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Abstract We study an integro-differential equation that has important applications to prob-
lems of anomalous transport in highly disordered media. In one application, the equation is
the continuum limit of a continuous time random walk used to quantify non-Fickian (anom-
alous) contaminant transport. The finite element method is used for the spatial discretization
of this equation, with an implicit scheme for its time discretization. To avoid storage of the
entire history, an efficient sum-of-exponential approximation of the kernel function is con-
structed that allows a simple recurrence relation. A 1D formulation with a linear element is
implemented to demonstrate this approach, by comparison with available experiments and
with an exact solution in the Laplace domain, transformed numerically to the time domain.
The proposed scheme convergence assessment is briefly addressed. Future extensions of this
implementation are then outlined.
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h Element length (m)
I Memory-concentration convolution (kg/m3)
ji Flux vector (kg/m2.min)
LIJ Advection matrix (m3/min)
M Memory function (1/min)
PIJ Dispersion matrix (m3/min)
QI Load vector (kg/min)
qi Mass flux (kg/m2.min)
ni Outwards unit normal vector (–)
NI Shape function (–)
s Element cross-sectional area (m2)
S Source (kg/m3.min)
t Time (min)
t1, t2 TPL parameters (min)
u Laplace variable (1/min)
vi Mean velocity vector (m/min)
V Domain
xi Coordinate vector (m)

Greek Letters

β TPL parameter (–)
Γ Domain boundary
δ Dirac delta function (–)
Δ Difference (–)
φ Upwind parameter (–)
θ Implicitness parameter (–)
ξ Normalized element coordinate (–)
ω Time step interval parameter (–)

Subscripts

i, j Coordinates indices
I, J, K Nodal indices
p Prony term index
ψ Transition time PDF
0 Initial
1, 2 Local nodal indices
, Covariant derivative

Superscripts

c Convective (or advective)
d Dispersive
D Dirichlet
N Neumann
n Time step index
R Robin
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Embellishments

∼ Transformed
· Time derivative
− Prescribed
⊗ Convolution

Abbreviations

ADE Advection–dispersion equation
BC Boundary conditions
BTC Breakthrough curve
CTRW Continuous time random walk
DOF Degree of freedom
FEM Finite element method
GME Generalized master equation
IC Initial conditions
LT Laplace transform
PDE Partial differential equation
PDF Probability density function
TPL Truncated power law

1 Introduction

There is an extensive and growing literature on transport phenomena found in disordered
media, from amorphous semiconductors, to aquifers, to living cells. The nature and type
of disorder in these systems varies considerably, but if it is sufficiently extensive, there are
global features—the so-called “anomalous” transport behavior—that are described by the
equation we solve in this paper. The dynamic stochastic processes in these media are often
centered on random walk models, which are characterized by the probability of the walker
steps or rates or transitions. It is the distribution of these transitions ψ(t) that is our focus
and leads to the aforementioned global features.

One system that is of key importance in environmental research pertains to groundwater
aquifers, which are disordered due to the porous structure, enormous permeability variation,
presence of fractures, and chemical heterogeneity. In aquifers, we need to know how con-
taminant plumes advance: In particular, early time arrivals are related to pollution of water
resources, while late time arrivals are related to remediation activities. Most past modeling
efforts (Berkowitz et al. 2006; Eggleston and Rojstaczer 1998) have used the advection–
dispersion equation (ADE) in efforts to quantify ubiquitous non-Fickian (or anomalous)
transport. We have shown that a ψ(t)-based random walk is necessary to explain anomalous
behavior, in the framework of a continuous time random walk (CTRW). We outline our
method, but first, we add an historical note.

It is already 110years ago that Albert Einstein published his now famous paper on Brown-
ian motion (Einstein 1905). His analysis involved a recursion relation, which described a
simple random walk at a uniform step rate. An expansion led to the diffusion equation, and
a solution showed for the first time that the displacement (rms) σ of the Brownian particle
is proportional to

√
t and not equal to vt as was being assumed in those years. By using
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the t-dependence, the experimentalists were puzzled by the need to invoke a time-dependent
velocity v that increased as t → 0 (i.e., σ = c

√
t , so forcing vt to achieve the same σ required

v = c/
√
t , with v increasing as t → 0). Einstein investigated systems with one effective rate

of transitions. The different time dependence of the particle displacement (
√
t), as now com-

monly understood, is due to the nature of diffusive motion. Seventy years later, observations
of the transit time τr of electrons in disordered semiconductors presented a similar puzzle.
The electron mobility (velocity per unit electric field), considered to be an intrinsic property
of the material, was found to depend on sample length, electric field etc. (any variable that
changes the duration of the experiment). Again the problem was traced to using the wrong
relationship for the mean displacement, l, of the electron packet. Instead of l = vt , it was
discovered that l α tβ (0 < β < 1) (Scher and Montroll 1975). What is the origin of this
anomalous behavior? In contrast to previous work for this case, the difference is ascribed to
a wide distribution of rates due to the disorder of the system.

This result amounts to a generalization of what Einstein used, wherein the time between
steps is a random variable described by a PDF, ψ(si , t), which couples the spatial displace-
ment si and time t of the site transfer. This PDF is key; it is the core of the equation for the
probability R(si , t) to just arrive at the site location si at time t :

R(si , t) −
∑

s′i

t∫

0

ψ(si − s′
i , t − t ′)R(s′

i , t
′)dt ′ = δsi ,0δ(t − 0+) (1)

where tensor notation is used, i.e., a lowercase index denoted component, a “,” followed
by a lowercase index is the covariant derivative and a repeated lowercase index implies
summation.

The sum over the space, time transitions of all the paths leading to si , t now contains an
integral over time (with the form of a time convolution). Equation (1) defines the CTRW.
The usefulness for our class of problems is determined by a related function—the probability
P(si , t) to be found at the site location si at time t :

P(si , t) =
t∫

0

Ψ (t − t ′)R(si , t
′)dt ′,

Ψ (t) = 1 −
t∫

0

ψ(t ′)dt ′, ψ(t) ≡
∑

si

ψ(si , t) (2)

where Ψ (t) is the probability for a walker to remain on a site until time t . We outline the
development of the CTRW from (1) to a partial differential equation (PDE) transport equation
continuous in space and time; further details can be found in, e.g., Berkowitz et al. (2006).

