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Abstract The present work deals with the propagation of Rayleigh-type surface waves in
a swelling porous elastic half-space consisting of three phases, namely solid matrix, liquid
(viscous) and gas (inviscid). Using Eringen’s theory of swelling porous media, the governing
equations are first solved by potential method. Frequency equation of Rayleigh-type waves
has been derived, which is found to be irrational due to the presence of radicals in it. This
irrational equation has been rationalized into a polynomial, which is then solved numerically
for a specific porous model consisting of sandstone, water (viscous) and carbon dioxide as
solid, liquid and gas phases, respectively. The nature of Rayleigh-type surface waves in the
considered swelling porous medium is found to be inhomogeneous. Twomodes of Rayleigh-
type surface waves are noticed: One of them is the counterpart of the classical Rayleigh wave,
while the second mode of Rayleigh-type surface waves arises due to the presence of either
liquid or gas phases of the swelling porous medium. The variation of phase speeds and the
corresponding attenuations of Rayleigh-type surface waves are depicted graphically against
frequency parameter for the selected model. In the considered model, the swelling parameter
has negligible effect on the propagation speeds of Rayleigh-type surface modes. It is also
observed that in the absence of swelling, there still exist two modes of Rayleigh-type waves.
The effect of the viscosity of the liquid constituent present in the pores is also examined on
the phase speeds and attenuations. The results of Gales (Eur J Mech A Solids, 23:345–357
2004) for the cases of fluid saturation alone and gas saturation alone have also been deduced
analytically as special cases from the present formulation.
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1 Introduction

Wave propagation in porous media has been a subject of considerable interest from the
viewpoints of acoustics, seismology and geophysics. Biot (1941) was perhaps the first who
developed the theory of fluid-saturated porous elastic solid in which the porous solid consists
of elastic skeleton saturated with a viscous fluid. He predicted theoretically that two compres-
sional waves (fast and slow) and one transverse wave can propagate in the porous medium
(see Biot 1956a, b). The existence of the second compressional wave was later confirmed
experimentally by Plona (1980). Biot’s theory is well accepted and still forms a strong base
for wave propagation in porous media (see Coussy 2010), but it focuses on porous rocks
saturated by a single fluid. In many geophysical settings, the existence of porous medium
consisting of more than two phases simultaneously cannot be ruled out. For example, oil
fields are the porous media of soil containing multiple fluids, porous rocks may be filled with
air/gas and liquid, etc. Keeping in view the existence of multiple phasic porous medium,
Brutsaert (1964), Berryman et al. (1988), Santos et al. (1990a, b) and Leclaire et al. (1994)
presented porous model for three-phase continuum on the basis of different assumptions. In
all these three-phasic porous medium, the existence of three types of compressional waves
and one type of shear wave has been shown in the literature.

To study the mechanical behavior of porous medium with multiple fluids, several con-
tinuum theories have been proposed by the researchers under different assumptions. One of
the theory of porous media developed in the past is by Eringen (1994). Eringen developed
a continuum theory of swelling porous elastic soils as a continuum theory of mixture for
porous elastic solids filled with viscous fluid and gas. This theory of swelling porous media
is different from the theory of porous media developed by Tuncay and Corapcioglu (1997)
and Garg and Nayfeh (1986) in the sense of shear response of the porous medium. The shear
response provided by the liquid constituent in Eringen’s theory is mainly responsible to give
rise the swelling phenomena in the porous media. Soils containing fluids, wet woods, paper,
etc. lie in the category of swelling porousmedia. A detailed discussion about Eringen’s theory
and its advantages over some other important theories have been discussed by Tomar and
Goyal (2013).

Since the discovery of Rayleigh waves in 1885, as a special type of disturbance travel-
ing along the free surface of a half-space, much attention has been devoted to the study of
these kinds of surface waves. Specifically, in the field of mining, one requires a detailed
understanding of wave propagation effects on surface structures due to underground exca-
vation as well as surface mining. Jones (1961) was perhaps the first who studied Rayleigh
waves in a poroelastic solid half-space using Biot’s theory. But there were shortcomings in
his assumptions and approach. In particular, the solutions presented by Jones (1961) were
mathematically incorrect (see Tajuddin 1984; Sharma 2012a), due to which the Jones model
was not widely acceptable. Later, Tajuddin (1984) improved the Jones model and investi-
gated the propagation of Rayleigh waves in a poroelastic half-space. There are reasonable
grounds for the assumption that anisotropy (property of being directionally dependent) may
exist in the continents. Anisotropy in the earth’s crust and upper mantle has significant effects
on the wave characteristics. Keeping this fact in mind, Sharma and Gogna (1991) obtained
frequency equation for the propagation of Rayleigh-type surface waves at the free surface
of transversely isotropic liquid-saturated porous solids using Biot’s theory. In their work,

123



Rayleigh-Type Surface Waves in a Swelling Porous Half-Space 93

they concluded that anisotropy in saturated poroelastic media has significant effects on both
the existence and velocity of propagation of Rayleigh-type surface waves in the absence of
dissipation.

Using mixture theory, Liu and de Boer (1997) studied the dispersion and attenuation of
surface waves (Rayleigh waves and Love waves) in a fluid-saturated porous media. They
showed that these surface waves may not be treated as true surface waves as these waves
attenuate not only from but also along the surface of saturated porous medium. Therefore,
Liu and de Boer called these surface waves as pseudo-surface waves in their work. Actually, a
true surfacewave propagates along the surface direction and decays exponentiallywith depth,
while leaky surfacewaves (also called pseudo-surfacewaves in the literature) are attenuated in
the surface direction and radiate energy into bulk or other surface waves. In the past decade,
Lo (2008) developed an analytic model for the propagation and attenuation of Rayleigh-
type waves along the free surface of an elastic media containing two immiscible, viscous,
compressible fluids. By employing the theory of Lo et al. (2005) and Tuncay and Corapcioglu
(1997), Sharma (2012b) obtained secular equation for the propagationofRayleigh-typewaves
in partially saturated poroelastic solid. Later, Sharma (2014) investigated the propagation of
Rayleigh waves in a double porosity solid.

