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Abstract The unconfined seepage problem is a classic moving boundary problem, in which
the position of phreatic surface is unknown at the beginning of solution and should be
determined through iteration. Mesh-free methods are especially suitable for solving this
problem. In this work, the moving Kriging mesh-free method with Monte Carlo integration
is proposed. Additionally, a corresponding procedure for handling material discontinuity is
presented, which extends the approach to inhomogeneous medium. The present method is a
true mesh-free method, which does not require a mesh for either shape function construction
or numerical integration. Another advantage of the present method is the convenient numer-
ical implementation. Numerical examples show that the present method can achieve better
convergence and higher accuracy with rational computation cost when compared with the
original mesh-free method. The present method is also verified to be applicable in analyzing
transient seepage through homogeneous and inhomogeneous media.
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1 Introduction

Unconfined seepage problems exist widely in nature and play an important role, for example,
in geotechnical engineering. Due to the complexity of actual problems, numerical approaches
are usually adopted to solve them. Since the phreatic surface is unknown at the beginning
of solution, there exists difficulty in determining the seepage domain and thus an iteration
process is often needed.

There are two categories of approaches for the numerical solution of unconfined seepage
problems, themovingmesh approach and the fixedmesh approach. Inmovingmesh approach
(e.g., Crowe et al. 1999), the meshes will be modified during iteration and they are expected
to converge at the real location. The main shortcoming is that the meshes must be redefined
during iteration and this may cause the aberrant meshes, which limits the application to
complicated problems.

Many fixedmesh approacheswere developed to overcome this shortcoming. There are two
main classes. The first class focuses on the saturated seepage zone, such as the residual flow
procedure, the adjusting permeability method. (e.g., Desai 1976; Bathe and Khoshgoftaar
1979; Cheng and Tsui 1993; Jie et al. 2013). The second class is based on saturated and
unsaturated theory (e.g., Lam and Fredlund 1984; Lam et al. 1987; Desai and Li 1983; Zhang
et al. 2001), in which a suitable pressure–permeability law is required to adjust the parameters
of the material. The concept of zero-pressure surface is adopted instead of phreatic surface.
There still exist some shortcomings for these methods. In the first class, the elements on
phreatic surface, which is also called transition elements, need special treatment in order
to obtain satisfactory accuracy. In the second class, the pressure–permeability law is quite
difficult to obtain by experiment.

In recent years, many advanced methods were developed for unconfined seepage prob-
lems (e.g., advanced approach based on boundary element method (Leontiev and Huacasi
2001; Rafiezadeh and Ataie-Ashtiani 2014), advanced approach based on finite difference
method (Bardet and Tobita 2002; Jie et al. 2004), adaptive finite element method (Sharif
and Wiberg 2002), mesh-free method (Li et al. 2003; Jie and Liu 2012), variational inequal-
ity method (Zheng et al. 2005), moving-mesh finite-volume method (Darbi 2007, Frolkovi
2012), hypersingular equations method (Chen et al. 2007), method of fundamental solutions
(Chaiyo et al. 2011), differential quadrature method (Hashemi and Hatam 2011), smoothed
fixed grid finite element method (Kazemzadeh-Parsi and Daneshmand 2012, 2013), natural
element method (Shahrokhabadi and Toufigh 2013).

Among these methods, mesh-free methods need only the information of nodes, which can
be arranged freely. Meanwhile, the approximate field function and its gradient can be con-
tinuous in the entire domain. Thus, mesh-free methods are especially suitable for unconfined
seepage problems,which are typicalmoving boundary problems. Some scholars (e.g., Li et al.
2003; Jie and Liu 2012) have solved the unconfined seepage problems using the well-known
mesh-freemethod, the element-freeGalerkinmethod (EFGM) (Belytschko et al. 1994).How-
ever, there are two main shortcomings for this approach. Firstly, because the shape functions
lack the Kronecker δ function property, it is not easy to accurately impose essential boundary
conditions. Secondly, the EFGM is not a true mesh-free method and needs a background
mesh for integration. As mentioned above, the transition elements of the background mesh
still need special treatment to obtain satisfactory accuracy.