We transform (1) into a generalized master equation (GME), which is completely equiv-
alent to (1)

∂P (si , t)

∂t
= −

∑

s′i

t∫

0

φ
(
si − s′

i , t − t ′
)
P
(
si , t

′) dt ′

+
∑

s′i

t∫

0

φ
(
si − s′

i , t − t ′
)
P
(
s′
i , t

′) dt ′ (3)
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and φ̃(si , u) = uψ̃(si , u)/(1 − ψ̃(u)) is the Laplace Transform (LT) of φ(si , t).
It is expedient at this point to introduce ψ(si , t) = p(si )ψ(t), which is an excellent

approximation for compact p(si ) (Berkowitz et al. 2006).We assume the limit of a continuum
instead of a discrete space [i.e., the sums in (3) are replaced by integrals], and change the
notation si to xi to conform to the continuum in what follows.We develop a Taylor expansion
of the function P(s′

i , t
′), (3), about the point si , which causes a separation between the

advective and dispersive terms. The P(si , t) is the normalized concentration, and we switch
notation, replacing P(si , t) by C(xi , t), to be in conformity with Sect. 2, to arrive at

∂C (xi , t)

∂t
= −

t∫

0

M (t − τ)
{
viC,i (xi , τ ) − [

Di jC, j (xi , τ )
]
,i

}
dτ (4)

uC̃ (xi , u) − C0 (xi ) = −M̃ (u)

{
vi C̃,i (xi , u) −

[
Di j C̃, j (xi , u)

]

,i

}
(5)

where

vi = 1

t̄

∫

V

p(xi )xi dV , Di j = 1

t̄

∫

V

1

2
p(xi )xi x j dV , (6)

and

M̃ (u) ≡ t̄u
ψ̃(u)

1 − ψ̃(u)
(7)

is a “memory function,” which plays a key role in our finite element method (FEM) solution
of (4), t̄ is a characteristic time, V is the domain volume and (5) is the LT of (4), which
appears in Sect. 2.

The CTRW model is a broad one. A number of models in use to describe anomalous
transport, e.g., multiple ratemass transfer (MRMT, e.g., Haggerty andGorelick 1995; Carrera
et al. 1998) and some fractional PDEs (e.g., Metzler and Klafter 2000), are subsets of CTRW
(e.g.,Berkowitz et al. 2006 and references therein;Metzler andKlafter 2000;Silva et al. 2009).
In many formulations of MRMT, a different definition of a “memory function,” expressed as
a sum of exponentials, is applied in a particular form of governing equation; this function is
distinct from the M(t) appearing in the convolution Eq. (4). The key purpose of this paper
is to develop an accurate representation of M(t) that enables efficient numerical solution of
(4) and avoids dealing repeatedly with the entire time history at each iteration of the FEM
method.

The C̃(xi , u) can now be expressed in terms of C̃1(xi , u), which is the solution of (5) for
M̃(u) = 1 (the ADE) and the same boundary conditions as C̃(xi , u). In Dentz et al. (2004),
the solution is listed for κ = 1, 2, 3 (where κ is the dimension). For our implementation of
CTRW, it suffices to show the 1D solution:

C̃ (xi , u) = 1

M̃ (u)
C̃1

(
xi ,

u

M̃ (u)

)
(8)

Specifically,

C̃ (x1, u) =
exp

[
− v

2D

{√
x21 + 4x21

uD
M̃(u)v2

− x1
}]

M̃ (u) v
√
1 + 4 uD

M̃(u)v2

(9)
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The next step is an essential one, namely—the choice ofψ(t) . To enable consideration of
both non-Fickian and Fickian transport behaviors, we employ a truncated power law (TPL):

ψ (t) = N
exp (−t/t2)

(1 + t/t1)1+β
(10)

with the normalization constant

N =
{
t1τ

−β
2 exp

(
τ−1
2

)
Γ

(
−β, τ−1

2

)}−1
(11)

where τ2 ≡ t2/t1 and Γ (a, x) is the incomplete gamma function (Abramowitz and Stegun
1970). The power law factor in (10) with 0 < β < 2 characterizes the disorder of the system
and gives rise to non-Fickian transport (it is the same β as in l α tβ). The exponential factor
marks the time (t2) for the transition to Fickian transport. One can now see that a choice for
t̄ above is t1 in (10), which is the time for the onset of power law behavior.

The LT of the truncated power law (10) is given by

ψ̃ (u) = (1 + τ2ut1)
β exp (t1u)

Γ
(
−β, τ−1

2 + t1u
)

Γ
(
−β, τ−1

2

) (12)

and is the building block of (7), the memory function. The basis of the calculations of the
breakthrough curves (BTCs) is (9), (12) and (7). They are contained in a CTRW Toolbox
(Cortis and Berkowitz 2005), along with a numerical inverse LT, for free use.

The solutions using the CTRW Toolbox have proven highly effective in comparison with
experiments (Berkowitz et al. 2006; Cortis and Berkowitz 2005) on chemical transport in
geological porous media, which have focused mostly on laboratory column tests constructed
to simulate natural heterogeneity. A validation of the Toolbox solution is the excellent agree-
ment with the method of particle tracking (PT) (Dentz et al. 2004). The PT uses the TPL
ψ(t) (10) to advance large groups of particles to obtain numerical stability directly in the
time domain. This body of work has clearly established the connection between disorder and
its representation by a power law in ψ(t) and the occurrence of non-Fickian behavior. One
limitation that has arisen in the Toolbox solution, however, is the occasional instabilities in
executing the inverse LT of (9) for certain parameter ranges. In principle, the FEM solution
of (4) can avoid use of the inverse LT of (9). We will expand on this point in our concluding
remarks. Our present method uses the Toolbox to obtain the optimal parameters of M(t), v,
and D. The essential element in obtaining a numerical solution of (4) is to limit the recursion
steps of the discretization of time. One has to work with special forms of M(t) to achieve
this limitation. This is accomplished with a sum of exponentials.

