allows using the same system of governing equations in the domains
with and without fines migration.

2. A well-known analytical EOR model describes a lumped-salt LS waterflooding and
accounts for both wettability alteration and induced fines migration.

3. Continuous LS waterflooding results in later breakthrough than does formation water
injection; the former decreases water-cut during production of the oil–water bank and
during a short period after the breakthrough of the injected water. It also lowers oil
residual at later stages of waterflooding.

4. With injection of intermediate-salinity water, the breakthrough moment and water-cut
sometime after the breakthrough coincide with formation waterflooding. Afterwards,
water-cut at the intermediate-salinity water is lower, as is the residual oil.
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5. The 1D problem for oil displacement by formation water with further injection of LS slug
and HS chase drive allows for exact solution. The saturation and salinity front trajectories
are described by implicit formulae.
The trajectory formulae are linearwith respect to time tD and coordinate xD.The nonlinear
terms Δ are equal to the water volume flowing via the corresponding characteristic line.
The terms Δ allow for a simple geometric interpretation at the fractional-flow-curve
plane, yielding a graphical solution for front trajectories.

6. For short-term formation water injection before LS waterflooding, the solution asymp-
totically tends to that for oil displacement by LS water. For long-term formation water
injection, the solution tends to that for oil displacement by LS water under with high
initial water saturation.

Appendix1:SplittingMethod forEquationsofTwo-PhaseMulti-component
Mass Transfer in Porous Media

Following Wagner (1987), Pires et al. (2004, 2006) and Polyanin and Zaitsev (2012), here
we briefly present the splitting procedure for hyperbolic system (25–27). Let us assume that
the solution of the system s(xD, tD) and γ (xD, tD) is already known, f and introduce the
stream-function ϕ(xD, tD):

ϕ (xD, tD) =
(xD,tD)∫

(0,0)

f dtD − sdxD (53)

It follows from the conservation law (25) that unknowns s and f are the partial derivatives
of the stream-function

s = − ∂ϕ

∂xD
, f = ∂ϕ

∂tD
(54)

and the stream-function ϕ(xD, tD) is independent of the integration path that links point
(xD, tD) with the origin (0, 0) (Bear 2013; Courant and Friedrichs 1976). The equality of the
second mixed derivatives of the stream-function yields the conservation law (25).

From Eq. (53), it follows that the corresponding differential form of the flux has the
following shape (Cartan 2006):

dϕ = f dtD − sdxD (55)

and the lines of constant stream-function are stream-lines of the flow

dxD
dtD

= f

s
. (56)

The volumetric flux between any two stream-lines is given by the difference of their
stream-function values. In particular, the difference ϕ(xD, tD) − ϕ(xD, 0) is the volume of
water that flows via the cross section xD = constant during time tD.

Differential dtD can be expressed from Eq. (55) as

dtD = dϕ

f
+ sdxD

f
. (57)
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The equality of second mixed derivatives of function tD = tD (xD, ϕ) in Eq. (57) yields

∂G(U, γ )

∂ϕ
+ ∂U

∂xD
= 0,

U = 1

f (s, γ )
, G(U, γ ) = − s

f (s, γ )
. (58)

Equation (58) is the result of the Eq. (25) transform to coordinates (xD, ϕ).
Applying Green’s theorem over any arbitrary domain� with continuous boundary to Eq.

(27) and accounting for Eq. (55)

0 =
∮

∂�

(γ f )dtD − (γ s)dxD =
∮

∂�

γ ( f dtD − sdxD) =
∮

∂�

γ dϕ

=
∫∫

�

∂γ

∂xD
dxDdϕ, (59)

yields the transformation of Eq. (27) to (xD, ϕ)-coordinates

∂γ

∂xD
= 0. (60)

So, the original system (25–27) in (xD, ϕ)-coordinates has the form (58, 60). Equa-
tions (58) and (60) are called the lifting and auxiliary equations, respectively.

Figure 7a, b shows the mapping K : (xD, tD) → (xD, ϕ) along with the images of the
initial condition axis tD = 0 and the boundary condition axis xD = 0. The images depend
on initial and boundary data.

