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Abstract In this research, pore scale simulation of natural convection in a differentially
heated enclosure filled with a conducting bidisperse porous medium is investigated using the
thermal lattice Boltzmann method. For the first time, the effect of connection of the bidis-
perse porous medium to the enclosure walls is studied by considering the attached geometry
in addition to the detached one. Effect of most relevant parameters on the streamlines and
isotherms as well as hot wall average Nusselt number is studied for two of the bidisperse
porous medium configurations. It is observed that effect of geometrical and thermo-physical
parameters of the bidisperse porous medium on the heat transfer characteristics is more com-
plicated for the attached configuration. To assess the validity of the local thermal equilibrium
condition in themicro-porousmedia, the pore scale results are used to compute the percentage
of the local thermal non-equilibrium for two of the bidisperse porous medium configurations.
It is concluded that for the detached configuration, the local thermal equilibrium condition
is confirmed in the entire micro-porous media for the ranges of the parameters studied here.
However, for the attached geometry, it is shown that departure from the local thermal equi-
librium condition is observed for the higher values of the Rayleigh number, micro-porous
porosity, solid–fluid thermal conductivity ratio, and the smaller values of the macro-pores
volume fraction.
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List of Symbols

D Block size in the macro-pores (m)
D∗ Dimensionless block size in the macro-pores, D/H [defined by Eq. (7)]
d Block size in the micro-porous (m)
d∗ Dimensionless block size in the micro-porous, d/H [defined by Eq. (9)]
fi Density distribution function
f eqi Equilibrium distribution function of fi
gi Fluid energy distribution function
geqi Equilibrium distribution function of gi
gsi Solid blocks energy distribution function
geqsi Equilibrium distribution function of gsi
H Enclosure side (m)
kf Fluid thermal conductivity (W/mK)
ks Solid thermal conductivity (W/mK)
N 2
mac Number of blocks in the macro-pores

N 2
mic Number of blocks in the micro-porous media

Nu Average Nusselt number at the hot wall of the enclosure
Numac Macro-pores hot wall average Nusselt number
Numic Micro-porous media hot wall average Nusselt number
Pr Prandtl number
Ra Rayleigh number [defined by Eq. (5)]
Tf Fluid temperature (K)
Ts Solid temperature (K)
V = (u, v) Velocity vector (m/s)
V∗ = (u∗, v∗) Dimensionless velocity vector
x, y Cartesian coordinates (m)
x∗, y∗ Dimensionless coordinates

Greek Symbols

α Thermal diffusivity (m2/s)
δ Clearance between the blocks and the enclosure walls (m)
δx Lattice spacing
δt Time step
δ∗ Dimensionless clearance between the blocks and the enclosure walls
εmic Micro-porous porosity
θ Dimensionless temperature, [defined by Eq. (5)]
θf Fluid dimensionless temperature
θs Solid dimensionless temperature
〈θs〉s Solid intrinsic volume-averaged dimensionless temperature
〈θf 〉f Fluid intrinsic volume-averaged dimensionless temperature
λ Solid–fluid thermal conductivity ratio, ks/kf
νf Fluid kinematic viscosity (m2/s)
ρf Fluid density (kg/m3)

(ρcp)f Fluid volumetric heat capacity (J/Km3)

(ρcp)s Solid volumetric heat capacity (J/Km3)

τv Fluid hydrodynamic dimensionless relaxation time
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τg Fluid energy dimensionless relaxation time
τgs Solid dimensionless energy relaxation time
ϕmac Macro-pores volume fraction

Subscripts

f Fluid
s Solid
mac Macro-pores
mic Micro-porous

1 Introduction

Since the experiments of Chen et al. (2000), a new kind of porous medium called bidisperse
porous medium (BDPM) has attracted many heat and fluid flow researchers because of its
industrial applications including porouswicks (i.e., used as evaporators in the heat pipes), coal
stockpiles, porous absorbent, and geothermal energy extraction, to name a few. A BDPM as
defined byChen et al. (2000) is composed of clusters of large particles that are agglomerations
of small particles (see Fig. 1). In other words, as can be seen in Fig. 1a, b, a BDPM can
be considered as a Mono-Disperse Porous Medium (MDPM) in which each solid block is
replaced by a micro-porous medium. Thus, it can be said, a BDPM consists of an array of
micro-porous media (i.e., p-phase) and macro-pores (i.e., f-phase) between the micro-porous
media.

Nield andKuznetsov (2005), in a pioneerwork, theoreticallymodeled the heat transfer and
fluid flow in BDPM. Invoking the local thermal equilibrium assumption within the micro-
porous media, those authors presented a volume-averaged two-velocity two-temperature
model with capability of simulating the steady-state fluid flow and heat transfer in BDPM.
The presented model was used by many researchers to study different forced convection
problems in saturated BDPM (Narasimhan and Reddy 2011a; Narasimhan et al. 2012;
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Fig. 1 Schematic of the studied geometries and corresponding boundary conditions, a detached BDPM, b
attached BDPM
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94 G. Imani, K. Hooman

Nield and Kuznetsov 2004, 2006a, 2011). Many researchers also used the two-velocity two-
temperature model to simulate different natural convection problems in BDPM (Narasimhan
and Reddy 2011b; Nield and Kuznetsov 2006b, 2008; Rees et al. 2008; Revnic et al. 2009).