Sum-of-exponentials approximations have been applied to increase the speed of evaluation
of convolution integrals in many applications. In fact, they have been used to accelerate the
evaluation of heat potentials (Greengard and Lin 2000; Greengard and Strain 1990; Jiang
et al. 2015) and the evaluation of exact, non-reflecting boundary conditions for the wave,
Schrodinger and heat equations (Alpert et al. 2000; Jiang and Greengard 2004, 2008). A
recent paper also discussed its application to the evaluation of fractional integrals (Li 2010).
Viscoelasticity is another field in which such models are used, e.g., Ben-Zvi (1990) and
references therein.

In Sect. 2, aspects of (4) in the time domain and (5) in the Laplace domain are discussed
along with the boundary conditions, which are more flexible in the FEM solution. In Sect. 3,
we detail the spatial discretization of the FEM, which is straightforward, and in Sect. 4,
the more exacting time discretization is detailed. The boundary conditions are presented in
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Sect. 6. Some numerical issues are briefly mentioned in Sect. 7. Validation of the solution is
then demonstrated (Sect. 8), and the convergence characteristics of the scheme are assessed
in Sect. 9. We conclude with a number of notes and recommendations. Overall, numerical
solution of the transport equation (4) with its potential to incorporate further algorithms
to represent M(t) is an important addition to the framework of modeling phenomena in
disordered systems.

2 The CTRW Transport Equation

The general, time-dependent, equation for the concentration distribution in three dimensions
in an anisotropic medium may be expressed in the Laplace domain as

uC̃ (xi , u) − C0 (xi ) + j̃i,i (xi , u) = S̃ (xi , u) (13)

where tensor notation is used, C is the concentration, u is the Laplace variable, xi is the
i-th coordinate, ji is the flux vector, S is source, “ ∼” denotes transformed to the u domain,
subscript 0 denotes initial conditions (IC) and “,” indicates covariant derivative. The flux
vector is defined by

j̃i (xi , u) = M̃(u)
[
q̃ci (xi , u) + q̃di (xi , u)

]
(14)

where qc and qd are the advection and the dispersion terms, respectively, defined by

q̃ci (xi , u)
.= ṽi (xi , u)C̃(xi , u), (15)

q̃di (xi , u)
.= −D̃i j (xi , u)C̃, j (xi , u), (16)

vi is the velocity vector, Di j is the dispersion tensor [both defined in (6)] andM is thememory
function [(defined in (7)]. In the following, we also use the mass flux q̃i (xi , u) =̇ q̃ci (xi , u)+
q̃di (xi , u) for short.

In the time domain, the (uC̃ − C0) term becomes Ċ(t), and multiplication of two u-
functions, say f̃ (u)g̃(u), becomes a time convolution:

t∫

0

f (t − τ)g(τ )dτ =̇ f (t) ⊗ g(t) (17)

Therefore, (13) may be written in the time domain as

Ċ (xi , t) + ji,i (xi , t) = S (xi , t) (18)

and (14) becomes

ji (xi , t) = M(t) ⊗
[
qci (xi , t) + qdi (xi , t)

]
(19)

where t is time and “·” denotes time derivative.
The following types of boundary conditions (BCs) are accounted for:

• Prescribed boundary concentration (Dirichlet):

C(xi , t) = C̄(t) on Γ D (20)

• Prescribed boundary derivative term, qd (Neumann):

niq
(d)
i (xi , t) = q̄(t) on Γ N (21)
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• Prescribed boundary flux (Robin):

ni ji (xi , t) = j̄(t) on Γ R (22)

where overbar denotes “prescribed,” the domain boundary Γ is entirely covered by the non-
overlapping partsΓ D ,Γ N andΓ R and ni is its outwards unit normal. In the Laplace domain,
similar expressions prevail with u replacing t .
Note: The advection–dispersion equation (ADE) is recovered when M̃(u) = 1, leading to
M(t) = δ(t) and therefore, for the ADE:

ji (xi , t) = qci (xi , t) + qdi (xi , t) (23)

3 Spatial Discretization by the Finite Element Method (FEM)

We begin with spatial semi-discretization of (13) by the finite element method (FEM). The
domain, V , is discretized by a grid consisting of non-overlapping (non-uniform in general)
elements.

The basic FEM assumption is that the concentration C(xi , t) within an element is related
to its nodal valuesCJ (t)—referred to as degrees of freedom (DOFs)—by assumed functions,
NJ (x), called shape functions, which are local and continuous across elements faces:

C(xi , t) = NJ (xi )CJ (t), or equivalently, C̃(xi , u) = NJ (xi ) C̃J (u) (24)

where capital indices refer to nodal indices (lowercase indices denote spatial dimension as
before) and repeated index indicates summation on all the nodes belonging to the element.
In what follows, the “∼,” the xi and the t (or u) dependence will be omitted for brevity.

Applying (24) for the flux ji defined in (14) yields

ji = M(vi NJ − Di j NJ, j )CJ (25)

and the initial condition (IC), C0, within an element is related to the DOFs IC through

C0 = NJ C0J (26)

We further assume that the source term distribution within an element is also of the same
form

S = NJ SJ (27)

The FEM derivation details are quite standard, and are given in Appendix 1. The spatial
semi-discretization results appear in (76)–(85).

4 Temporal Discretization

We now apply a time discretization, where (starting from the initial conditions) we advance
the solution from time tn to tn+1 = tn + Δt (superscripts are the number of the time step).