In this work, a novel mesh-free approach for solving unconfined seepage problems is pro-
posed by combining the moving Kriging interpolation and the Monte Carlo integration. The
moving Kriging interpolation is adopted for shape functions construction, which has many
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advantages (Gu 2003). As it is a passing node interpolation, the constructed shape functions
possess the property of Kronecker δ function. So the essential boundary conditions can be
directly enforced. In addition, since it is based on the statistics theories for the minimum of
mean square error, it can ensure the interpolation accuracy. The global numerical integra-
tion is directly performed by the Monte Carlo integration, which is especially suitable for
complicated moving phreatic boundary. Additionally, a corresponding material discontinu-
ity handling procedure is presented, which extends this approach to inhomogeneous medium
seepage problems. The codes of the present method were developed, and several examples
were analyzed to evaluate the present method.

2 Shape Functions Construction Based on Moving Kriging Interpolation

From Gu (2003), the field variable u(x) in the problem domain � can be approximated by
uh(x). For any sub domain, the local approximation can be defined by

uh(x) =
m∑

j=1

p j (x)a j + Z(x) = pT (x)a + Z(x), (1)

where p j (x) are monomial basis functions, a j are monomial coefficients, and Z(x) is
assumed to be the realization of a stochastic process with mean zero, variance σ 2, and
nonzero covariance. The covariance matrix of Z(x) is given by

cov{Z(xi ), Z(x j )} = σ 2R[R(xi , x j )]. (2)

In Eq. (2), σ 2 is a scale factor. R[R(xi , x j )] is the correlation matrix, and R(xi , x j ) is the
correlation function between any pair of nodes located at xi and x j . Many functions can be
used as a correlation function R(xi , x j ) ; however, a simple and frequently used correlation
function is the Gaussian function

R(xi , x j ) = exp
(
−θr2i j

)
. (3)

in which
ri j = ‖xi − x j‖ (4)

and θ > 0 represents a value of the correlation parameter used to fit the model. In the paper,
θ = 0.1 is taken according to Zheng and Dai (2011). With the implementation of the best
linear unbiased estimation, Eq. (1) can be rewritten as follow

uh(x) = pT (x)β + rT (x)R−1(u − Pβ), (5)

where
β = (PT R−1P)−1PT R−1u. (6)

The following notations are further employed in this study

p(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1(x)
p2(x)

...

pm(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7)
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for 1 × n vector of the known m functions in Eq. (1),

P =

⎡

⎢⎢⎢⎣

p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

⎤

⎥⎥⎥⎦ (8)

for the n × m matrix that evaluates function values at the given set of nodes x1, x2, . . . , xn ,

R[R(xi , x j )] =

⎡

⎢⎢⎢⎣

1 R(x1, x2) · · · R(x1, xn)
R(x2, x1) 1 · · · R(x2, xn)

...
...

. . .
...

R(xn, x1) R(xn, x2) · · · 1

⎤

⎥⎥⎥⎦ (9)

for the n × n matrix of correlation between the Z ′s (in Eq. (1)) at the given nodes, and

r(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R(x1, x)
R(x2, x)

...

R(xn, x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(10)

for the 1 × n vector of correlation between the given nodes and x .
For simplicity, a m × n matrix A, and n × n matrix B are introduced as

A =
(
PT R−1P

)−1
PT R−1 (11)

and
B = R−1(I − PA) (12)

in which I is an n × n unit matrix, and Eq. (5) can be rewritten as

uh(x) = pT (x)Au + rT (x)Bu (13)

or

uh(x) =
[
pT (x)A + rT (x)B

]
u =

n∑

k

φk(x)uk, (14)

where the shape function φk(x) is defined by

φk(x) =
m∑

j

p j (x)A jk +
n∑

i

ri Bik . (15)

3 Governing Equations for Seepage Problem and Discrete Formulation

3.1 Governing Equations for Seepage Problem

The basic differential equation for transient unconfined seepage in the two-dimensional con-
dition is

kx
∂2H

∂x2
+ kz

∂2H

∂z2
= Ss

∂H

∂t
(16)
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where kx and kz is the hydraulic conductivity, H is thewater head, and Ss is the specific storage
(1/m), namely the released quantity of storage water caused by compression of medium and
expansion of water while water head falls down by one unit in unit volume of saturated
medium.