In the present paper, we have derived the frequency equation of Rayleigh-type waves in a
swelling porous half-space. It has been shown that there exists two modes of Rayleigh-type
waves, both dispersive and attenuating. The layout of this paper is as follows: Sect. 2 con-
tains the equations of motion for the linear homogeneous isotropic swelling porous medium
developed earlier by Eringen (1994). This section also demonstrates the propagation of time
harmonic waves existing in the swelling porous medium. In Sect. 3, frequency equation of
Rayleigh-type surface waves has been derived. In Sect. 4, several special cases have been
deduced theoretically including the case when porous medium is fluid saturated and when
it is gas saturated earlier investigated by Gales (2004). In Sect. 5, we recast both phase
speeds and corresponding attenuations of the existing Rayleigh-type waves for a specific
model numerically, and the results obtained are depicted graphically. Section 6 contains the
important inferences drawn from the study.

2 Governing Equations

The equations of motion for the isothermal linear homogeneous isotropic swelling porous
elastic medium consisting of an elastic solid skeleton filled with gas (inviscid) and liquid
(viscous) in the absence of body forces are given by (see Eringen 1994)

∇
(
−σ g∇ · ug − σ f ∇ · u f + (λ + μ)∇ · us

)
+ μ∇ · ∇us

+ (ξ g f + ξ gg)(u̇g − u̇s) + (ξ g f + ξ f f )(u̇ f − u̇s) = ρs
0ü

s, (1)

∇
(
−σ f g∇ · ug − σ f f ∇ · u f − σ f ∇ · us

)
− ξ g f (u̇g − u̇s)

−ξ f f (u̇ f − u̇s) + (λν + μν)∇(∇ · u̇ f ) + μν∇ · ∇u̇ f = ρ
f
0 ü

f , (2)

∇
(
−σ gg∇ · ug − σ g f ∇ · u f − σ g∇ · us

)
− ξ gg(u̇g − u̇s)

−ξ g f (u̇ f − u̇s) = ρ
g
0 ü

g, (3)

where uk (k = s, f, g) is the displacement vector field; ρk
0 is the mass density of the k-phase

in the natural state; λ andμ are thewell-knownLamé parameters; σ a, σ ab, ξab (a, b = f, g)
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and λν, μν are the constitutive constants. Superposed dot denotes the partial derivative with
respect to time variable. We have used the superscripts s, f and g to denote, respectively, the
elastic solid phase, fluid phase and the gas phase. The symmetric relations and restrictions
on various constitutive constants have been given by Eringen (1994). These have also been
reviewed in Tomar and Goyal (2013).

As explored in Tomar and Goyal (2013), introducing potentials φk andψψψk and taking the
time harmonic form of the waves as

{φk,ψψψk}(x, y, z, t) = {φ̄k, ψ̄ψψ
k}(x, y, z) exp (−ιωt), (4)

where ω being the angular frequency, one obtains
(
A∇6 + ω2B∇4 + ω4C∇2 + ω6D

)
φ̄s = 0,

(
B̄∇4 + ω2C̄∇2 + ω4D

)
ψ̄ψψ

s = 0, (5)

where the expressions of various coefficients are given in “Appendix 1”.
The general solution of the above two equations can be written as

φ̄s = φ̄1 + φ̄2 + φ̄3, ψ̄ψψ
s = ψ̄ψψ1 + ψ̄ψψ2, (6)

where φ̄i (i = 1, 2, 3) and ψ̄ψψ j ( j = 1, 2) satisfy the following equations

(∇2 + k2αi
)
φ̄i = 0, kαi = ω

vαi
;

(
∇2 + k2β j

)
ψ̄ j = 0, kβ j = ω

vβ j
. (7)

The quantities k2αi and k
2
β j are, respectively, the roots of following equations

Ak6α − ω2Bk4α + ω4Ck2α − ω6D = 0, B̄k̄4β − ω2C̄ k̄2β + ω4D = 0. (8)

Thus, there exists five basic waves consisting of three dilatational waves, say Pi (i = 1, 2, 3)
and two shear waves, say S j ( j = 1, 2) propagating with velocities vαi and vβ j , respectively.

The coupling fi between (φ̄s, φ̄ f ), gi between (φ̄s, φ̄g), f̄ j between (ψ̄ψψ
s
, ψ̄ψψ

f
) and ḡ j

between (ψ̄ψψ
s
, ψ̄ψψ

g
) is given by

{ fi , gi } = {A1, A2}k4αi − ω2{B1, B2}k2αi + ω4{C1,C2}
A3k4αi − ω2B3k2αi + ω4C3

, f̄ j = ω2C1

ω2C3 − B̄3k2β j
,

ḡ j = ω2C2 − B̄2k2β j
ω2C3 − B̄3k2β j

.

The phase speeds (cαi , cβ j ) and corresponding attenuation (|Aαi |, |Aβ j |) of the respective
dilatational Pi−waves and shear S j−waves can be obtained from the general formulae (31)
and (32) given in Tomar and Goyal (2013).

3 Frequency Equation of Rayleigh-Type Wave

With reference to rectangular Cartesian coordinate system Oxyz, let us consider a swelling
porous half-space H occupying the region z ≥ 0 such that the free plane boundary sur-
face of H coincides with the horizontal plane z = 0. Let the surface wave be propagating
along the positive direction of x-axis, and all the particles on a line parallel to y-axis are
equally displaced so that all the field quantities are independent of y-coordinates. Thus, in
the two-dimensional (x − z) plane, we take uk = (ukx (x, z, t), 0, u

k
z (x, z, t)),

∂
∂y ≡ 0.