4.1 Numerical Convolution Treatment

The convolution term in (83) (see “Appendix 1”) requires special care to avoid storing all
of the time steps results. Rather, we will approximate it such that only the former time step
results are needed. The discrete form of (82) (see “Appendix 1”) is
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I nJ =
tn∫

0

M(tn − τ)CJ (τ )dτ (28)

Therefore,

I n+1
J =

tn+1∫

0

M(tn+1 − τ)CJ (τ )dτ =
tn∫

0

M(tn+1 − τ)CJ (τ )dτ +
tn+1∫

tn

M(tn+1 − τ)CJ (τ )dτ

(29)
A specific choice for M(t) is now made: M(t) is approximated by the P-terms series

M(t) ∼= a0δ(t) +
P∑

p=1

ape
−bpt =̇ a0δ(t) +

P∑

p=1

Mp(t) (30)

Thismodel (also known as a “Prony series” or “sum-of-poles” in the literature; see Appen-
dix 2 for further details) is referred to as the EXP model in the remainder of this study.

The last term in (29), termed Kn+1
J , is approximated by assuming that CJ (t) is linear in

τ within each time step. This may be written in parametric form as

τ = ωtn+1 + (1 − ω) tn, (31)

CJ (τ ) ∼= ωCn+1
J + (1 − ω)Cn

J (32)

where ω is a time step interval parameter between 0 and 1.
Therefore,

Kn+1
J

.=
tn+1∫

tn

M(tn+1 − τ)CJ (τ ) dτ

∼= a0C
n+1
J +

P∑

p=1

ω=1∫

ω=0

ape
−bpΔt(1−ω)

[
ωCn+1

J + (1 − ω)Cn
J

]
Δtdω (33)

The integral may be calculated analytically, and after rearrangement, we finally obtain

Kn+1
J

∼= a0C
n
J +

P∑

p=1

(
γ n
pC

n
J + γ n+1

p Cn+1
J

)
(34)

where

γ n
p = γ

[
ap − (

bpΔt + 1
)
Mp (Δt)

]
(35)

γ n+1
p = γ

[
ap

(
bpΔt − 1

) + Mp (Δt)
]

(36)

γ = 1

b2pΔt
(37)

Note that, in the first attempt, Kn+1
J was approximated by the trapezoidal rule quadrature:

Kn+1
J

∼= Δt

2

[
M(Δt)Cn

J + M(0)Cn+1
J

]
(38)

This approximation is of lower order in Δt , and the error accumulation limited the time step
to about 100 times smaller than in the above approximation.
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Using (30) in (28)

I nJ =
tn∫

0

⎡

⎣a0δ
(
tn − τ

) +
P∑

p=1

Mp(t
n − τ)

⎤

⎦CJ (τ )dτ

= a0C
n
J +

P∑

p=1

tn∫

0

ape
−bp(tn−τ)CJ (τ )dτ =̇ a0C

n
J +

P∑

p=1

I nJ p (39)

Substituting (30) to (29) and using (34) and (39), the recursion expression becomes

I n+1
J

∼=
tn∫

0

a0δ
(
tn+1 − τ

)
CJ (τ ) dτ

+
P∑

p=1

e−bpΔt

tn∫

0

ape
−bptnCJ (τ ) dτ + Kn+1

J

=
P∑

p=1

e−bpΔt I nJ p + Kn+1
J (40)

Therefore, to calculateCn+1
J , we require onlyCn

J and I
n
J p from the former step (and, of course,

the Prony parameters, the geometry, the velocity and the dispersion, the initial conditions
and the grid).

4.2 Implicit Scheme

The implicit time discretization is again quite standard, and details are given in “Appendix
1,” (86)–(93).

5 One-Dimensional Linear Element

In 1D, there are single components of vi , Di j , ni , qi and ji , hereafter denoted v, D, n, q and
j for brevity. In the present implementation, we use a linear element that has two nodes, with
coordinates x1 and x2 . We employ a normalized coordinate ξ

ξ = 2

h
(x − x2) + 1 (41)

where
h = x2 − x1 (42)

such that ξ = −1 at x1 and ξ = +1 at x2 .
The shape functions of this element are

N1(ξ) = (1 − ξ)/2, (43)

N2(ξ) = (1 + ξ)/2, (44)

such that at x1, N1(ξ = −1) = 1, N2(ξ = −1) = 0 and at x2, N1(ξ = +1) = 0,
N2(ξ = +1) = 1 .
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The volume element, dV, is

dV = s dx = s h dξ/2 (45)

where s is the element cross-sectional area (normal to x).
Using (41)–(45) in the general definitions (77)–(81) (“Appendix 1”) results in

AIJ = s
h

6

[
2 1
1 2

]
(46)

LIJ = s
v

2

[−1 −1
+1 +1

]
(47)

PIJ = s
D

h

[+1 −1
−1 +1

]
(48)

Notes

• The consistent mass matrix AIJ in (46) may optionally be replaced by a diagonal mass
matrix

A(d)
IJ = s

h

2

[
1 0
0 1

]
(49)

• The advection matrix LIJ in (47) causes oscillations or instability when advection is pure
or dominant, i.e., when the element Peclet number, Peh = hv/D, absolute value exceeds
2. In this implementation, a hybrid scheme is used to rectify this limitation as an option
by replacing this matrix by a linear combination of the original matrix and an upwind
matrix

L∗
IJ = φL(up)

IJ + (1 − φ) LIJ (50)

where φ is the upwind parameter, and the upwind matrix is given by

L(up)
IJ = s

v

2

⎧
⎪⎪⎨

⎪⎪⎩

[−2 0
+2 0

]
i f v > 0

[
0 −2
0 +2

]
i f v < 0

(51)

• Only a uniform grid (h =cons, s =cons for all elements) is currently implemented.
• Only uniform properties (v =cons, D =cons for all elements) are currently implemented.

The nodal flux for this element is now developed from (14) to (16) (transformed to the
time domain), the discretization (24), definitions (41), (42) and the shape functions for this
element (43), (44).Wewill calculate the element nodal flux j and its advective and dispersive
ingredients, qc and qd , i.e., at ξ = −1, +1, and then add the contributions from neighbor
elements.