The boundary and initial conditions for Eq. (16) are listed below.
(1) Boundary conditions
Water head:

H |	1 = H(x, z, t) (17)

Flux:

k
∂H

∂n
|	2 = q(x, z, t) (18)

Phreatic surface:
H |	3 =z

k
∂H

∂n
|	3 =q = −μ

∂H

∂t
cos θ

(19)

(2) Initial conditions
H |t=0 = H(x, z, 0) (20)

where q(x, z, t) denotes the supplied flux in unit area on the flux boundary, q stands for the
flux supply caused by alteration of phreatic surface,μ is a dimensionless value called specific
yield, and it represents the flux of absorbing (while phreatic surface raises) or discharging
(while phreatic surface descends) from unit area of aquifers caused by unit alteration of free
surface, and θ is the angle of intersection of outer normal direction of phreatic surface and
the vertical line.

3.2 Discrete Formulations

According to the variational principle, the functional of Eqs. (16)–(20) is

I =
∫ ∫

�

{
1

2

[
kx

∂2H

∂x2
+ kz

∂2H

∂z2

]
+ Ss

∂H

∂t
H

}
d� +

∫

	2∪	3

qHd	. (21)

According to the interpolation functions presented in Eq. (15), the discrete formulation
can be derived as

[K ]{H} + ([S] + [G])
{

∂H

∂t

}
= {F}. (22)

The implicit difference is adopted for time discretization, and Eq. (22) can be written as
[
[K ] + 1


t
([S] + [G])

]
{H}t+
t = {F} + 1


t
([S] + [G]){H}t (23)

where,

K(ab) =
∫

�

φa,iCi jφb, jd� (24)

S(ab) =
∫

�

Ss(φaφb)d� (25)

G(ab) =
∫

	3

μ(φaφb) cos θd	 (26)

F(a) =
∫

	2

qφad	 (27)

123



168 W. Zhang et al.

where a and b are the nodes utilized for local approximation, namely the influence-domain
nodes, φa is the shape function of the node a defined by Eq. (15), and Ci j is the hydraulic
conductivity.

For the steady seepage problem, substituting 
t = ∞ into Eq. (23), the discrete formu-
lation can be derived as

[K ]{H} = {F}. (28)

For the unconfined seepage problem, the solutions of Eqs. (23) and (28) need iteration to
satisfy phreatic surface boundary conditions (Eq. (19)). The iteration convergence condition
in the paper is given as

e = ||H (k) − H (k+1)||2
||H (k+1)||2 <∈ (29)

where ∈ is the convergence precision.

4 Numerical Implementation

4.1 Monte Carlo Integration

The Monte Carlo method obtains solutions of mathematical problems by using statistical
sampling theory. It is basedon the lawof large number in probability theory and is promising in
many aspects. The Monte Carlo method provides a simple approach to implement numerical
integration called Monte Carlo integration. For the integration

I =
∫ b

a
f (x)dx, (30)

the value of I can be considered to be the product between (b − a) and the average value of
f (x) over [a, b]. The average value of f (x) can be obtained by generating a random sample
x1, . . . , xn that is uniformly distributed over [a, b]. Thus, we have:

Î = (b − a)
f (x1) + f (x2) + · · · + f (xn)

n
. (31)

If n → ∞, Î will converge to I with the probability 1. The error in the integration is
proportional to the standard error of Î and is inversely proportional to

√
n, so we can achieve

arbitrary accuracy by adjusting the number of sampling points.
The Monte Carlo integration needs sufficient sampling points, which increases its com-

putation cost in contrast to the Gaussian integration. However, with the development of
computer hardware, the computation cost has become less and less important in most cases,
and the Monte Carlo integration has become more and more attractive due to its simplicity,
adaptability, and independence of the problem dimension (Jie et al. 2013).