Despite the popularity of the presented model by Nield and Kuznetsov (2005), it includes
two unknown parameters namely, the interfacialmomentum and heat transfer coefficients and
the assumption of the local thermal equilibrium within the micro-porous media is invoked as
well. To date, there is an extremely small amount of information in the literature on the value
of the mentioned parameters related to the flow and heat transfer in BDPM (Hooman et al.
2015). Therefore, using the two-velocity two-temperature model of Nield and Kuznetsov
(2005) depends on the availability of such information. As such, pore scale simulations are
needed to fill this gap by providing such information on the interfacial momentum and heat
transfer parameters in addition to validating the volume-averaged results and justifying the
assumptions invoked by the two-velocity two-temperature model.

To best of the authors’ knowledge, work ofNarasimhan andReddy (2010) is the only effort
in which the semi-pore scale simulation of natural convection in an enclosure filled with a
BDPMwas numerically studied. In their work, by using the finite volume method, fluid flow
and heat transfer in the macro-pores was numerically simulated at the pore scale however, in
the micro-porous media, in expense of losing some details of the fluid flow and heat transfer,
the volume-averaged formulation was used with considering the local thermal equilibrium
assumption. Following the researches in the literature that tried pore scale simulation of the
natural convection in aMDPM (Braga and de Lemos 2005; Merrikh and Lage 2005; Merrikh
et al. 2005; Merrikh and Mohamad 2000, 2001), Narasimhan and Reddy (2010) considered
the BDPM to be detached from the enclosure walls which only covered a part of practical
applications of the BDPM and did not include applications such as porous wick evaporators
(Chen et al. 2000; Wang and Catton 2001).

In view of the above, in this work, natural convection problem in a differentially heated
enclosure filled with a BDPM is simulated at the pore scale within both the micro-porous
and macro-pores structures. As mentioned before, there are some applications in which the
BDPM is attached to walls of the enclosure thus, for the first time, a BDPM attached to
the enclosure walls is considered in the present study in addition to the detached one. To
see details of fluid flow and heat transfer within a BDPM, effects of pertinent geometrical
and thermo-physical parameters on streamlines and isotherms as well as hot wall average
Nusselt number in both attached and detached BDPM are investigated. The pore scale results
then, for the first time, is used for thoroughly examining the validity of the assumption of
the local thermal equilibrium within the micro-porous media of a BDPM which is invoked
by the two-velocity two-temperature model. To do so, in the present work, thermal lattice
Boltzmann method is employed due to its great ability in pore scale simulation of the fluid
flow and conjugate heat transfer in complex geometries (Chen and Doolen 1998; He et al.
1998; Imani et al. 2013) such as the BDPM considered in this study.

2 Mathematical Formulation

In this study, two configurations of theBDPM, namely detached and attached geometries in an
enclosure of side H , are considered as shown in Fig. 1a, b, respectively. As seen from Fig. 1a,
b, the enclosure is heated and cooled from the sides with assuming the prescribed constant
temperatures of Th and Tc (Th > Tc) applied on the left and right walls, respectively. The
bottom and top walls of the enclosure are insulated. This temperature difference between
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the left and right walls of the enclosure, in presence of the gravitational field, induces a
natural convection flow within the enclosure. It is assumed that the flow is steady state,
two-dimensional, and remains in the laminar regime. Moreover, the effect of radiation is
neglected, the Boussinesq approximation is invoked for modeling the buoyancy term, and
all the thermo-physical properties of both solid and fluid constituents are assumed constant.
With considering these assumptions, dimensionless form of the continuity, momentum, and
energy conservation equations for the fluid and solid constituents are shown here as Eqs.
(1)–(4), respectively (Bejan 2004; House et al. 1990; Merrikh and Lage 2005; Merrikh and
Mohamad 2001). It should be stated that the dimensional form of the conservation equations
also can be found in (Bejan 2004; House et al. 1990; Merrikh et al. 2005; Merrikh and
Mohamad 2001) and are not repeated here for sake of the brevity.

∇ · V∗ = 0 (1)
∂V∗

∂t∗
+ (V∗ · ∇)V∗ = −∇ p∗ + Pr∇2V∗ + Ra Pr θf j (2)

∂θf

∂t∗
+ V∗ · ∇θf = ∇2θf (3)

(σ

λ

) ∂θs

∂t∗
= ∇2θs (4)

where the dimensionless parameters and groups introduced to derive Eqs. (1)–(4) are taken
as follows:

(
x∗, y∗) = (x, y)

H
, V∗ = (u, v)H

αf
, θ = T − Tc

Th − Tc
, t∗ = αf t

H2 , p∗ = pH2

ρfα
2
f

, Pr= νf

αf
,

Ra = gβ(Th − Tc)H3

αfvf
, σ = (ρcp)s

(ρcp)f
, λ = ks

kf
(5)

where V = (u, v) is the velocity vector with u and v being the velocity components in x
and y directions, respectively, p is the fluid pressure, μ is the fluid dynamic viscosity, Tf
and Ts are the fluid and solid temperatures, respectively, kf and ks are the fluid and solid
thermal conductivities, respectively, β is the isobaric thermal expansion coefficient, and g is
themagnitude of the gravitational acceleration. The dimensionless form of the hydrodynamic
and thermal boundary conditions applied on the enclosurewalls is represented in the following
form:

θ = 1, u∗ = v∗ = 0, at x∗ = 0 (6a)

θ = 0, u∗ = v∗ = 0, at x∗ = 1 (6b)
∂θ

∂y∗ = 0, u∗ = v∗ = 0, at y∗ = 0 (6c)