The shape function NI is by definition 1 at node I and 0 at the other node of the element.
Its x derivative is calculated by the chain rule as

∂NI

∂x
= ∂x

∂ξ

∂NI

∂ξ
= 2

h

∂NI

∂ξ
(52)

so that
∂N1

∂x
= − 1

h
, (53)

∂N2

∂x
= + 1

h
(54)

and these are constant throughout the element.
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The advective term, qc, is
qc (ξ) = vNJCJ (55)

At the nodes, it is

qc (ξ = −1) = vC1, (56)

qc (ξ = +1) = vC2 (57)

or
qcI = Qc

IJCJ (58)

where

Qc
IJ = v

[
1 0
0 1

]
(59)

The dispersive term, qd , is
qd (ξ) = −DNJ,xCJ (60)

(constant over the element, i.e., independent of ξ), so at the nodes

qd (ξ = −1) = −D

(
− 1

h
C1 + 1

h
C2

)
, (61)

qd (ξ = +1) = −D

(
− 1

h
C1 + 1

h
C2

)
(62)

or
qdI = Qd

IJCJ (63)

where

Qd
IJ = −D

h

[−1 +1
−1 +1

]
(64)

The nodal flux is therefore

jI = FIJCJ ⊗ M = FIJ IJ (65)

where (82) was used and
FIJ = Qc

IJ + Qd
IJ (66)

While qc is continuous between elements (because NI is), qd is not (because NI,x is not,
being constant at each element), and therefore j is also discontinuous. In other words, NI is
C0 continuous. The nodal value of qd and j will be the average of the contributions from the
neighboring elements. On boundaries, there will be a contribution from a single element.

6 Discrete BCs

6.1 Robin-Type BC

This is the simplest type of BC. Given the boundary node, its normal and the flux value as a
function of time, its contribution to QI is given by the last term of (81) (see “Appendix 1”).
For the linear 1D element, the boundary node contribution is s j̄I (t) on Γ R .
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6.2 Dirichlet-Type BC

If the concentration at a boundary node is given, it is possible to partition the solved equa-
tion system (87) (see “Appendix 1”) and reduce the size of the problem. This will now be
schematically illustrated.

Suppose the unknown DOFs are Ca , the prescribed DOFs are C̄b and the equations are
reordered to form the block-matrix equation

[
αaa αab

αba αbb

]{
Ca

C̄b

}
=

{
Ra

Rb

}
(67)

where Ca , C̄b, Ra and Rb are vectors and αaa , αab, αba, αbb are matrices.
The Ca partition can be readily calculated from the first block

Ca = α−1
aa

(
Ra − αabC̄b

)
(68)

because the right-hand side is known. If desired, Rb may then be calculated from

Rb = αbaCa + αbbC̄b. (69)

This straightforward method is exact, but it is a bit more complex to program than the
approximate alternative below [suggested by Zienkiewicz and Taylor (2000)].

In the solved equation, we may add a large term Y >> max |aIJ | to aI I for the node(s) I
where Dirichlet BCs C = C̄I are prescribed and replace Rn+1

I with Y C̄I . This will result in
(approximately) satisfying these BCs without need to change the dimensions of the matrices
and reorder them. This method is implemented in the present 1D FEM solver.

6.3 Neumann-Type BC

Hereafter, we will limit our treatment to linear 1D elements.

6.3.1 Prony Model

The Neumann BC contribution to QI consists of the first three terms of (81). The first term
includes IJ (t)multiplied by a surface integral. The surface integral is easily calculated using

the shape functions (43), (44). At a boundary along ξ = −1, it is

(
snv

[
1 0
0 0

])
, and along

ξ = +1, it is

(
snv

[
0 0
0 1

])
. Therefore, QI will only have a contribution at the boundary

node I , which is snv II (t).
The second term pre-integral factor is similarly [CJ (t) − IJ (t)] and the surface integral

is similarly calculated. In this case, there is a contribution also from the neighbor node of
the element, denoted here by the subscript K . The contribution of this term to QI is only at
node I again and it is sD{[CI (t) − II (t)] − [CK (t) − IK (t)]}/|h|.

The third term contribution is simply sq̄I (t).
Collecting all terms for step n + 1

Qn+1
I = s

{
nv I n+1

I + D
[(

Cn+1
I − I n+1

I

)
−

(
Cn+1
K − I n+1

K

)]
/|h| + q̄n+1

I

}
on Γ N

(70)
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Table 1 Calibrated TPL and
numerical parameters for
Scheidegger (1959) and Jardine
et al. (1993) cases

Units Scheidegger Jardine et al.

Calibrated TPL parameters

v m/min 9.438 × 10−3 5.190 × 10−2

D m2/min 1.640 × 10−5 1.705 × 10−2

β 1.5968 × 100 1.3605 × 100

t1 min 2.175 × 10−2 1.038 × 10−1

t2 min 2.489 × 1010 8.750 × 1011

Numerical parameters

vΔt/h 4.719 × 10−1 2.595 × 100

DΔt/h2 4.101 × 10−1 4.262 × 102

vh/D 1.151 × 100 6.089 × 10−3

Table 2 M(t) parameters for Scheidegger (1959) and Jardine et al. (1993) cases

Scheidegger Jardine et al.