For the Helmholtz resolution, the general displacement components in k-phase along x- and
z-directions are given by
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ukx = ∂φk

∂x
− ∂ψk

∂z
, ukz = ∂φk

∂z
+ ∂ψk

∂x
, (9)

where the second component of vector ψψψk , i.e., ψk
y , has been denoted with ψk . Using the

solutions of Helmholtz equations in (7) into equations in (4), the appropriate solutions rep-
resenting the Rayleigh wave propagation are given by

{φi , ψ j } = {Eie
−bαi z, Fje

−bβ j z} exp{ι(kr x − ωt)}, (10)

where b2αi = k2r −k2αi , b
2
β j = k2r −k2β j and kr (= �(kr )+ ι�(kr )) is the complex wavenumber

corresponding to Rayleigh wave such that �(kr ) ≥ 0 to ensure the propagation of wave in
the positive x−direction. The quantities Ei and Fj represent the amplitude constants. Since
the quantities bαi and bβ j are complex valued, therefore, we can write the various potentials
as follows

φi = Ei exp[−Aαi · r] exp[ι(Pαi · r)] exp(−ιωt), (11)

ψ j = Fj exp[−Aβ j · r] exp[ι(Pβ j · r)] exp(−ιωt). (12)

where r = x x̂ + zẑ; x̂ and ẑ being the usual unit base vectors along x and z directions,
respectively. And

{Pαi ,Pβ j } = �(kr )x̂ − {�(bαi ),�(bβ j )}ẑ, {Aαi ,Aβ j } = �(kr )x̂ + {�(bαi ),�(bβ j )}ẑ.
P and A are known as propagation and attenuation vectors. Note that we shall take bαi =
p.v.

√
k2r − k2αi , bβ j = p.v.

√
k2r − k2β j . By considering the principal value (p.v.) of “√ ”

implies �(bαi ) ≥ 0 and �(bβ j ) ≥ 0, which will ensure a known direction of attenuation
with respect to z−direction. The above choice ensures that the direction of attenuation for the
chosen solutions is in the positive z−direction and hence, the choice of solution represents
a wave confined near the surface. It is also worth to note that waves will attenuate along the
positive x− direction depending upon the value of �(kr ). Therefore, in a swelling porous
medium consisting of solid, viscous liquid and gas, the Rayleigh surface waves cannot be
treated as true surface waves. Because for true surface waves, the attenuation should be
along the normal to propagation direction only. Further, from the expressions of propagation
and attenuation vectors; and the wave number (kr ) being complex, it is clear that the waves
are inhomogeneous as the surface of constant phase (P · r=constant) is not parallel to the
surface of constant amplitude (A · r=constant). Also, the solutions (11) and (12) for the
considered swelling porous elastic media differ from those chosen by Rayleigh for elastic
media, but the results for an elastic half-space can be obtained as a special case from the
above general solutions. As for elastic media, �(kr ) = �(bαi ) = �(bβ j ) = 0, hence the
propagation vectors in (11) and (12) become parallel to the surface, while the attenuation
vectors become perpendicular to the surface and the waves are treated as true surface waves.
Thus, for the considered swelling porous media, propagation of true surface waves may be in
very special case with many restrictions and such situation is rarely possible. This very fact is
also depicted by Sharma (2012b) in his work for his problem in non-swelling porous media.
Finally, the potentials corresponding to superposition of various dilatational and shear waves
in the half-space will be

{φs, φ f , φg} =
3∑

i=1

{Ei , fi Ei , gi Ei } exp(−bαi z) exp[ι(kr x − ωt)], (13)
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{ψ s, ψ f , ψg} =
2∑
j=1

{Fj , f̄ j Fj , ḡ j Fj } exp(−bβ j z) exp[ι(kr x − ωt)]. (14)

3.1 Boundary Conditions

In the present problem, the boundary surface of the porous elastic half-space is flat and
mechanically stress free. Motivated by the ideas of Deresiewicz and his co-workers (Dere-
siewicz 1960; Deresiewicz and Rice 1962; Deresiewicz and Skalak 1963), the appropriate
boundary conditions to be satisfied at z = 0 are given by

t szx + t fzx = 0, t szz + t fzz + t gzz = 0, usx − u f
x = 0, usz − u f

z = 0, usz − ugz = 0. (15)

Here, we have considered the the case of sealed surface pores as considered previously by
Gales (2004) separately for the cases of only fluid saturation and only gas saturation and
hence the displacement of fluids relative to the solid skeleton should vanish at the boundary.
With the aid of constitutive relations (4)–(7) in Tomar and Goyal (2013) and (9), one can
express these boundary conditions in potential forms and then inserting the relevant potentials
from (13)–(14) into those, we obtain a homogeneous set of five equations in the unknown
constants E1, E2, E3, F1 and F2 as

2ι
3∑

i=1

Λαi (ā11 + fi ā22)Ei +
2∑
j=1

(ā11 + f̄ j ā22)
(
1 + Λ2

β j

)
Fj = 0,

3∑
i=1

[
2(ā11 + fi ā22) − (Li + Mi + Ni )

(
1 − Λ2

αi

)]
Ei − 2ι

2∑
j=1

Λβ j (ā11 + f̄ j ā22)Fj = 0,

ι

3∑
i=1

(1 − fi )Ei +
2∑
j=1

Λβ j (1 − f̄ j )Fj = 0,

3∑
i=1

Λαi (1 − fi )Ei − ι

2∑
j=1

(1 − f̄ j )Fj = 0,

3∑
i=1

Λαi (1 − gi )Ei − ι

2∑
j=1

(1 − ḡ j )Fj = 0,

where Li = a11 + fi a12 + gia13, Mi = a12 + fi a22 + gia23, Ni = a13 + fi a23 + gia33,

Λ2
αi = 1 − k2αi

k2r
, Λ2

β j = 1 − k2β j
k2r

. The condition of non-trivial solution of above system of

equations is that the determinant of the coefficient matrix must vanish. This provides us the
secular equation of Rayleigh-type waves in question in the determinant form given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r11kr
√
k2r − k2α1 r12kr

√
k2r − k2α2 r13kr

√
k2r − k2α3 r14(2k2r − k2β1) r15(2k

2
r − k2β2)

r11k
2
r − r21k

2
α1 r12k

2
r − r22k

2
α2 r13k

2
r − r23k

2
α3 2r14kr

√
k2r − k2β1 2r15kr

√
k2r − k2β2

r31kr r32kr r33kr r34
√
k2r − k2β1 r35

√
k2r − k2β2

r31
√
k2r − k2α1 r32

√
k2r − k2α2 r33

√
k2r − k2α3 r34kr r35kr

r51

√
k2r − k2α1 r52

√
k2r − k2α2 r53

√
k2r − k2α3 r54kr r55kr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=0, (16)
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The above determinantal equation can be expressed as

a1bα1 + a2bα2 + a3bα3 + a4bα1bα2bβ1 + a5bα1bα3bβ1 + a6bα2bα3bβ1

+ a7bα1bα2bβ2 + a8bα1bα3bβ2 + a9bα2bα3bβ2 + a10bα1bα2bα3bβ1bβ2 = 0, (17)

which is an irrational equation due to the presence of radicals in it. This equation cannot be
solved through algebraic methods easily. After squaring four times and manipulating, this
irrational equation is then rationalized into a polynomial in kr , whose implicit form is given
by

d20 = d21b
2
β1b

2
β2. (18)