System (58, 60) can be formally obtained by the change of variables (xD, tD) → (xD, ϕ)

in the system (25,27), but the calculations aremore cumbersome than those given by Eqs. (57)
and (59). Equation (60) can be derived directly frommass conservation for salt in coordinates
(xD, ϕ).

Inlet boundary condition for continuous injection (30) in coordinates (xD, ϕ) becomes

xD = 0 : U = 1, γ = γJ . (61)

Initial condition (29) in coordinates (xD, ϕ) take the form

ϕ = −sIxD : γ = γI,U → ∞. (62)

The inlet boundary condition for formation water injection followed by the injection of
LS water (31) in coordinates (xD, ϕ) becomes

xD = 0 : γ =
⎧⎨
⎩

γI,

γJ ,

γI,

0 < ϕ < 1
1 < ϕ < ts
ts < ϕ < ∞

. (63)

The elementary hyperbolic waves for the 2× 2 conservation law system (58, 60) include
one rarefaction s-wave and s- and γ -jumps. The salinity is constant in the rarefaction wave;
the explicit formula is given by Eq. (35).

Substituting a trajectory ϕ(xD) and tD(xD) into the flux (55) and taking the corresponding
derivatives shows that speeds of rarefaction and shock waves in planes (xD, ϕ) and (xD, tD)

(V and D, respectively) are related as

1

V
= f

D
− s. (64)
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The geometric interpretation of Eulerian and Lagrangian speeds D and V , respectively, are
shown in Fig. 7c.

We introduce a shock [A] of a physical value A that is equal to the difference between
A-value ahead and behind the shock: [A] = A+ − A−. The Hugoniot–Rankine conditions of
flux continuity on the discontinuities for the two conservation laws (58) and (60) are (Courant
and Friedrichs 1976)

[U ] = V [G] ,
[
γ
] = 0. (65)

Those shocks are called s-shocks. They correspond to jump along the curve γ = constant in
planes (s, f ) or (U,G) (Fig. 8a, c, respectively).

It follows from the auxiliary equation (58) that shocks with salinity and saturation discon-
tinuities can occur across the axis ϕ = 0 that corresponds to infinite velocity V . Equation
(65) shows that [G] = 0, i.e. density G must be continuous. The salinity jump can take any
arbitrary value. Therefore, the ratio s/ f must be continuous also. Those discontinuities are
called γ -shocks.

Equation (60) for unknown γ separates fromEq. (58). Thus, Eq. (58) is solvedwith respect
to unknown s(xD, ϕ) for known γ (xD, ϕ) using the method of characteristics (Figs. 8, 9, 10).
Equation (58), subject to the boundary and initial conditions (61, 62), is the so-called the
lifting problem. It follows from Eq. (58) that the solutions for initial-boundary problems with
piecewise constant γ -values contain those values only. Figure 8a shows the form of density
curvesG = G(U, γ ) for γ -values γI and γJ appearing in initial and boundary conditions (62)
and (63). Finally, the transformation of solution s(xD, ϕ), γ (xD, ϕ) to coordinates (xD, tD)

is performed by the inverse mapping K−1 (Fig. 7a, b), i.e. by calculation of tD = tD(xD, ϕ)

from Eq. (55):

tD (xD, ϕ) =
(xD,ϕ)∫

dϕ

f
+ sdxD

f
, (66)

where any arbitrary point (xD, ϕ) is connected to the point with ϕ = 0 or xD = 0 by a
sequence of the characteristic lines.

The mass balance conditions on γ -shocks at the (xD, tD) plane follow from (64) and (65):

D = f
(
s−, γ −)
s− = f

(
s+, γ +)
s+ . (67)

Example Solutions for continuous injections in coordinates (xD, tD) are self-similar and
depend on the group xD/tD. The corresponding solutions in the (xD, ϕ)-plane are also self-
similar and depend on the group ϕ/xD. The solution γ (xD, ϕ) for continuous injection (61)
is achieved by a single infinite-speed jump along the axis ϕ = 0. The solution s(ϕ/xD)

corresponds to rarefaction wave J − 2, jump 2 → 3, and jump 3 → I in Fig. 8c. The
solution s(xD/tD), γ (xD/tD) corresponds to rarefaction wave J −2, jump 2 → 3, and jump
3 → I in Figs. 6a and 8a. The solution is presented in Sect. 3.1.
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