p ap[–] bp[1/T] ap[–] bp[1/T]
0 1.5968 0 1.3605 0

1 −1.3803 × 10−11 8.1909 × 10−7 −9.8242 × 10−11 1.9110 × 10−7

2 −8.8289 × 10−11 3.3182 × 10−6 −4.2143 × 10−10 8.5281 × 10−7

3 −5.6315 × 10−10 1.0912 × 10−5 −1.6079 × 10−9 2.5223 × 10−6

4 −3.2458 × 10−9 3.3851 × 10−5 −5.7800 × 10−9 6.7822 × 10−6

5 −1.6743 × 10−8 9.8347 × 10−5 −1.9464 × 10−8 1.7202 × 10−5

6 −7.7988 × 10−8 2.6793 × 10−4 −6.2143 × 10−8 4.1673 × 10−5

7 −3.3245 × 10−7 6.8890 × 10−4 −1.8989 × 10−7 9.7231 × 10−5

8 −1.3132 × 10−6 1.6841 × 10−3 −5.5918 × 10−7 2.1979 × 10−4

9 −4.8566 × 10−6 3.9408 × 10−3 −1.5950 × 10−6 4.8349 × 10−4

10 −1.6958 × 10−5 8.8776 × 10−3 −4.4252 × 10−6 1.0384 × 10−3

11 −5.6277 × 10−5 1.9344 × 10−2 −1.1981 × 10−5 2.1829 × 10−3

12 −1.7846 × 10−4 4.0930 × 10−2 −3.1748 × 10−5 4.5010 × 10−3

13 −5.4305 × 10−4 8.4376 × 10−2 −8.2530 × 10−5 9.1178 × 10−3

14 −1.5912 × 10−3 1.6993 × 10−1 −2.1091 × 10−4 1.8171 × 10−2

15 −4.5017 × 10−3 3.3513 × 10−1 −5.3082 × 10−4 3.5664 × 10−2

16 −1.2325 × 10−2 6.4856 × 10−1 −1.3176 × 10−3 6.9005 × 10−2

17 −3.2709 × 10−2 1.2338 × 100 −3.2290 × 10−3 1.3172 × 10−1

18 −8.4267 × 10−2 2.3107 × 100 −7.8178 × 10−3 2.4822 × 10−1

19 −2.1089 × 10−1 4.2663 × 100 −1.8699 × 10−2 4.6203 × 10−1

20 −5.1255 × 10−1 7.7737 × 100 −4.4143 × 10−2 8.4990 × 10−1

21 −1.2068 × 100 1.3990 × 101 −1.0261 × 10−1 1.5456 × 100

22 −2.7339 × 100 2.4878 × 101 −2.3373 × 10−1 2.7794 × 100

23 −5.8640 × 100 4.3688 × 101 −5.1677 × 10−1 4.9420 × 100
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Table 2 continued

Scheidegger Jardine et al.

24 −1.1471 × 101 7.5594 × 101 −1.0880 × 100 8.6816 × 100

25 −1.8741 × 101 1.2814 × 102 −2.0934 × 100 1.5031 × 101

26 −2.0877 × 101 2.1068 × 102 −3.3574 × 100 2.5501 × 101

27 −1.0516 × 101 3.3458 × 102 −3.6509 × 100 4.2009 × 101

28 −1.1564 × 100 5.2950 × 102 −1.7945 × 100 6.7019 × 101

29 −1.9528 × 10−1 1.0685 × 102
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Fig. 1 FEM solution for the Scheidegger (1959) case: q(x, t)(−) versus x(m) at various t (min)

6.3.2 ADE Model

With M(t) = δ(t), following similar (and much simpler) route, we have

Qn+1
I = s

{
nvCn+1

I + q̄n+1
I

}
on Γ N (71)

Note that the BC term, QI , of both models depends on the solution [(terms of step n + 1 in
(70) and (71)]. In a fully implicit scheme, these terms should be included in the solution of
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the equations system by changing the matrix or by an iterative solution. This is not done in
the present implementation, so QI lags one step behind the solution, CI .

7 Numerical Issues

When the number of linear equation (87) (see “Appendix 1”) is relatively small, it may
be solved directly using LU decomposition. For a large system, the time and the storage
required to the solution may become impractically large. In addition, the results may become
inaccurate due to round-off errors. Therefore, the stabilized bi-conjugate gradient iterative
solver, biCGstab , by Sleijpen and Van der Vorst (1995), Sleijpen and Van der Vorst (1996),
based on the PhD thesis of Fokkema (1996) and implemented by Botchev (http://www.
staff.science.uu.nl/~vorst102/bcg2.f) is used here, which is capable of solving large non-
symmetric equation systems.

Throughout, 64-bit arithmetics were applied to all real variables.

8 Validation

Two verification cases are presented here, based on previous study (Cortis and Berkowitz
2004) that analyzes experiments of Scheidegger (1959) and of Jardine et al. (1993). In both
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Fig. 2 Comparison of the solutions for the BTC of Scheidegger (1959) case: normalized q(L = 1, t)(−)

versus t (min)
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cases, a Robin-step BC was applied at the inlet, x = 0, of a soil column of length L and
a Neumann homogeneous BC was applied at the outlet; the IC was homogeneous and the
breakthrough curves (BTC), q(L , t) =̇ qci (L , t) + qdi (, t), were measured. The length was
normalized, 500 uniform elements (h = 2 × 10−3m) and a time step of Δt = 0.1 min were
used. An implicit temporal scheme, central spatial scheme and a diagonal mass matrix were
used. The BTC was normalized by

q(L ,∞) = vM̃ (u = 0) (72)

The parameters usedwere obtained as follows: TheCTRWToolbox (Cortis andBerkowitz
2005) was first applied to find the five parameters (v, D, β, t1 and t2) of the TPL model to
best fit the BTC. The resulting memory function in the Laplace variable, M̃(u), was fitted
to the exponential form (30) from its distribution along the imaginary u axis using a previ-
ously published method (Jiang 2001; Jiang and Greengard 2004; Xu and Jiang 2013). These
parameters, together with the same v and D, were then used as input to the FEM solver.

The first case refers to experimental results of Scheidegger (1959). The calibrated TPL
parameters for this case are shown in Table 1 and the fitted M(t) Prony series appear in
Table 2. The FEM solver was run with these data until t = 340min. The axial q distributions
at various times are depicted in Fig. 1. The BTC at x = 1 m is compared in Fig. 2 to the
experimental and the Toolbox results using both the TPL and EXP models. It is seen that
the agreement is satisfactory. When the trapezoidal quadrature (38) was used for calculation
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Fig. 3 Comparison of the solutions for the BTC of Jardine et al. (1993) case: normalized q(L = 1, t)(−)

versus t (min)
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of Kn+1
J , it was found necessary to use time steps much smaller than the advective and the

diffusive stability limits. As mentioned above, using the linear assumption for the calculation
of Kn+1

J (34) enables a time step, Δt , that is about 100 times larger (see Table 1). Because
the cell Peclet number, vh/D, in this case was small (1.15), the central scheme was preferred
to the upwind scheme with its numerical dispersion (also known as false diffusion, Patankar
1980). Roughly 15 iterations were required by the biCGstab to reduce the residuals to less
than 10−9 .