∂θ

∂y∗ = 0, u∗ = v∗ = 0, at y∗ = 1 (6d)

the conjugate heat transfer conditions (i.e., the compatibility conditions) and the no-slip
condition at the solid–fluid interfaces are given as follows:

∂θf

∂n
= λ

∂θs

∂n
, θf = θs, u∗ = v∗ = 0 (6e)

where n is the unit vector along the direction normal to the solid–fluid interfaces.
As one can realize from Eqs. (1)–(6), effect of different parameters on the problem con-

sidered in this study is reduced to four dimensionless group and parameters namely, the
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Rayleigh number Ra, the Prandtl number Pr, solid–fluid thermal conductivity ratio λ, and
solid–fluid volumetric heat capacity ratio σ . Although the macroscopic governing Eqs. (1)–
(6) are presented in their unsteady forms, the steady-state simulation is considered in the
present investigation.

Furthermore, natural convection heat transfer is significantly influenced by geometrical
characteristics of the BDPM (i.e., including the micro-porous media and the macro-pores).
Themost relevant geometrical parameters are taken as themicro-porous porosity εmic,macro-
pores volume fraction ϕmac, number of blocks in each micro-porous medium N 2

mic, and
number of blocks in the macro-pores N 2

mac. The micro-porous porosity εmic is defined as
volume of the micro-pores in each micro-porous medium divided by the total volume of
the micro-porous medium. The macro-pores volume fraction ϕmac is defined as the volume
of macro-pores divided by the total volume of the BDPM. It should be emphasized that
volume of the micro-pores in the micro-porous media is not taken into account in definition
of the macro-pores volume fraction. That is why it is referred to as the volume fraction not
the porosity. To construct the full geometry of a BDPM, certain parameters are considered
to be known priorly, including the macro-pores volume fraction ϕmac, number of blocks in
macro-pores N 2

mac, micro-porous porosity εmic, and number of blocks in each micro-porous
medium N 2

mic. With knowing the value of the macro-pores volume fraction and number of
blocks in the macro-pores, dimensionless size of the blocks in the macro-pores D∗ = D/H
can be calculated from Eq. (7).

D∗ =
√

(1 − ϕmac)/N 2
mac (7)

once D∗ is determined, the dimensionless clearance between the detached BDPM and the
enclosure walls δ∗ = δ/H and dimensionless size of the micro-porous blocks d∗ = d/H ,
respectively, is determined from Eqs. (8) and (9).

δ∗ =
[
1 −

(√
N 2
mac

)
D∗

]/
2
√
N 2
mac (8)

d∗ =
√

(1 − ϕmac) (1 − εmic)/
(
N 2
macN

2
mic

)
(9)

It should be noted that for the attached geometry (see Fig. 1b) δ∗ = 0.

3 Lattice Boltzmann method

In the present study, a three-population (i.e., density, fluid internal energy, and solid inter-
nal energy distribution functions) thermal lattice Boltzmann model of Peng et al. (2003) is
employed. In this method, the velocity and temperature field are solved via evolution of the
density and internal energy distribution functions which is numerically applied through two
main steps namely, streaming and collision.

3.1 Lattice Boltzmann Equation for the Velocity Field

The hydrodynamic of the problem is simulated by the evolution of the density distribution
function including the discrete body force effect proposed by Guo et al. (2002) as follows:

fi (r + eiδt, t + δt) − fi (r, t) = − 1

τv

[
fi (r, t) − f eqi (r, t)

] + δt Fi (10)
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where ei is the discrete velocity along direction i , fi (r, t) is the density distribution function
along direction i at position r and time t, δt is time step, τv is dimensionless hydrodynamic
relaxation time, f eqi and Fi are, respectively, the equilibriumdistribution function and discrete
body force, which for a D2Q9 lattice are calculated from Eqs. (11) and (12), respectively.

f eqi = ωiρ

[
1 + ei · V

c2s
+ VV : eiei − c2s I

2c4s

]
(11)

Fi = ωiρ

(
1 − 1

2τv

)[
ei · F
c2s

+ VF : eiei
c4s

− V · F
c2s

]
(12)

where cs is the lattice sound speed related to the lattice velocity c as cs = c/
√
3, the lattice

velocity c is equal to δx/δt , and F = ρgβ(T f −Tc) is the buoyancy force term derived using
the Boussinesq approximation. For the D2Q9 lattice arrangement, the discrete velocity ei
and the weight factor wi in each direction i are given by Eqs. (13) and (14), respectively.

ei =
⎧⎨
⎩

(0, 0) i = 0
(cos θi , sin θi ) c; θi = (i − 1)π/2 i = 1, 2, 3, 4√
2 (cos θi , sin θi ) c; θi = (i − 5)π/2 + π/4 i = 5, 6, 7, 8

(13)

ωi =
⎧
⎨
⎩
4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8

(14)

3.2 Lattice Boltzmann Equation for the Temperature Field

The temperature field is modeled using the evolution equation for the internal energy distri-
bution function proposed by Peng et al. (2003) as follows:

gi (r + eiδt, t + δt) − gi (r, t) = − 1

τg

[
gi (r, t) − geqi (r, t)

]
(15)

where τg is fluid dimensionless energy relaxation time, gi (r, t) is internal energy distribution
function along direction i at position r and time t , and geqi is internal energy equilibrium
distribution function which for a D2Q9 lattice is given by Peng et al. (2003) as follows:

geqi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2ωiρ f ε f
V·V
c2s

i = 0

ωiρf εf

(
3
2 + ei ·V

c2s
+ (ei ·V)2

2c4s
− V·V

2c2s

)
i = 1, 2, 3, 4

ωiρf εf

(
3 + 2 ei ·V

c2s
+ (ei ·V)2

2c4s
− V·V

2c2s

)
i = 5, 6, 7, 8

(16)

where V is the macroscopic fluid velocity vector and ε is the internal energy that for a two
dimension can be calculated from ε = RT with R being the gas constant.