The expressions of various notations used in (16) to (18) are given in “Appendix 2”. This
equation will provide us the speeds of Rayleigh-type modes existing in question. The roots
given by (18), which also satisfy the original Eq. (17) will correspond to wavenumbers of
Rayleigh-type surface waves in the swelling porous half-space. Rest of the roots which do
not satisfy (17) will not be considered as they are extraneous roots. The phase speeds cr and
the magnitudes of corresponding attenuation vectors Ar of the Rayleigh-type surface waves
can be obtained using the following formulae

cr = ω

�(kr )
and |Ar | = −�(kr ) . (19)

3.2 Particle Motion

In this section, we shall discuss the particle motion characteristics for a Rayleigh-type surface
waves, that is, we will attempt to describe the curve traced by the oscillating particles of
dissipative porous solid during the propagation of Rayleigh-type waves. For the considered
two-dimensional problem in xz-plane, the total displacement components Ux and Uz of
porous aggregate (that is, of solid, fluid and gas phases) along x and z directions are given
by

Ux =
∑

k=s, f,g

ukx =
3∑

i=1

(1 + fi + gi )
∂φi

∂x
−

2∑
j=1

(1 + f̄i + ḡi )
∂ψ j

∂z
,

Uy = 0,

Uz =
∑

k=s, f,g

ukz =
3∑

i=1

(1 + fi + gi )
∂φi

∂z
+

2∑
j=1

(1 + f̄i + ḡi )
∂ψ j

∂x
.

On inserting the expressions of various potentials, we get

{Ux , Uy, Uz} = {ι|U0|eιΘ1 , 0, −|W0|eιΘ2} exp [−�(kr )x],
where

U0 = kr E1

⎡
⎣

3∑
i=1

(1 + fi + gi )
Ei

E1
exp(−bαi z) − ι

2∑
j=1

(1 + f̄i + ḡi )
Fj

E1

bβ j

kr
exp(−bβ j z)

⎤
⎦ ,

W0 = kr E1

⎡
⎣

3∑
i=1

(1 + fi + gi )
Ei

E1

bαi

kr
exp(−bαi z) − ι

2∑
j=1

(1 + f̄i + ḡi )
Fj

E1
exp(−bβ j z)

⎤
⎦ ,

Θ1 = argU0 + θ, Θ2 = argW0 + θ, θ = �(kr )x − ωt.
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But for the particlemotion, the components of physical displacementfield for theRayleigh-
Type surface wave are written as

{�(Ux ), �(Uy), �(Uz)} = −{|U0| sinΘ1, 0, |W0| cosΘ2} exp [−�(kr )x]. (20)

The above expression is the parametric equation representing the curve traced by the particles
in space with respect to the chosen coordinate system in the considered medium during the
passage of Rayleigh-type surface wave. From Eq. (20), we get

A0[�(Ux )]2 − B0�(Ux )�(Uz) + C0[�(Uz)]2 = 1. (21)

where

A0 = 1

|U0|2D2
0

, B0 = 2 sin ζ

|U0||W0|D2
0

, C0 = 1

|W0|2D2
0

and D0 = (cos ζ ) exp [−�(kr )x], ζ = argU0 − argW0.

For a specific given particle, the coefficients A0, B0 and C0 are constants with respect to
time and further for ζ �= π/2, the discriminant of Eq. (21) is negative i.e., B2

0 − 4A0C0 < 0,
indicating that it describes an ellipse. Thus the parametric Eq. (20) represent the equation of
an ellipse as a function of time.

4 Special Cases

Gales (2004) derived the frequency equation of Rayleigh-type wave propagation within
the context of isothermal linear theory of swelling porous elastic soils. In Gale’s formu-
lation, the porous medium with fluid saturation and porous medium with gas saturation
have been considered separately. While in the present formulation, we have considered the
porous medium saturated with fluid and gas together. Therefore, the frequency equation of
Rayleigh-type wave propagation obtained in this paper is a generalization of the frequency
equations obtained by Gales (2004). In this section, we shall recover the frequency equations
of Rayleigh-type waves derived by him. The reduction of frequency equations in case of
fluid or gas saturation alone directly from the frequency equation of the general case given in
the present form (i.e., the determinental equation form) is not possible because of two main
reasons: (i) In case of either fluid saturation or gas saturation, the order of determinant occur-
ring in the frequency equation will be less than the order of those occurring in the general
case. This is quite obvious as one has to employ less number of boundary conditions in each
case of Gales (2004) than those in the general case considered here; and (ii) the expressions
of coupling coefficients may acquire an indeterminate form and the characteristic equations
will have no meaning. Hence, to deduce the frequency equations in the cases of either fluid
saturation alone or in case of gas saturation alone or even in case of classical solid, we need
to reduce the equations step by step. The various reductions have been explained as follows

4.1 The Case of Fluid Saturation

Here, we shall neglect the presence of gas constituent from the porous medium. In this case,
the coefficients arising due to the presence of gas constituent will vanish, i.e., σ g = σ f g =
σ gg = ξ f g = ξ gg = ρ

g
o = 0 and χ f g = χgg = χg = Ωg = 0. With these considerations,

the characteristic equations for this case reduce to
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Âk̂4 − ω2 B̂k̂2 + ω4Ĉ = 0, (22)