To implement numerical integration over the problem domain �, we firstly generate a
large number of randomly distributed integration points covering �. The global shape of
integration points is chosen to be rectangle for easy realization. Then looping is performed
with respect to all the points in�, to implement global numerical integration. Thus, the global
permeability matrix [K ] in Eqs. (23) and (28) can be calculated as

K = A

nmc

nmc∑

i

Ki (32)
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where A is the global area of randomly distributed integration points, nmc is the number
of integration points, and Ki is the stiffness matrix of the integration point i , which can be
obtained by Eq. (24). The matrix [S] in Eq. (23) can be calculated in a similar way.

As the problem domain � is changeable during the iterations, we only need to determine
whether each integration point is in� or not, without changing the position of each integration
point. The numerical implementation is quite convenient. Thus, the integration approach
is especially suitable for complicated moving phreatic boundary. Note that the integration
approach is dimensionless, so it is easy to be extended to three-dimensional problems.

For traditional Gauss integration over backgroundmesh (e.g., the EFGM), we need special
treatment for the changeable �. One option is to modify background mesh during iteration,
and another choice is to handle the transition background elements to obtain sufficient accu-
racy. The present approach abandons the background mesh and can be implemented over the
changeable � in a concise way with higher accuracy, and this is the main advantage.

4.2 Nodal Connectivity

The nodal connectivity is enforced via mesh in mesh-based methods, such as finite element
method, finite volumemethod, and finite difference method. In mesh-free methods, the nodal
connectivity is enforced via the concept of influence-domain. The influence-domains are
determined by searching for adequate nodes within a partition PI in the problem domain �,
PI ⊆ � for each integration point. The set of nodes inside the partition PI , which contributes
to the interpolation of the integration point xI , is called influence-domain.

In the present method, the nodal distribution is dependent on problem domain �. As the
problem domain � is changeable with the moving phreatic surface, the phreatic surface is
explicitly represented by some nodes. The nodal distribution can be arranged and changed
freely during iteration. Thus, the problem of mesh distortion in mesh-based methods is
avoided.

The field nodes and Monte Carlo integration points are connected via the concept of
influence-domain. In this paper, the circular influence-domain is adopted with a radius of
2.5dc, in which dc is the average nodal distance.

4.3 Material Discontinuity Handling Procedure

In engineering practice, the inhomogeneous medium seepage widely exists. In mesh-free
method, there is no mesh of elements, and hence the material interface cannot be defined
based on elements. Therefore, special treatment is needed, such as “visibility criterion” and
“diffraction method”. (Belytschko et al. 1996a, b; Organ et al. 1996).

In this paper, a corresponding material discontinuity handling procedure is presented.
First, the problem domain � is divided into several sub domains according to the material
zones (Fig. 1a), and the field nodes are divided into several groups accordingly, with a set
of nodes in the interface belonging to both material zones. When searching the influence-
domain for each integration point, the points in one material can only be influenced by the
nodes in this material zone. As shown in Fig. 1b, for integration point A in the material
zone �1, if the material discontinuity is not taken into consideration, the point n1 is the
influence point. On the other hand, if the material discontinuity is considered, the node n1
is not the influence point, since they do not belong to the same material zone. However, the
node n2 is the influence point of integration point A, as n2 belongs to both material zones.
The algorithm proposed in this paper essentially handles the material discontinuity problem
by distinguishing the influence-domain of the nodes in different material zones.
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(a) (b)

Fig. 1 a Material discontinuity problem; b material discontinuity handling

Table 1 Numerical procedure for unconfined seepage problems

(1) Generate Monte Carlo integration points covering �

(2) Assume an initial phreatic surface

(3) Loop over the time steps (if the transient seepage is considered)

(4) Generate field nodal distribution according to the phreatic surface

(5) Loop over Monte Carlo integration points

1. Determine the material zone of current integration point.

If current integration point is not belonging to any material zone,

exit current point and move to the next point

2. Determine the influence-domain of current integration point

3. Compute shape functions and their derivatives

4. Compute permeability matrix of current integration point

5. Assemble the contribution of current integration point to global permeability matrix [K ] by Eq. (32)
6. Assemble the contribution of current integration point to the matrix [S]

(6) End looping over Monte Carlo integration points

(7) Implement boundary conditions and form global system equation by Eqs. (23) or (28)

(8) Solve the global system equation to obtain the nodal water head result.