The second case presents a comparison with experimental results of Jardine et al. (1993).
The parameters for this case are shown in Table 1 and Table 2. The BTC at x = 1 m for
t ≤ 300 min is compared in Fig. 3 to the experimental and the Toolbox results using both
the TPL and EXP models. The agreement is again seen to be satisfactory. In this case, more
iterations were required (about 300–500) to reach the same convergence criterion as in the
former case. This may be attributed to the much larger DΔt/h2 in the present case.

9 Convergence

The first validation case serves to assess the developed scheme convergence, in both time
and space.
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Fig. 4 Comparison of the solutions for the BTC of Scheidegger (1959) case: normalized q(L = 1, t)(−)

versus t (min)—convergence with the time step
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To check solution dependence on the time step, a fixed uniform grid of 500 elements was
used, while changing the time step. Up to Δt = 0.25 the solution was stable. Results for
Δt = 0.1, 0.25 are compared in Fig. 4 to the experiment and the Toolbox solution using
the TPL model. The difference between these time steps results is negligible. With higher
Δt , the solution becomes unstable when the concentration at x = L starts rising, although
an implicit time scheme is used here. This may be because the BCs lag one step beyond the
inner domain solution, because the solved equation is not ADE, and therefore, there is no
guarantee that such a scheme is unconditionally stable, or for some other reason. This should
be studied further in the future. However, for the problem at hand, it seems unlikely that
good accuracy can be achieved with larger steps for a process that mainly proceeds in about
100 min (140 < t < 240) .

Next, we fixed the time step at Δt = 0.1 and modified the number of (uniform) elements
as depicted in Fig. 5. For finer grids (500, 200 and 100 elements with Peh = 1.15, 2.9,
and 5.8, respectively), the central advection matrix was used with no instabilities. Using a
central scheme with 50 elements (Peh = 11.5), the solution showed wiggles (overshoots),
which became larger for 20 elements (Peh = 29). Switching to upwind advection is seen
to overcome this issue, but the numerical dispersion of this scheme reduces the accuracy as
the grid is coarser. Error estimation from Fig. 5 shows that the error for the upwind runs
(Ne = 20, 50) is indeed O(h), as expected (see Patankar 1980), due to a numerical dispersion
coefficient of vh/2, added to the true value, D.
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10 Conclusions and Recommendations

A FEM formulation for a class of integro-differential transport equations was presented and
specialized for 1D and a kernelM(t) has been used tomodel non-Fickian contaminant flow in
porousmedia. Using a Prony series form of thememory function yielded an efficient solution,
in which only the former time step results should be stored. The proposed formulation was
successfully validated and its convergence characteristics were demonstrated.

The following extensions may be implemented in the future (the list order does not reflect
item importance nor implementation difficulty and is rather arbitrary):

• Implement non-uniform grid.
• Improve the time-stepping efficiency, so that fewer steps are required while maintaining

high accuracy.
• Implement a higher-order element (e.g., quadratic shape functions rather than linear).
• Allow for 2D (planar or axisymmetric) and 3D problems, implying also

• Anisotropy.
• Non-orthogonal elements.
• Various elements shapes (2D: Quadrilateral and triangular, 3D: hexagonal, tetrahe-

dral).
• Generalized upwind or other scheme for advection-dominated flow. Use of the

Petrov–Galerkin method (Zienkiewicz and Taylor 2000) is currently studied.

• Allow for element-wise properties, including the velocity and the dispersion, or—even
more generally—both being functions of xi and t .

• Generalize the BCs to allow for space and time dependence.
• Add a Navier–Stokes solver, so the velocity field is calculated prior to the concentration

solver rather than being prescribed.
• Implement the source term and inhomogeneous IC.
• Combine the BCs and the solution to fully adhere to the scheme implicitness.
• Extend the equation and its BCs to include additional physical and chemical phenomena.
• Optimize the fitting routine without using the Toolbox (thus avoiding the numerical

inverse Laplace transform).
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Federal German Ministry for Education and Research. B.B. holds the Sam Zuckerberg Professorial Chair in
Hydrology. S.J. was supported by NSF under grant DMS-1418918.

Appendix 1

Applying the Galerkin method to the PDE (13) and its BCs (20)–(22) (see Zienkiewicz and
Taylor 2000), with the weight functions NI for (13), arbitrary ND

I for (20), arbitrary NN
I for

(21) and arbitrary N R
I for (22), we obtain∫

V

NI
(
uC − C0 + ji,i − S

)
dV

+
∫

Γ D

N D
I

(
C − C̄

)
dΓ +

∫

Γ N

N N
I

(
niq

d
i − q̄

)
dΓ +

∫

Γ R

N R
I

(
ni ji − j̄

)
dΓ = 0

(73)
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By choosingC such that (20) is satisfied, the integral onΓ D vanishes.Wemay also choose
NN
I = −NI and N R

I = −NI , because they are arbitrary. Applying integration by parts and
the divergence theorem to the volume integral and substituting (24), (26) and (27) in (73),
yields

(uCJ − C0J − SJ )
∫

V

NI NJ dV −
∫

V

NI,i ji dV +
∫

Γ =Γ D+Γ N+Γ R

NI ni ji dΓ

+
∫

Γ N

N N
I

(
niq

d
i − q̄

)
dΓ +

∫

Γ R

N R
I

(
ni ji − j̄

)
dΓ

= (uCJ − C0J − SJ )
∫

V

NI NJ dV −
∫

V

NI,i ji dV +
∫

Γ D

NI ni ji dΓ

+
∫

Γ N

NI

(
ni ji − niq

d
i + q̄

)
dΓ +

∫

Γ R

NI j̄dΓ = 0 (74)

We may also choose NI such that it is 0 along Γ D so that the integral on Γ D vanishes.
Substituting (14)–(16), (19) and (24) into (74), we finally obtain