ˆ̄A ˆ̄k4 − ω2 ˆ̄B ˆ̄k2 + ω4Ĉ = 0, (23)

where Â = a11a22−a212, B̂ = a11Ω f +a22ρs
0+(a22+2a12)χ f f , Ĉ = ρs

0ρ
f
0 +χ f f (ρ

s
0+ρ

f
0 ),

ˆ̄A = ā11ā22 and
ˆ̄B = ā11Ω f + ā22(ρs

0+χ f f ). Equations (22) and (23) explains the existence
of two dilatational and two shear waves in case of fluid saturation having wave numbers k̂α j

and k̂β j , respectively. Moreover, the coupling coefficients between φs , φ f and between ψ s ,
ψ f reduce to

f̂ j = −a12k̂2α j + ω2χ f f

a22k̂2α j − ω2Ω f
, ˆ̄f j = − ω2χ f f

ā22k̂2β j − ω2Ω f
, ( j = 1, 2) (24)

where k̂2α j and k̂
2
β j are the roots of Eqs. (22) and (23), respectively. One can easily verify the

above expressions of coupling coefficients and characteristic equations are exactly the same
as given by Gales (2004) under Eqs. (5.12), (4.4), (5.10).

The appropriate expressions of the potentials in the present case will reduce to

{φs, φ f } =
2∑
j=1

{Ê j , f̂ j Ê j } exp(−b̂α j z) exp[ι(k̂r x − ωt)], (25)

{ψ s, ψ f } =
2∑
j=1

{F̂j ,
ˆ̄f j F̂ j } exp(−b̂β j z) exp[ι(k̂r x − ωt)], (26)

where b̂α j = p.v.
√
k̂2r − k̂2α j , b̂β j = p.v.

√
k̂2r − k̂2β j have been set and k̂r (= �(k̂r )+ ι�(k̂r ))

are the complex wavenumbers corresponding to Rayleigh-type surface wave in the present
case such that �(k̂r ) ≥ 0 to ensure the propagation of wave in the positive x−direction.

Further, in the absence of gas phase, the last boundary condition in (15), namely usz−ugz =
0, is meaningless. So by redesignating the coefficients as E1 = Ê1, E2 = Ê2, F1 = F̂1 and
F2 = F̂2, the remaining four boundary conditions will reduce to Equations in (5.16) of Gales
(2004) for the relevant problem.

4.2 The Case of Gas Saturation

In this case, we shall assume that the liquid component is absent; therefore, the quantities
σ f = σ f g = σ f f = ξ f g = ξ f f = ρ

f
o = λν = μν = 0 and χ f g = χ f f = χ f = Ω f = 0,

and following the same procedure as in case of fluid saturation given above, one obtains the
same equations as given in equation (5.25) of Gales (2004) for the relevant problem.

4.3 The Case of Classical Solid

Here, we shall assume that both liquid and gas components are absent. Taking only a11 �= 0,
ā11 �= 0 and Ωs = ρs

0, we obtain
(
a11∇2 + ω2ρs

0

)
φ̄s = 0,

(
ā11∇2 + ω2ρs

0

)
ψ̄ψψ

s = 0, (27)

which are the well-known equations of dilatational and shear waves of classical elasticity.
The expressions of potentials φs and ψ s will reduce to the following by taking E1 = Ec and
F1 = Fc as
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{φs, ψ s} = {Ece
−bα z, Fce

−bβ z} exp[ι(kcx − ωt)], (28)

where b2α = k2c − k2α = k2c (1 − c2c
c2α

), b2β = k2c − k2β = k2c (1 − c2c
c2β

); c2α = ω2

k2α
= a11

ρs
0
and

c2β = ω2

k2β
= ā11

ρs
0
, are the propagation velocities of the two body waves (P-wave and S-wave);

kc and cc being the wavenumber and phase speed corresponding to classical Rayleigh wave
with the conditions cα > cc and cβ > cc.

In the absence of liquid and gas phases, the boundary conditions usx − u f
x , usz − u f

z and
usz − ugz will have no physical meaning. The remaining boundary conditions in this case
provide us the following well-known frequency equation of classical Rayleigh wave

4

√
1 − k2α

k2c

√
1 − k2β

k2c
=

(
2 − k2β

k2c

)2

. (29)

5 Numerical Results and Discussion

For the purpose of numerical computations, we consider a specific model consisting of
sandstone, water/oil and carbon dioxide as general swelling porous solid. This model is
taken in the spirit of mixtures found in water/oil exploration industry, where liquid is viscous
and accompanied by gas in underground porous rocks. The numerical values of the common
constitutive constants involved in the present model are computed from the data of the model
considered earlier byGarg andNayfeh (1986). The relations given in Tuncay andCorapcioglu
(1997) were quite helpful to calculate the values of the various constitutive constants involved
in our work for all the three phases of the porous medium of dry porous rock with volume
fraction of gas–fluid equals to 0.2. While the values of coefficients λν, μν and ξ f g are
considered hypothetically within physically suitable limit, the values of all relevant elastic
parameters involved in the present model are given in Table 1.

Using the above numerical values, the wavenumbers and phase speeds of all the propa-
gating dilatational and shear waves in the considered swelling porous media are computed
from (7)–(8). The three dilatational waves and the two shear waves in the porous medium are
designated as Pi and S j waves with propagation velocities vαi and vβ j , respectively, on the
basis of same criterion as was followed in Tomar and Goyal (2013). Thus, the dilatational
wave P1 and shear wave S1 are regarded as the fast propagating dilatational and shear waves,
respectively, among others. To find the speed of Rayleigh-type wave in swelling porous
medium, the frequency Eq. (18) is solved numerically. The roots, which do not satisfy orig-
inal complex irrational dispersion Eq. (17), are discarded. Moreover, only those roots are
identified as the wavenumbers of the Rayleigh-type surface waves, which qualify to repre-
sent their propagation, that is, the roots for which the restrictions�(kr ),�(bαi ),�(bβ j ) ≥ 0,
are being satisfied simultaneously. The phase speeds and magnitude of attenuations of the
existing Rayleigh-type surface waves are then computed by using formulae (19).