It should be noted that for the solid phase a separate internal energy distribution function
gsi is used with an evolution equation similar to that of fluid [see Eq. (15)], as the following
form:

gsi (r + eiδt, t + δt) − gsi(r, t) = − 1

τgs

[
gsi(r, t) − geqsi (r, t)

]
(17)

where τgs is solid dimensionless energy relaxation time and geqsi is solid internal energy
equilibrium distribution function that can be calculated similar to that of the fluid by setting
V = 0 in Eq. (16) to obtain Eq. (18).
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98 G. Imani, K. Hooman

geqsi =

⎧⎪⎨
⎪⎩

0 i = 0
3
2ωiρsεs i = 1, 2, 3, 4

3ωiρsεs i = 5, 6, 7, 8

(18)

Noteworthy is the fact that the macroscopic Eqs. (1)–(6) essentially are recovered from
a Chapmann–Enskog expansion applied on the mesoscopic evolution Eqs. (10), (15), and
(17) in an incompressible limit (Guo et al. 2002; Peng et al. 2003; He et al. 1998; Mohamad
2011). That is to say, in this paper, instead of solving the nonlinear Eqs. (1)–(6) equivalently,
the simple evolution Eqs. (10), (15), and (17) are solved in two main steps namely, streaming
and collision. To ensure that the mesoscopic evolution Eqs. (10), (15), and (17) simulate the
same problem as described by the macroscopic Eqs. (1)–(6), care should be taken that the
dimensionless groups and numbers introduced by Eq. (5) should be identical in two of the
frameworks (i.e., Navier–Stokes and lattice Boltzmann).

After evolving on discrete lattices, the macroscopic density, velocity, temperature, local
heat flux, and the hydrodynamic and energy dimensionless relaxation times can be calculated
from density and energy distribution functions using the following relations, respectively,
(Guo et al. 2002; He et al. 1998; Peng et al. 2003).

ρ =
8∑

i=0

fi , V =
8∑

i=0

fiei/ρ f + δt/(2ρf )F, ρε =
8∑

i=0

gi , q = (ρcp)
τg − 0.5

τg

8∑
i=0

giei ,

τv = 3ν
δt

δx2
+ 0.5, τg = 1.5αf

δt

δx2
+ 0.5, τgs = 1.5αs

δt

δx2
+ 0.5 (19)

where αf and αs are the fluid and solid thermal diffusivities, respectively.

3.3 Boundary Conditions

Themacroscopic boundary conditions described by Eqs. (6a)–(6d) are translated to the lattice
Boltzmann framework (i.e., mesoscopic level) to calculate and update the unknown density
and internal energy populations coming from the outside of each of the fluid and solid media
after the streaming step. As such, the method presented by Zou and He (1997) is used to
apply the no-slip boundary conditions on the enclosure walls and solid–fluid interfaces. The
method proposed by D’Orazio and Succi (2003) based on the idea of the counter-slip internal
energy is employed to model the thermal boundary conditions including the two isothermal
boundary conditions (as shown in Fig. 1) and two adiabatic conditions (top and bottomwalls)
as depicted in Fig. 1. At solid–fluid interfaces, the method presented by Meng et al. (2008) is
used to model the conjugate heat transfer. It was shown that the presented method by Meng
et al. (2008) precisely guaranteed the continuity of the temperature and normal heat flux at
solid–fluid interfaces (Imani et al. 2012a, b).

4 Numerical Simulation and Code Validation

The thermal lattice Boltzmann method presented by Peng et al. (2003) is used to solve the
natural convection problem in an differentially heated enclosure filled with a BDPM.

4.1 Grid Independence

Four different grids of 300× 300, 350× 350, 400× 400, and 450× 450 are considered here
to simulate the natural convection problem in a differentially heated enclosure contained
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Table 1 Hot wall average
Nusselt number comparison for
an enclosure contained a uniform
distribution of conducting solid
blocks for Pr = 1

λ Present work Merrikh and Lage (2005)

1 4.298 4.274

10 4.613 4.584

100 4.846 4.816

a conducting BDPM. The most critical case considered in the present study is selected
corresponding to Ra = 107, λ = 100, and N 2

mic = 81. It is observed that the result of
the average Nusselt number calculated at the hot wall of the enclosure for 400 × 400 and
450× 450 grids is within less than only one percent. Therefore, the 400× 400 grid is chosen
for all reported results.

4.2 Code Validation

To make sure the developed FORTRAN code works properly, the problem of natural convec-
tion flow in a differentially heated enclosure contained a uniform distribution of conducting
square solid blocks is considered. For this test case, the relatedparameters such as theRayleigh
number, solid–fluid thermal conductivity ratio, and Prandtl number are, respectively, chosen
as Ra = 106, λ = 1, 10, and 100, and Pr = 1, similar to that of Merrikh and Lage (2005).
As can be seen in Table 1, the results of the average Nusselt number at the hot wall of the
enclosure are in excellent agreement with the work of Merrikh et al. (2005). Further valida-
tions of the employed lattice Boltzmann conjugate heat transfer method are available in our
previous papers (Imani et al. 2012a, b, 2013) so, we are sure that the prepared code works
properly and the presented results are accurate.