(9) Determine whether the result is convergent or not

If it is convergent, go to the next step. If not, modify the phreatic surface

according to the head results and goto step (4)

(10) Obtain the gradient and other interesting results

(11) End looping over the time steps (if the transient seepage is considered).

4.4 Numerical Procedure for Unconfined Seepage Problems

The numerical procedure for unconfined seepage problems is given in Table 1.

5 Examples

5.1 Seepage Through a Homogeneous Rectangular Dam

Consider a homogeneous dam with rectangular cross section. The problem is described in
Fig. 2a. This is one of the few examples that have analytical solutions in the unconfined
seepage analysis (Zheng and Liu 2015). Considering that the analytical formulas are too
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(a) (b)

Fig. 2 a Seepage through homogeneous rectangle dam; b free surface results
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Fig. 3 a Monte Carlo integration points; b initial nodal distribution; c final nodal distribution

complicated to provide results straightforwardly, Hornung and Krueger (1985) gave accurate
results in the form of tables and graphs by solving these formulas numerically.

The Monte Carlo integration points and initial and final nodal distributions are shown in
Fig. 3. The nodal distance in each direction is 0.05m. The number of integration points nmc

in Eq. (32) was taken to be 3200, and the convergence precision ∈ in Eq. (29) was taken to
be 0.001. The initial nodal distribution is arranged according to an assumed phreatic surface,
while the final nodal distribution is modified step by step during iterations based on the
present algorithm. It should be noted that the total numbers of nodes during iteration process
vary with the location of the phreatic surface.

It is found that the final nodal distribution, which represents the real seepage domain and
phreatic surface, is independent of the initial assumed nodal distribution. That is to say, given
arbitrary initial nodal distribution, the final nodal distribution converges at almost the same
result. The free surface result is compared with the analytical solutions given by Hornung
and Krueger (1985) in Fig. 2b and Table 2, and good agreement can be seen. The correctness
of the present method is thus validated.

In order to study the influence of the parameters nmc and ∈ on the performance of the
present method, a parametric study has been conducted. Furthermore, in order to compare the
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Table 2 Coordinate of some points on the phreatic surface by using the present method and comparing them
with the analytical solutions

x (m) y (m) y (m) Error (%) x (m) y (m) y (m) Error (%)
Analytical Present Analytical Present

0.00 1.000000 1.000000 0.000 0.30 0.859969 0.858999 0.113

0.05 0.986242 0.988708 0.250 0.35 0.823876 0.817981 0.715

0.10 0.967625 0.971340 0.384 0.40 0.782493 0.785957 0.443

0.15 0.945590 0.940710 0.516 0.45 0.733142 0.735981 0.387

0.20 0.920382 0.922291 0.207 0.50 0.662382 0.678084 2.371

0.25 0.891939 0.887004 0.553
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Fig. 4 a Convergence history; b relative error with different number of integration points and comparison
between the present method and the EFGM

present method with the original mesh-free method, this example was solved by the EFGM,
which is the most widely used mesh-free method (Li et al. 2003; Jie and Liu 2012). In this
study, a 10 × 20 background mesh with 4 × 4 gauss points for each element was used for
global integration in the EFGM.

The convergence history is shown in Fig. 4a. In the EFGM, numerical oscillation occurred
near the iteration error 0.004. It should be mentioned that the performance of the present
method, as a Monte-Carol method, possesses certain randomness. However, the convergence
capability of the present method is better than the EFGM, no matter how many integra-
tion points are used. The convergence capability is especially better when the number of
integration points is large.
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Fig. 5 a Influence of the parameter nmc on the computation time with ∈= 0.001; b Influence of the parameter
∈ on the computation time;

By taking the convergence precision ∈= 0.001, the average error of the phreatic surface
location is shown in Fig. 4b. It can be seen that the present method can obtain higher accuracy
as compared with the EFGM. The more integration points are used, the higher accuracy are
obtained. However, more integration points may lead to more computation effort. From
Fig. 4a, the recommended value of the convergence precision ∈ is 0.01–0.001. From Fig. 4b,
the number of integration points is suggested to be 20–100 times of the number of field nodes.