It is interesting to note that each time for a given frequency, two roots are found to
qualify the conditions of Rayleigh-type surface waves showing the existence of twomodes of
Rayleigh-type surface wave. The existence of more than one modes of Rayleigh-type surface
wave in a dissipative medium has also been mentioned by Currie et al. (1977). Recently,
Sharma (2012c, 2014) has also verified this very fact, that is, the existence of secondmode of
Rayleigh-type surface waves in the porous medium. Sharma (2012c) attributed the existence
of newmode of Rayleigh-typewave to dissipation due to anelastic (viscoelastic) frame and/or
the presence of viscous porefluid in hiswork. In the presentwork, the two admissiblemodes of
Rayleigh-type waves can be classified as an elastic Rayleigh-type R1−wave (always present)
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Table 1 Values of different constitutive constants

Input parameter
(symbol)

Value Unit Input parameter
(symbol)

Value Unit

Lamé parameter
(λ)

6.0 × 109 N/m2 Lamé parameter (μ) 9.0 × 109 N/m2

Dissipation
coefficient (σ f)

−1.3 × 106 N/m2 Dissipation coefficient
(σ g)

−1.2 × 104 N/m2

Dissipation
coefficient (σ ff)

−3.7 × 105 N/m2 Dissipation coefficient
(σ f g)

−2.45 × 105 N/m2

Dissipation
coefficient (σ gg)

−1.7 × 105 N/m2 Viscosity coefficient
(λν )

1.002 × 10−3 N s/m2

Viscosity
coefficient (μν)

8.88 × 10−4 N s/m2 Mass density of solid
phase (ρs0)

2.65 × 103 Kg/m3

Mass density of

fluid phase (ρ f
0 )

9.90 × 102 Kg/m3 Mass density of gas
(ρg

0 )
1.03 × 102 Kg/m3

Coupling
coefficient (ξ ff)

4.0 × 106 N s/m4 Cross-coupling
coefficient (ξ f g)

0.5 × 101 N s/m4

Coupling
coefficient (ξgg)

3.3 × 104 N s/m4

After Garg and Nayfeh (1986)

and an additional (second) Rayleigh-type R2−wave (present for all cases except for classical
case). The first Rayleigh mode R1− is analogous to classical Rayleigh-type surface wave
whose phase speed is less than each one of the twomain bodywaves (P1 and S1 waves), while
the second Rayleigh-type R2− wave is new and arises due to the presence of liquid and/or
gas phases in the porous medium. It is found that both modes are dispersive and attenuated
for given frequency range. To avoid ambiguity in the discussion of numerical results, the
abbreviation SLG, SL, SG and S is used to refer porous medium saturated with fluid and
gas, fluid saturation alone, gas saturation alone and the case of elastic solid. The nature of
dependence of phase speed and attenuation of the two Rayleigh-type surface waves in the
selected media (SLG, SL, SG, S) on the frequency parameter and their comparison has been
shown graphically through Figs. 1, 2, 3, 4, 5 and 6.

In Fig. 1a, c, phase speeds of the two existing Rayleigh-type surface wave (say cr1,
cr2) in SLG case are plotted as function of frequency, while the corresponding maximum
attenuations (say |Ar1|, |Ar2|) in the same case have been depicted in Fig. 1b, d. We clearly
see that phase speed (attenuation) of the second mode of Rayleigh-type surface wave (R2−
wave) is much higher (much lower) than that of first Rayleigh-type surface wave (R1−wave).
We also notice that both the phase speeds corresponding to the two Rayleigh-type surface
waves increase graduallywith increase in frequency startingwith a value cr1 	 1412.8ms−1,
cr2 	 3283.7ms−1 at ω = 1 rad/s and finally become almost constant with values cr1 	
1676.4ms−1, cr2 	 3901.9ms−1, respectively, in higher frequency range (i.e., ω > 40 ×
104 rad/s). And from Fig. 1b, d, we see that the the curves corresponding to maximum
attenuations follow almost similar trend, and these also increase slowly with increase in
frequency starting with values of |Ar1| 	 9.8 × 10−9 m−1, |Ar2| 	 1.2 × 10−9 m−1, at
ω = 1 rad/s and finally become almost constant with values |Ar1| 	 0.42m−1, |Ar2| 	
0.19m−1, in higher range of frequency.
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Fig. 1 SLG: Phase speeds and attenuations of two modes of Rayleigh-type surface waves with frequency
parameter; a–b first Rayleigh-type wave; and c–d second Rayleigh-type wave
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Fig. 2 SL: Phase speeds and attenuations of two modes of Rayleigh-type surface waves with frequency
parameter; a–b first Rayleigh-type wave; and c–d second Rayleigh-type wave

For the cases of SL and SG, the variation of phase speeds of both the first Rayleigh-type
R1−wave and the second Rayleigh-type R2−wave have been depicted through Figs. 2a, c
and 3a, c, respectively, while their corresponding attenuations have been depicted through
Figs. 2b, d and 3b, d, respectively. FromFig. 2, in the case SL,we see that the phase speeds and
attenuations of both first R1 and second R2 Rayleigh- type surface waves increase gradually
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Fig. 3 SG: Phase speeds and attenuations of two modes of Rayleigh-type surface waves with frequency
parameter; a–b first Rayleigh-type wave; and c–d second Rayleigh-type wave
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Fig. 4 Phase speeds of the existing two modes of Rayleigh-type surface waves with frequency parameter in
all the considered media; a first Rayleigh wave and b second Rayleigh wave

with frequency, and thereafter these become constant in higher frequency range. Similarly,
from Fig. 2b, d, we see that maximum attenuation corresponding to both the waves increases
initially and then become constant in higher frequency range. A similar trend of dependence
of phase speeds and attenuations of both the existing R1− and R2− waves on frequency
parameter is being observed for the case of SG and has been depicted through Fig. 3 with
one exception that the maximum attenuation corresponding to the primary R1− wave first
increases with frequency attains its maximum and then starts decreasing very slightly before
becoming constant in higher frequency range. It is also interesting to mention in this case of
gas saturation alone (SG case) that the magnitudes of maximum attenuations are very very
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Fig. 5 Phase speeds: comparison between the existing two modes of Rayleigh-type surface waves and the
main body waves in all the considered media; a SLG, b SL, c SG, and d S
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Fig. 6 Phase speeds and attenuations—Effect of pore fluid viscosity: comparison between water and oil for
the existing two modes of Rayleigh-type surface waves with frequency parameter in SLG; a–b first Rayleigh
wave and c–d second Rayleigh wave

small in comparison with the cases of SLG and SL. This may be attributed to the presence
of viscous liquid in both the cases of SLG and SL, which makes the porous medium more
dissipative and results in higher attenuations of the propagating Rayleigh-type surface waves.