5 Results and Discussion

In the present paper, pore scale numerical simulation of the natural convection flow in a dif-
ferentially heated enclosure filled with a conducting BDPMwith two configurations namely,
the detached geometry (Fig. 1a) and the attached geometry (Fig. 1b) is carried out using the
thermal lattice Boltzmann method. As stated before, pertinent parameters effect the steady-
state heat transfer and fluid flow in the problem under consideration are taken as the Rayleigh
number Ra, Prandtl number Pr, solid–fluid thermal conductivity ratio λ, micro-porous poros-
ity εmic, macro-pores volume fraction ϕmac, number of blocks in each micro-porous medium
N 2
mic, and number of blocks in the macro-pores N 2

mac. The Prandtl number is taken as 1
throughout this study. A complete list of the other parameters considered in this study is
given in Table 2.

To examine the effect of presence of the BDPM on natural convection heat transfer in the
enclosure, average Nusselt number at the hot wall of the enclosure is defined as follows:

Nu = −
∫ 1

0

(
∂θ f /∂x

∗)dy∗ (20)

since for the attached geometry (see Fig. 1b), heat can be transferred from the hot wall to
the fluid through both the micro-porous media and the macro-pores, two separate average
Nusselt numbers at the hot wall of the enclosure corresponding to the micro-porous media
and the macro-pores are, respectively, defined as Numic and Numac that can be calculated as
follows:
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Table 2 List of parameters
considered in this study

Parameter Values

Ra 105, 106, 107

Pr 1

λ 1, 10, 100

εmic 0.50, 0.64, 0.85

ϕmac 0.36, 0.50, 0.64, 0.85

N2
mic 4, 16, 81

N2
mac 4, 16, 36

Numic,mac = −
∫ l∗mic,mac

0

(
∂θf/∂n∗)dl∗mic,mac (21)

where n∗ = n/H is dimensionless unit vector normal to the heat transfer surface, l∗mic =
lmic/H and l∗mac = lmac/H are, respectively, total dimensionless length over which heat is
transferred from wall to the micro-porous media and macro-pores.

To assess the validity of the local thermal equilibrium condition in the micro-porous
media to be used in available volume-averaged models, percentage of the local thermal non-
equilibrium (%LTNE) for each micro-porous medium is defined as Eq. (22).

%LTNE = ∣∣〈θs〉s − 〈θf 〉f
∣∣ × 100 (22)

where 〈θs〉s and 〈θf 〉f are, respectively, solid and fluid intrinsic volume-averaged dimension-
less temperatures calculated using the pore scale solid and fluid temperature distributions
available from Nield and Bejan (2013).

〈θs,f 〉s,f = 1/Vs,f

∫

Vs,f

θs,f dVs,f (23)

where Vs,f is the solid or fluid volumes in the representative elementary volume chosen to
calculate 〈θs〉s and 〈θf 〉f in each micro-porous medium.

In view of the above-mentioned, results of interest are streamlines and isotherms in the
enclosure filled with a BDPM, average Nusselt number at the hot wall of the enclosure, and
the percentage of the local thermal non-equilibrium (%LTNE) in the micro-porous media.
These results are presented in two main subsections regarding to the two geometries of the
BDPM in the enclosure (see Fig. 1a, b) considered in the present research.

5.1 The Detached BDPM

In this section, effect of pertinent geometrical (N 2
mac, N

2
mic, εmic, and ϕmac), thermo-physical

(λ), and flow parameters (Ra) on pore scale streamlines, isotherms, and hot wall average
Nusselt number [see Eq. (20)] in an enclosure filled with a detached BDPM (Fig. 1a) is
presented as follows.

5.1.1 Pore Scale Streamlines and Isotherms Within a Detached BDPM

In this work, effect of all geometrical, thermo-physical, and flow parameters on streamlines
and isotherms is investigated. However, to save some space, only effect of micro-porous
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porosity on streamlines and isotherms is presented here. In Fig. 2a–c, streamlines and cor-
responding isotherms in a detached BDPM with ϕmac = 0.64, N 2

mac = 16, N 2
mic = 16, and

Ra = 106 are shown, respectively, for εmic = 0.50, εmic = 0.64, and εmic = 0.85. As seen
in Fig. 2a–c, with increasing the micro-porous porosity, the flow is intensified in the BDPM
because of the higher permeability to the flow achieved by the higher micro-porous porosity.
One can observe from Fig. 2a that, for lower micro-porous porosity εmic = 0.50, almost all
of the flow is channeling through the macro-pores. This is why isotherms are quite wavy
especially near the hot and cold walls. In the other hand, when the micro-porous porosity is
increased to the higher values εmic = 0.85 (Fig. 2c), as it is obviously seen from the stream-
lines in Fig. 2c, the flow is enhanced in the micro-porous media as well and the isotherms no
longer show the waviness behavior near the hot and cold walls.