(uCJ − C0J − SJ )
∫

V

NI NJ dV + MCJ

∫

V

NI,i (Di j NJ, j − vi NJ ) dV

+
∫

Γ N

NI
[
ni MCJ (vi NJ − Di j NJ, j ) + niCJ Di j NJ, j + q̄

]
dΓ +

∫

Γ R

NI j̄dΓ = 0

(75)

or
AIJ(uCJ − C0J − SJ ) + BIJ IJ + QI = 0, (76)

where AI K , L I K , PI K and QI are the discrete mass, advection, dispersion and load matrices
and vector, respectively, defined by

AIJ =
∫

V

NI NJ dV (77)

LIJ =
∫

V

NI,ivi NJ dV (78)

PIJ =
∫

V

NI,i Di j NJ, j dV (79)

BIJ =̇ PIJ − LIJ (80)

QI = IJ

∫

Γ N

NI nivi NJ dΓ + (CJ − IJ )
∫

Γ N

NI ni Di j NJ, j dΓ

+
∫

Γ N

NI q̄dΓ +
∫

Γ R

NI j̄dΓ (81)

and IJ is defined by

IJ (t) =̇ M (t) ⊗ CJ (t) or equivalently Ĩ J (u) =̇ M̃ (u) C̃J (u) (82)
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In the following, we assume that vi and Di j are constant within each element and in time.
Therefore, AIJ , LIJ , PIJ and BIJ are constant for given geometry, grid, velocity, dispersion and
the specific type of elements and schemes chosen. Note also that AIJ and PIJ are symmetric,
whereas the advection matrix, LIJ and BIJ are not.

The semi-discrete equation in the time domain is obtained by substituting (17) in the
inverse Laplace transform of (75) and rearranging, yielding

AIJĊJ (t) + BIJ IJ (t) + TI (t) = 0 (83)

where TI is defined by
TI (t) =̇ QI (t) − AIJ SJ (t) (84)

For the ADE, substituting M̃(u) = 1 in (76) yields the same form, but with Ĩ J replaced by
C̃J . Substituting M̃(u) = 1 in (81) gives the simplified form

QI =
∫

Γ N

NI [niCJvi NJ + q̄] dΓ +
∫

Γ R

NI j̄dΓ. (85)

Let us now discretize (83) in time using (28) and (29):

AIJ
Cn+1

J − Cn
J

Δt
+ BIJ

[
θ I n+1

J + (1 − θ) I nJ

]
+

[
θT n+1

I + (1 − θ) T n
I

]
= 0 (86)

where 0 ≤ θ ≤ 1 is an implicitness parameter (0 for fully explicit, 1 for fully implicit and
0.5 for Crank–Nicolson method).

For the Prony series model, we may further simplify (86) with I n+1
J given by (40) and

Kn+1
J given by (34). Rearranging, we finally obtain the following system of linear equations:

αIJC
n+1
J = Rn+1

I (87)

with

αIJ =̇ AIJ

Δt
+ BIJθ

⎡

⎣a0 +
P∑

p=1

γ n+1
p

⎤

⎦ (88)

βIJ =̇ AIJ

Δt
+ BIJ

⎡

⎣(1 − θ) a0 − θ

P∑

p=1

γ n
p

⎤

⎦ (89)

Rn+1
I =̇ βIJC

n
J −

⎧
⎨

⎩BIJ

P∑

p=1

[
(1 − θ) + θ

Mp(Δt)

ap

]
I nJ p +

[
θT n+1

I + (1 − θ) T n
I

]
⎫
⎬

⎭

(90)

Note that for the ADE (87) remains unaltered, but (88)–(90) are degenerated to

αIJ =̇ AIJ

Δt
+ BIJθ (91)

βIJ =̇ AIJ

Δt
− BIJ (1 − θ) (92)

Rn+1
I =̇ βIJC

n
J −

[
θT n+1

I + (1 − θ) T n
I

]
(93)

The source term is presently not implemented.
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Appendix 2

A typical memory function (for the first validation case) is presented in Fig. 6 in both the
Laplace (Fig. 6a) and time (Fig. 6b, c) domains. At t → 0, M̃ (u) → N − 1 and at t → ∞,
M̃ (u) → N , where N is the normalization constant defined in (11), which is very close to
the TPL parameter β defined in (10). Because the sum-of-exponentials approaches zero at
infinity, it is used to approximate M̃(u) − N , so that in the time domain, the a0δ(t) term

Fig. 6 Scheidegger (1959) memory function, M , (a) versus Laplace variable u (real); (b) versus: time, t , (c)
versus time in log–log scale
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is added [see (30)], with a0 = N . As t → ∞, M(t) approaches 0, while it becomes a
nearly constant negative value at t → 0+ . At t = 0, there is a small increase in M(t) due
to the a0δ(t) term, but it is still negative. Both M̃(u) and M(t) are smooth, except the M(t)
singularity at t = 0.

There are two ways of computing the convolution (82).
The first method evaluates M(t) via some representation and then computes the convo-

lution (28), I nJ =
tn∫

0
M(tn − τ)CJ (τ )dτ , directly by splitting the integration domain into n

subintervals and approximating the integral on each subinterval via the trapezoidal rule. This
direct method requires storage of CJ (0), CJ (Δt), …, CJ (n Δt) and O(n) work at the nth
step. Thus, the overall computational cost is O(N 2

t ) and the storage requirement is O(Nt ),
where Nt is the total number of time steps.

The second method to evaluate the convolution (82) first seeks an efficient sum-of-

exponential approximation forM(t), i.e.,M(t) ∼= a0δ(t)+
P∑

p=1
ape−bpt [see (30)]. Here, P is

the number of terms needed in the sum-of-exponential approximation. We then observe that
the convolution with an exponential function can be calculated efficiently via a simple recur-
rence relation. The computational cost of this scheme is O(P ·Nt ) to evaluate I 1J , I

2
J , . . . , I

Nt
J ;

and the storage requirement is only O(P), i.e., one only needs to store the history part for
each exponential mode. In practice, as in the present study, P is very often a small number
and is independent of Nt for our particular problem. Hence, both the computational cost and
the storage requirement of the second scheme are optimal.
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