Figure 4 depicts the comparison of phase speeds of both modes of Rayleigh-type waves in
SLG, SL, SG and S cases. It can be observed that the presence of second mode of Rayleigh
wave R2 is due to the presence of fluid constituents in the porous medium. The respective
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behavior of R1 and R2 with frequency is almost same for SLG and SL cases, except in very
low frequency range where the corresponding modes are distinct. The phase speed of R1

mode in SLG and SL cases is found to be significantly lower than the speed of classical
Rayleigh mode. However, in the case of SG, the phase speed of R1 mode almost matches
with that of classical Rayleigh mode except in very small range of low frequency. The phase
of R2 mode in SLG and SL cases is found to be less than that of in SG case throughout
the frequency range considered. This shows that both the modes of Rayleigh-type waves are
highly influenced by the presence of liquid phase in the porous medium.

Figure 5 depicts the comparison of speeds of both the modes of Rayleigh-type wave with
that of the fast dilatational and shear waves in all the considered cases. It can be observed
that the speed of R1 mode is always less than that of the P1 and S1 waves, while the speed
of R2 mode is always higher than the speed of P1 and S1 waves.

We have also checked the influence of viscosity of the fluid present in the pores of the
considered swelling porous media on the phase speeds and attenuations of both the existing
Rayleigh-type surface waves. For this purpose, we have considered two different fluids with
different values of viscosity coefficients. This effect of viscosity is depicted through Fig. 6.
The solid line represents the case of water (W) as fluid with low viscosity coefficient μν =
8.88× 10−4 Ns/m2, while the dotted line represents the same for natural crude oil (O) with
high viscosity coefficient μν = 1000 × 10−3 Ns/m2.

We see that there is hardly any effect of viscosity on the phase speeds and attenuations of
the propagating modes of Rayleigh-type surface waves in the considered SLG media. This
very negligible effect of the viscosity of pore fluids on the propagation characteristics of the
two Rayleigh modes may be attributed to the fact that the presence of viscosity affects only
the propagation of second extra shear wave (see Tomar and Goyal 2013; Goyal and Tomar
2015a, b) existing in the swelling porous media, which is highly attenuating. Since Rayleigh
modes are the combination of dilatational and shear waves propagating in that medium and
the second shear wave are so small in magnitude (even in the case of highly viscous fluid) that
its contribution to Rayleigh modes may not be appreciable. Therefore, the effect of viscosity
on the propagation of Rayleigh modes is almost negligible. A similar kind of observation is
also noticed in the case of fluid saturation (SL) too, where again the effect of viscosity is
negligible.

6 Conclusions

Using Eringen’s theory of swelling porous soils containing elastic solidmatrix, viscous liquid
and inviscid gas, we have derived the frequency equation for the propagation of Rayleigh-
type surface waves. The frequency equation is then solved numerically for specific porous
soils. Two modes of Rayleigh waves have been obtained in the porous half-space. The phase
speeds and the corresponding attenuation coefficients are computed for a particular model.
The phase speed of second Rayleigh mode is much greater than the phase speed of primary
Rayleigh mode. The main observations are as follows:

1. Rayleigh-type waves found in the considered swelling porous media cannot be treated
as true Rayleigh waves as they behave differently than that of in the classical case. These
waves attenuate not only along the normal to the surface but also attenuate along the
direction of propagation depending upon the value of the imaginary part of its wavenum-
ber �(kr ). Moreover, the phase planes and amplitude planes are found to be not parallel
to each other; hence, the existing Rayleigh waves are inhomogeneous in nature.
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2. Two different modes of Rayleigh-type waves have been observed in the considered
swelling porous medium and in all its special cases, except for the reduced classical
solid case. The existence of additional Rayleigh-type surface wave in the considered
media is due to the dissipative nature of the media.

3. The phase speed of first Rayleigh-type mode is always found to be less than the phase
speeds of both main body waves (P1 and S1 waves) in the considered model and in all
the considered special cases, while that of second Rayleigh-type mode is always higher
than the phase speeds of both main body waves. These observations are in concurrence
with those suggested earlier in Currie et al. (1977).

4. The phase speeds and corresponding maximum attenuations of each of the the existed
Rayleigh-type modes in all the considered cases of dissipative media largely depend on
frequency. That is, the waves are clearly dispersive for all the cases of porous half-space.

5. The effect of fluid viscosity present in the pores is negligible on the phase speeds of
existing Rayleigh-type modes.

The associated aspects of the present work may be important in the fields of seismology
to better understand the wave propagation during disasters like earthquake and in reducing
the potentials caused during these disasters. The consideration of swelling porous solid with
viscous liquid and gas offers a bit more realistic approach. The properties of existing second
mode of Rayleigh-type surface waves in the swelling porous media may be an important
topic for further studies.
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Appendix 1

The explicit expressions of the various coefficients are as:

A=a12A1 + a13A2 + a11A3, B = −χ f A1 − χg A2 + Ωs A3 + a12B1 + a13B2 + a11B3,

C=−χ f B1 − χg B2+Ωs B3 + a12C1 + a13C2 + a11C3, D = −χ f C1 − χgC2 + ΩsC3,

B̄ = ā11 B̄3, C̄ = −χg B̄2 + Ωs B̄3 + ā11C3,

A1 = a13a23 − a12a33, B1 = (a13χ f g + a33χ f ) − (a23χg + a12Ωg),

C1 = Ωgχ f − χgχ f g,

A2 = a12a23 − a13a22, B2 = (a12χ f g + a22χg) − (a23χ f + a13Ω f ),

C2 = Ω f χg − χ f χ f g,

A3 = a22a33 − a223, B3 = a33Ω f + a22Ωg − 2a23χ f g, C3 = Ω f Ωg − χ2
f g,

B̄2 = ā22χg, B̄3 = ā22Ωg,

a11 = λ + 2μ, a12 = −σ f , a13 = −σ g, a22 = −[σ f f + ιω(λν + 2μν)],
a23 = −σ f g,