5.1.2 Effect of Pertinent Geometrical Parameters on Hot Wall Average Nusselt Number

In Figs. 3, 4, and 5, respectively, effect of micro-porous porosity and macro-pores volume
fraction, number of blocks in the micro-porous medium, and number of blocks in the macro-
pores on the hotwall averageNusselt number are shown.As seen in Fig. 3, effect of increasing
both micro-porous porosity and macro-pores volume fraction is to enhance the hot wall
average Nusselt number. However, it can be seen that changing the macro-pore volume
fraction has much more effect on the hot wall average Nusselt number than what the micro-
porous porosity does. The same result also can be pointed out from Figs. 4 and 5 where,
respectively, effects of number of blocks in the micro-porous medium and macro-pores are
investigated on the hot wall average Nusselt number. As can be seen from Figs. 4 and 5,
sensitivity of the hot wall average Nusselt number to change in the number of blocks in the
macro-pores is more significant compared to that of the micro-porous medium. As another
result from Fig. 4, it is seen that beyond N 2

mic = 16 the hot wall average Nusselt number is
not affected by the number of blocks in the micro-porous medium.

To more elaborate on the above-mentioned results, it should be said that a BDPM is a
two-scaled porous medium within which fluid flows based on a competing effects between
the permeability of the micro-porous medium and macro-pores. By using Eqs. (7) and (9)
for calculating the block sizes, respectively, in the macro-pores and micro-porous medium,
together with the Carman–Kozeny equation for the permeability of a packed bed available
from Nield and Bejan (2013), one can derive a simple analytical relation as Eq. (24) that
describes conditions under which the permeability of the micro-porous medium is equal to
that of the macro-pores.

ε3mic/
[
(1 − εmic) N

2
mic

] = ϕ3
mac/(1 − ϕmac)

2 (24)

As a first point from Eq. (24), one can realize that the number of blocks in the macro-
pores N 2

mac does not affect conditions under which the permeability of the two scales are
comparable. As another result, it is seen fromEq. (24) that for the samemicro-porous porosity
and macro-pores volume fraction, permeability of the micro-porous medium is always lower
than that of the macro-pores. According to Eq. (24), the only way that the permeability of
the micro-porous medium can exceed that of the macro-pores is for the higher values of the
micro-porous porosity together with the lower values of the macro-pores volume fraction and
number of blocks in the micro-porous medium. Keeping in mind this analysis, one can take
another look at Figs. 3, 4 and 5 to justify that the hot wall average Nusselt number is affected
by the micro-porous porosity only for the higher micro-porous porosities together with the
lower macro-pores volume fraction and number of blocks in the micro-porous medium.
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Fig. 2 Streamlines (left) and isotherms (right) for a detached BDPM with Ra = 106, ϕmac = 0.64, and
λ = 1, a εmic = 0.5, b εmic = 0.64, c εmic = 0.85

123



Lattice Boltzmann Pore Scale Simulation of Natural… 103

Fig. 3 Effect of micro-porous
porosity and macro-pores volume
fraction on the average Nusselt
number at the hot wall of the
enclosure for
N2
mac = 16, N2

mic = 16, λ = 1,

and Ra = 106

Fig. 4 Effect of variation of
N2
mac on hot wall average Nusselt

number for a detached BDPM
with Ra = 106, εmic = 0.64, and
ϕmac = 0.64 for different values
of N2

mic

5.1.3 Effect of the Rayleigh Number and Solid–Fluid Thermal Conductivity Ratio

Effect of variation of the solid–fluid thermal conductivity ratio on the hotwall averageNusselt
number for a detached BDPM is presented in Table 3 for different Rayleigh numbers. It is
understood from Table 3 that effect of increasing λ on the hot wall average Nusselt number
is not in the same direction for different ranges of the Rayleigh number. That is, for lower
Rayleigh numbers, this effect is to increase the average Nusselt number, whereas for the
higher Rayleigh numbers, it is to slightly decrease the hot wall average Nusselt number.
This is because the smaller Rayleigh numbers provide thicker wall thermal boundary layers,
which, in turn, helps to thermally activate the conducting blocks adjacent to the hot wall,
thereby enhancing the heat transfer. This result is in a good agreement with those considered
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Fig. 5 Effect of variation of
N2
mic on hot wall average Nusselt

number for a detached BDPM
with Ra = 106, εmic = 0.64, and
ϕmac = 0.64 for different values
of N2

mac

Table 3 Effect of the solid–fluid
thermal conductivity ratio and
Rayleigh number on the hot wall
average Nusselt number for
N2
mac = 16, N2

mic, εmic = 0.64,
and ϕmac = 0.64

λ Nu

Ra = 105 Ra = 106 Ra = 107

1 1.468 4.761 14.96

10 1.638 4.837 14.92

100 1.670 4.865 14.89

the pore scale natural convection problem in a differentially heated enclosure filled with
a detached MDPM (Merrikh and Lage 2005; Merrikh et al. 2005; Merrikh and Mohamad
2001).

5.1.4 Comparison of the Results of the Detached BDPM with Available Results

The pore scale results presented in this study for the detached BDPM geometry (see Fig. 1a)
are compared with those of Narasimhan and Reddy (2010). Those authors, considered the
BDPMas homogeneous porous blocks uniformly distributed in an enclosurewith considering
the volume-averaged model with assumption of the local thermal equilibrium within the
micro-porous medium. As can be seen from Fig. 6, the hot wall average Nusselt number of
the present study and those obtainable from the correlation given by Narasimhan and Reddy
(2010) is plotted versus the modified Rayleigh number RaφDaE , as defined by Narasimhan
and Reddy (2010). It is observed from Fig. 6 that the results of the present study underpredict
the results of Narasimhan and Reddy (2010) with maximum discrepancy of 18%. It should
be noted that this discrepancy between the results of the present study and that of Narasimhan
and Reddy (2010) can be attributed to the volume-averaged simulation used by those authors
in the micro-porous mediumwhich eliminates some details of the fluid flow and heat transfer
in the BDPM compared to the pore scale simulation of the present study.
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Fig. 6 Comparison of the hot
wall average Nusselt number of a
detached BDPM calculated for
the presented pore scale results
with the results of Narasimhan
and Reddy (2010)

5.2 The Attached BDPM

Pore scale results of streamlines, isotherms and hot wall average Nusselt numbers in an
enclosure filled with an attached BDPM (Fig. 1b) is presented as follows. In this section,
N 2
mac = 16 and N 2

mic = 16 is considered for the BDPM for all presented results.