In terms of the computation cost, obviously, a Monte-Carol method can not be a high
efficient method. Fig. 5a shows the influence of the parameter nmc on the computation time
with ∈= 0.001, and Fig. 5b shows the influence of the parameter ∈ on the computation time.
It is found that the computation time increases near linearly with the parameter nmc. This is
because, as the number of field nodes is rather small, the computation time in each iteration
is dominated by the global integration, rather than the solution of the global system equa-
tion. Furthermore, the computation time of the global integration depends on the number of
integration points linearly. On the other hand, when the number of integration points is fixed,
the computation time increases as the convergence precision ∈ decreases. The smaller the
convergence precision ∈ is, the more iterations are needed. When the convergence precision
∈ is taken to be too small to be achieved, the number of iterations and the computation time
are infinities. Taking the same number of integration points, the comparison of the compu-
tation time between the present method and the EFGM is shown in Table 3. The average
computation time for each iteration is approximately 3.33 s for the present method and 2.98 s
for the EFGM. However, the convergence of the present method is better than the EFGM;
that is to say, less iterations are needed given the same convergence precision ∈. Therefore,
the computation efficiency of the present method is generally better than the EFGM.
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Table 3 Comparison of the computation time between the present method and the EFGM

Convergence
precision ∈

EFGM Present method

Number of
iterations

Total computation
time (s)

Number of iterations Total computation
time (s)

0.005 6 17.88 7 23.31

0.004 15 44.70 8 26.64

0.003 24 71.52 8 26.64

0.002 ∞ ∞ 9 29.97

0.001 ∞ ∞ 12 39.96

(a)

(b)

(c)

Fig. 6 a Seepage through inhomogeneous trapezoidal dam; b free surface results of cases 1–3; c free surface
results of cases 4–6

5.2 Seepage Through Inhomogeneous Trapezoidal Dam

The seepage through an inhomogeneous anisotropic dam with trapezoidal cross section is
considered. The domain of this problem is composed of three material zones. The problem is
depicted in Fig. 6a. This example was chosen to prove the capability of the present method
in solving seepage through inhomogeneous media with irregular geometry.

The hydraulic conductivity is assumed to be constant in eachmaterial zone, and 6 different
hydraulic conductivity values are considered (see Table 4). Isotropic hydraulic conductivity
is considered in the first 4 cases. Case 1 corresponds to homogeneous condition. In cases 2
and 3, the hydraulic conductivity values of zone 1 are assumed to be 10 and 100 times of that
in zone 2. In the last two cases, anisotropic hydraulic conductivity is considered. In these
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Table 4 Hydraulic conductivity
values for different zones of the
trapezoidal dam (cm/s)

Hydraulic
conductivity of zone 1

Hydraulic
conductivity of zone 2

kx ky kx ky

Case 1 1 1 1 1

Case 2 1 1 0.1 0.1

Case 3 1 1 0.01 0.01

Case 4 1 1 0.25 0.25

Case 5 4 1 1 0.25

Case 6 16 1 4 0.25

cases, the hydraulic conductivity of zone 1 is four times of zone 2 and the ratios of hydraulic
conductivity in the x-direction over that in y-direction are, respectively, 4 and 16.

The Monte Carlo integration points and initial and final nodal distributions are shown in
Fig. 7. The nodal distance in each direction is 0.5m. The number of integration points nmc in
Eq. (32) was taken to be 20,000, approximately 20 times of the number of field nodes. and
the convergence precision ∈ in Eq. (29) was taken to be 0.01.

The results obtained by the present method are compared with Kazemzadeh-Parsi and
Daneshmand (2012) in Fig. 6b, c. Good agreement can be seen from these figures. Thus,
the capability of the present method in solving seepage through inhomogeneous media with
irregular geometry is validated.

5.3 Transient Seepage Through a Sandbox

The computational formulations developed in this paper are applicable to transient seepage
problems as well. In this example, transient seepage through a sandbox is considered.