a33 = −σ gg, ā11 = μ, ā22 = −ιωμν, χ f = χ f f + χ f g, χg = χgg + χ f g,

χ f f = ι

ω
ξ f f ,

χgg = ι

ω
ξ gg, χ f g = ι

ω
ξ f g, Ωs = ρs

0 + χ f + χg, Ω f = ρ
f
0 + χ f f , Ωg = ρ

g
0 + χgg.
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Appendix 2

The explicit expressions of the various coefficients used in the determinantal equation of the
Rayleigh wave are as:

r1i = 2(ā11 + fi ā22), r1J = ā11 + f̄ j ā22 , r2i = Li + Mi + Ni , r3i = 1 − fi ,

r3J = 1 − f̄ j , r5i = 1 − gi , r5J = 1 − ḡ j , where i = 1, 2, 3; j = 1, 2; J = j + 3.

The explicit expressions of the various coefficients used in the secular equation of theRayleigh
wave are as:

d0 = c20 − c21b
2
α3b

2
β1 − c22b

2
α3b

2
β2 + c23b

2
β1b

2
β2 , d1 = 2c0c3 − 2c1c2b

2
α3

c0 = b20 − b21b
2
α2b

2
α3 − b22b

2
α2b

2
β1 + b23b

2
α3b

2
β1 − b24b

2
α2b

2
β2 + b25b

2
α3b

2
β2

+ b26b
2
β1b

2
β2 − b27b

2
α2b

2
α3b

2
β1b

2
β2 ,

c1 = 2
(
b0b3 − b1b2b

2
α2 + b5b6b

2
β2 − b4b7b

2
α2b

2
β2

)
,

c2 = 2
(
b0b5 − b1b4b

2
α2 + b3b6b

2
β1 − b2b7b

2
α2b

2
β1

)
,

c3 = 2
(
b0b6 − b2b4b

2
α2 + b3b5b

2
α3 − b1b7b

2
α2b

2
α3

)
,

b0 = −a21b
2
α1 + a22b

2
α2 + a23b

2
α3 − a24b

2
α1b

2
α2b

2
β1 − a25b

2
α1b

2
α3b

2
β1 + a26b

2
α2b

2
α3b

2
β1

−a27b
2
α1b

2
α2b

2
β2 − a28b

2
α1b

2
α3b

2
β2 + a29b

2
α2b

2
α3b

2
β2 − a210b

2
α1b

2
α2b

2
α3b

2
β1b

2
β2 ,

b1 = 2
(
a2a3 − a4a5b

2
α1b

2
β1 − a7a8b

2
α1b

2
β2

)
,

b2 = −2
(
a1a4b

2
α1 − a3a6b

2
α3 + a10a8b

2
α1b

2
α3b

2
β2

)
,

b3 = −2
(
a1a5b

2
α1 − a2a6b

2
α2 + a10a7b

2
α1b

2
α2b

2
β2

)
,

b4 = −2
(
a1a7b

2
α1 − a3a9b

2
α3 + a10a5b

2
α1b

2
α3b

2
β1

)
,

b5 = −2
(
a1a8b

2
α1 − a2a9b

2
α2 + a10a4b

2
α1b

2
α2b

2
β1

)
,

b6 = −2
(
a4a7b

2
α1b

2
α2 + a5a8b

2
α1b

2
α3 − a6a9b

2
α2b

2
α3

)
,

b7 = −2(a1a10 + a5a7 + a4a8)b
2
α1 ,

a1 = ( f23 f32 − f22 f33)
(
f15 f44 f51 + f 211 f54 − f15 f41 f54 + f14 f41 f55

− f11( f14 f51 + f44 f55)) ,

a2 = ( f23 f31 − f21 f33) (− f15 f44 + f15 f42 f54 + f11( f14 − f12 f54)

− f14 f42 f55 + f12 f44 f55) ,

a3 = ( f22 f31 − f21 f32) (− f11 f14 + f15 f44 + f11 f13 f54 − f15 f43 f54
+ f14 f43 f55 − f13 f44 f55) ,

a4 = ( f24 f33 − f23 f34)
(
f 211 − f15 f41 + f15 f42 f51 + f12 f41 f55

− f11( f12 f51 + f42 f55)) ,

a5 = −( f24 f32 − f22 f34)
(
f 211 − f15 f41 + f15 f43 f51 + f13 f41 f55

− f11( f13 f51 + f43 f55)) ,

a6 = ( f24 f31 − f21 f34) ( f11( f12 − f13) − f15 f42 + f15 f43 + f13 f42 f55 − f12 f43 f55) ,

a7 = ( f23 − f25 f33) (− f14 f41 + f11 f44 + f14 f42 f51 − f12 f44 f51
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+ f12 f41 f54 − f11 f42 f54) ,

a8 = ( f22− f25 f32) (− f11 f44+ f13 f44 f51+ f14( f41 − f43 f51) − f13 f41 f54+ f11 f43 f54) ,

a9 = −( f21 − f25 f31) ( f14( f42 − f43) − f12 f44 + f13 f44 − f13 f42 f54 + f12 f43 f54) ,

a10 = ( f24 − f25 f34) (− f12 f41 + f13 f41 + f11 f42 − f11 f43 − f13 f42 f51 + f12 f43 f51) ,

where

f11 = kr , f12 = r12
r11r52

kr , f13 = r13
r11r53

kr , f14 = r14
r11

(
2k2r − k2β1

)
,

f15 = r15
r11r35

(
2k2r − k2β2

)
,

f21 = k2r − r21
r11

k2α1, f22 = 1

r11r52

(
r12k

2
r − r22k

2
α2

)
, f23 = 1

r11r53

(
r13k

2
r − r23k

2
α3

)
,

f24 = 2r14
r11

kr ,

f25 = 2r15
r11r35

kr , f31 = r31kr , f32 = r32
r52

kr , f33 = r33
r53

kr , f34 = r34, f41 = r31,

f42 = r32
r52

, f43 = r33
r53

, f44 = r34kr , f51 = r51, f54 = r54kr , f55 = r55
r35

kr .
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