5.2.1 Pore Scale Results of Fluid Flow and Heat Transfer Within an Attached BDPM

Figures 7 and 8 show streamlines and corresponding isotherms, respectively, for different
values of macro-pores volume fraction and micro-porous porosity. As seen in Figs. 7 and 8,
both macro-pores volume fraction and micro-porous porosities effect details of streamlines
and isotherms within the BDPM. This change in details of the streamlines and isotherms
may be attributed to the change in the fluid flow and heat transfer preferences because of a
competing effect between the permeabilities of the macro-pores and micro-porous media as
well as change in the thermo-physical properties.

Figures 9 and 10 are plotted to show effects of the micro-porous porosity on the pore
scale vertical velocity and dimensionless temperature distribution along the x direction at
y∗ = 0.42, respectively, for λ = 1 and λ = 100. As seen in Figs. 9 and 10, effect of increasing
themicro-porous porosity is to increase the vertical velocity within themicro-porousmedium
for both solid–fluid thermal conductivity ratios. It is interesting to look at Figs. 9 and 10 to
see with increasing the solid–fluid thermal conductivity ratio, the flow is enhanced in the
micro-porous medium for a given micro-porous porosity. From Figs. 9 and 10, one also can
observe that with increasing the micro-porous porosity, the temperature gradient within the
micro-porous medium is increased.

5.2.2 Effect of Changing the Macro-pores Volume Fraction and Micro-porous Porosity

The above-mentioned results can be better understood by looking at Fig. 11, where Numac

and Numic are plotted versus the macro-pores volume fraction ϕmac, for two solid–fluid
thermal conductivity ratios λ = 1 and λ = 100. As seen in Fig. 11, with increasing ϕmac,

123



106 G. Imani, K. Hooman

Fig. 7 Streamlines and isotherms in an enclosure filled with an attached BDPM for Ra = 107 with ϕmac =
0.64, N2

mac = 16, N2
mic = 16, and λ = 1. a εmic = 0.50, b εmic = 0.64, c εmic = 0.85
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Fig. 8 Streamlines and isotherms in an enclosure filled with an attached BDPM for Ra = 107 with εmic =
0.64, N2

mac = 16, N2
mic = 16, and λ = 1, a ϕmac = 0.50, b ϕmac = 0.64, c ϕmac = 0.85

123



108 G. Imani, K. Hooman

Fig. 9 Pore scale a vertical velocity and b dimensionless temperature distribution along the x direction at
y∗ = 0.42 for λ = 1 and Ra = 107 for different micro-porous porosities

Fig. 10 Pore scale a vertical velocity and b dimensionless temperature distribution along the x direction at
y∗ = 0.42 for λ = 100 and Ra = 107 for different micro-porous porosities

the macro-pores hot wall average Nusselt number is significantly increased, whereas for the
micro-porous media the value of the average Nusselt number at the hot wall is decreased for
both λ = 1 and λ = 100. As an interesting result, one can observe from Fig. 11 that for a
small value of the macro-pores volume fraction ϕmac = 0.50, the average Nusselt number of
the micro-porous media exceeds that of the macro-pores.

Figure 11 also presents the effect of solid–fluid thermal conductivity ratio λ on macro-
pores and micro-porous hot wall average Nusselt numbers Numac and Numic. As can be seen
from Fig. 11, effect of increasing λ is to increase the micro-porous average Nusselt number
Numic and decrease the macro-pores average Nusselt number Numac. It should be noted that,
as seen in Figs. 9 and 10, with increasing λ resistance to heat flow from the micro-porous
media attached to the wall decreases and more heat flows through this structure thereby
reducing the average Nusselt number of the macro-pores.
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Fig. 11 Effect of variation of the
macro-pores volume fraction on
the micro-porous and
macro-pores hot wall average
Nusselt numbers for different
solid–fluid thermal conductivity
ratios with εmic = 0.64 and
Ra = 107

Fig. 12 Effect of variation of the
micro-porous porosity on
micro-porous and macro-pores
average Nusselt numbers at the
hot wall of the enclosure for
different Rayleigh numbers

As another interesting result, it is seen that effect of solid–fluid thermal conductivity ratio
onmicro-porous andmacro-pores averageNusselt numbers decreases asmacro-pores volume
fraction increases. A physical explanation for this result is that, as macro-pores volume
fraction increases, the intensity of flow in macro-pores adjacent to the wall significantly
enhances, which, in turn, drastically decreases contribution of the micro-porous in overall
heat transfer from the wall so that the effect of changing λ on the average Nusselt number
diminishes within the micro-porous media.