As the first case, the sandbox is homogeneous. The length is 3.15m, and the height is
0.33m. The hydraulic conductivity is 0.33cm/s, the specific storage is 0, and the specific
yield is 0.18. The initial water level in the sand box is 0.1m. At the time t = 0 s, the water
level at the upstream surface suddenly rises from 0.1 to 0.3m, while the downstream water
level is kept constant at 0.1m (Fig. 8).

This example has been investigated through the laboratory test by Akai et al. (1977). In the
laboratory test, a steel water channel, the size of which was 4.0m in length, 0.25m in width
and 0.50m in height, was utilized. The both sides of the water channel were connected with
water pipes to control the water level in time. The sand sample was in the middle of the water
channel, the size of which was 3.15m in length, 0.23m in width and 0.33m in height. At the
bottom of the water channel, a number of water pressure gauges were installed, the spacing
of which was 0.2m. The water pressure was measured by the water pressure gauge, and thus
the phreatic surface heights at the gauge locations were obtained. Using these discrete data
of phreatic surface, Akai et al. (1977) finally proposed the phreatic surface in the form of
continuous curves, and we digitized these curves from the original paper for comparison.

The Monte Carlo integration points and initial and final nodal distributions are shown in
Fig. 9. The nodal distance in each direction is 0.03m. The number of integration points nmc

in Eq. (32) was taken to be 50,000, approximately 50 times of the number of field nodes and
the convergence precision ∈ in Eq. (29) was taken to be 0.01.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 aMonte Carlo integration points; b initial nodal distribution; c–h final nodal distribution of cases 1–6

The phreatic surfaces at various time steps from the present numerical method and the lab-
oratory test are plotted in Fig. 8. A comparison between the numerical results and laboratory
results has proved the effectiveness of the present method for transient seepage problem.

As the second case, the inhomogeneous media is considered. The hydraulic conductivity
is given as 0.33cm/s for x < 1.5 and 1.65cm/s elsewhere. The other parameters are the same
with the first case. TheMonte Carlo integration points and initial and final nodal distributions
are shown in Fig. 11.

The phreatic surfaces at various time steps for the inhomogeneous case and the homoge-
neous case are plotted in Fig. 10. It can be seen that due to that the permeability is stronger
for x ≥ 1.5, the water level rises slower than the homogeneous case. Obvious twists occur at
the material interface. The contrast between the inhomogeneous and homogeneous cases fol-
lows the general rule. Thus, the capability of the present method in solving transient seepage
through homogeneous and inhomogeneous media is proved (Fig. 11).

6 Conclusions

In this work, a novel mesh-free approach is proposed for the analysis of unconfined seep-
age problems. In this approach, the shape functions are constructed by the moving Kriging
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Fig. 8 Phreatic surfaces at various time steps from the present numerical method and the laboratory test
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Fig. 9 a Monte Carlo integration points; b initial nodal distribution; c–g final nodal distribution at various
time steps for the homogeneous case
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Fig. 10 Phreatic surfaces at various time steps for the inhomogeneous and homogeneous cases
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Fig. 11 a Monte Carlo integration points; b initial nodal distribution; c–g final nodal distribution at various
time steps for the inhomogeneous case
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interpolation, so the essential boundary conditions can be implemented directly. The global
numerical integration is directly performed by the Monte Carlo integration, which is espe-
cially suitable for complicated moving phreatic boundary. The benchmark examples verified
the correctness and convenience of the present method. The main conclusions can be sum-
marized as follows:

(1) The present method is a true mesh-free method, which does not require a mesh for either
shape function construction or numerical integration. Another important advantage of
the present method is the convenient numerical implementation.

(2) Compared with the original mesh-free method, the present method can achieve better
convergence and higher accuracy with rational computation cost.

(3) According to the numerical example, the number of integration points is suggested to be
20–100 times of the number of field nodes.

(4) A corresponding procedure for handling material discontinuity is presented, which
extends the approach to the inhomogeneous medium seepage problems.

(5) The present method is proved to be suitable for the analysis of transient seepage through
homogeneous and inhomogeneous media, through a comparison with a laboratory test.

(6) This study focuses on the analysis of two-dimensional problems. However, since both
the interpolation and integration methods are dimensionless, the present method can be
thus extended to three-dimensional problems in engineering practice.
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