Figure 12 is plotted to show the effect of variation of the micro-porous porosity on micro-
porous and macro-pores average Nusselt numbers at the hot wall of the enclosure, for two
Rayleigh numbers (Ra = 106 and Ra = 107). As demonstrated by Fig. 12, effect of increas-
ing the micro-porous porosity is to increase both micro-porous and macro-pores average
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Table 4 Effect of pertinent parameters on maximum percentage of local thermal non-equilibrium
max(%LTNE) calculated in the micro-porous media for the attached BDPM geometry (see Fig. 1b)

Ra, λ εmic = 0.64 ϕmic = 0.64

ϕmac = 0.50 ϕmac = 0.64 ϕmac = 0.85 εmic = 0.50 εmic = 0.64 εmic = 0.85

106, 1 1.4 1.0 0.6 0.6 1.0 4.2

107, 1 8.8 5.4 3.2 2.8 5.4 10.0

106, 100 2.5 0.5 0.5 1.0 0.5 3.4

107, 100 7.0 3.6 2.4 1.3 3.6 16.0

Nusselt numbers for two of the Rayleigh numbers. This is an interesting result because
with increasing the micro-porous porosity while keeping other parameters unchanged, it is
expected that fluid would choose the micro-porous media over the macro-pores to flow and
as a result the micro-porous hot wall average Nusselt number would increase, whereas the
macro-pores hot wall average Nusselt number would decrease. But what really happens can
be better understood by taking another look at Fig. 8 to see with increasing the micro-porous
porosity the fluid flow is intensified in both micro-porous media and macro-pores so that
convection heat transfer from the hot wall to both media is enhanced. This is because there
are two ways for fluid to flow in the macro-pores: one is to go through the micro-porous
media and the other is to go around it. As such, when micro-porous porosity increases, fluid
chooses to go through the micro-porous media as well to flow in the macro-pores, that is why
Numac is increased as well as Numic. It should be noted that, according to Fig. 11, this is not
the case when the macro-pores volume fraction is changed where increasing the macro-pores
volume fraction results in increasing Numac and decreasing Numic.

5.2.3 Assessing the Validity of the Local Thermal Equilibrium in the Micro-porous
Media

As stated before, in this paper, the pore scale results of the solid and fluid temperature
distributions are used to assess the availability of the local thermal equilibrium assumption
within the micro-porous media of a BDPM invoked by Nield and Kuznetsov (2005) in their
volume-averaged two-velocity two-temperaturemodel and byNarasimhan andReddy (2010)
in their simulation. As such, the percentage of the local thermal non-equilibrium %LTNE,
as previously defined by Eqs. (22) and (23), is computed in the attached BDPM for each
micro-porous medium (i.e., number of the micro-porous medium in a BDPM is N 2

mac). Then,
the maximum value of the %LTNE denoted as max(%LTNE) is presented in Table 4 for
all of the considered parameters. Departure from the local thermal equilibrium is confirmed
when the criterion max(%LTNE) ≥ 5 is observed in the BDPM (Khashan et al. 2005). As
seen in Table 4, the local thermal equilibrium condition is violated for the higher values of
the Rayleigh number, micro-porous porosity, solid–fluid thermal conductivity ratio, and the
lower values of the macro-pores volume fraction. The maximum departure from the local
thermal equilibrium, for the range of parameters considered in this study, is occurred for
Ra = 107, εmic = 0.85, and λ = 100. In case of the detached BDPM (see Fig. 1a), for the
all ranges of the parameters considered in this study, the thermal equilibrium condition is
well justified so that the results of percentage of the local thermal non-equilibrium %LTNE
in this case are not presented for sake of the brevity.
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6 Conclusion

In the present study, pore scale numerical simulation of the natural convection in a differ-
entially heated enclosure occupied by a conducting bidisperse porous medium (BDPM) is
investigated using the thermal lattice Boltzmann method. Based on the different applica-
tions, two configurations for the BDPM in the enclosure are considered namely, detached
and attached geometries. Effect of pertinent parameters on the streamlines, isotherms, and
hot wall average Nusselt number are investigated. The pore scale results of the present study
are used to compute the maximum percentage of the local thermal non-equilibrium for two of
the bidisperse porous medium configurations. The maximum percentage of the local thermal
non-equilibrium then is used to assess the validity of the local thermal equilibrium condi-
tion in the micro-porous media invoked by the available volume-averaged two-temperature
two-velocity model. The main conclusions of the present study are as follows:
for the detached geometry:

• The local thermal equilibrium condition within the micro-porous media is justified for
all ranges of all parameters considered in this study.

• Effect of solid–fluid thermal conductivity ratio on the hot wall average Nusselt number
is important for lower Rayleigh numbers.

• Effect of micro-porous geometrical parameters on the hot wall average Nusselt number
is only considerable under the conditions that permeability of the micro-porous medium
is comparable to that of the macro-pores.

for the attached geometry:

• It is shown that departure from the local thermal equilibrium condition within the micro-
porous media is observed for the higher values of the Rayleigh number, micro-porous
porosity, solid–fluid thermal conductivity ratio, and the lower values of the macro-pores
volume fraction.

• Effect of increasing the solid–fluid thermal conductivity ratio is to decrease and increase,
respectively, themacro-pores andmicro-porousmedia hot wall averageNusselt numbers.

• Compared to the detached BDPM, effect of micro-porous geometrical and thermo-
physical parameters on the heat transfer characteristics is more important for an attached
BDPM.

• Effect of the micro-porous porosity is to increase both micro-porous and macro-pores
hot wall average Nusselt numbers, whereas increasing the macro-pores volume fraction
results in, respectively, increasing and decreasing the hot wall average Nusselt number
of the macro-pores and micro-porous media.
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