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Abstract Electroosmotic flow and dispersion in open and closed packed beds were inves-
tigated using Nuclear Magnetic Resonance (NMR) spectroscopy and pore-scale simulation.
A series of NMR spectroscopy experiments were conducted to measure the effect of elec-
troosmotic pressure on dispersion in packed spheres as a function of diameter and electric
field strength. The experiments confirm earlier observations by others of superdiffusive trans-
port in closed media. However, superdiffusive behavior is observed even at small pore sizes,
contrary to earlier results and simulations in fixed sphere packs, and is conjectured to result
from pressure-induced rearrangement of the particles. Simulations also support the existence
of pore size-independent velocity distributions in closed media. The distribution of reverse
velocities is also similar, apart from a difference in sign, to pressure-driven flow in open
porous media.
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L Length of the domain (m)
d Particle diameter (m)
ε Porosity (dimensionless)
σeff Effective conductivity (S/m)
E Electric field (V/m), applied or local
A Cross-sectional area of the porous medium (m2)

σ f Fluid conductivity (S/m)
μ0 Electrophoretic mobility (Pa s)
ε0 Absolute permittivity (F/m)
εr Relative permittivity (dimensionless)
Q Volumetric flow rate (m3/s)
Ke Electroosmotic permeability (m2/(V s))
Kh Hydraulic permeability (m2)

∇ p Pressure gradient (Pa/m)
g NMR gradient pulse amplitude (T/m)
δ Duration of the gradient pulse (ms)
� Separation time between applied gradient pulses (ms)
φ Electrical potential (V)
∇φ Potential gradient (V/m)
F Body force (kgm/s2)
V f Total electrical flux (Vm)

μ Dynamic viscosity (Pa s)
p Pressure (Pa)
�x Numerical grid resolution or lattice cell size (m)
Pe Peclet number (dimensionless), Pe ≡ v̄d/Dm

f (v) Probability density function for velocity (dimensionless)

1 Introduction

Electroosmotic flow (EOF) in porous media has a variety of applications, including soil
consolidation (Adamson 1966; Casagrande 1952), dewatering (Mahmoud et al. 2010), elec-
tromigration of solutes (Acar et al. 1993; Ottosen et al. 2008), particulates (Cardenas and
Struble 2006; Lagerblad and Vogt 2004), and separations (Ghosal 2006). The latter applica-
tions emphasize the transport properties of EOF and depend on controlling dispersion within
restricted pore spaces. EOF transport properties in porous media are also of interest in certain
microfluidic applications (Ghosal 2006; Xuan et al. 2004).

An important property is that solute dispersion tends to be lower in EOF than in a pressure-
driven flow (PDF) (Tallarek et al. 2000). The electroosmotic driving force occurs at the pore
walls. In an open channel, the apparent slip velocity, vs , propagates outward by viscous
shear yielding a uniform(plug) flow profile, in contrast to the parabolic PDF profile. The
variance of a uniform velocity distribution is minimal and because dispersion, D (t), is
proportional to the velocity variance (Bear 2013), dispersion tends to be lower under EOF.
This behavior is exploited in electrochromatography to obtain higher separation efficiency
(Ghosal 2006; Tallarek et al. 2000). Dispersion behavior is perhaps less well understood in
other applications, such as electromigration, in part becausemedia such as soils and concretes
are not as well characterized as manufactured separations media. The dispersion behavior
is less clear, for example, in a porous media with restrictions on flow, such as a significant
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number of blocked pores. The flow behavior is well understood in a simple closed geometry.
It is well known that electroosmotic flow in a closed tube induces a reverse PDF (Marcos
et al. 2005; Rice andWhitehead 1965), indicating that induced pressure gradients and reverse
flows are characteristic of natural or manufactured porous media with restricted or blocked
pores. There are fewer results on flow and dispersion for closed porous media. Locke et
al. (2001) used Nuclear Magnetic Resonance (NMR) spectroscopy to recover the velocity
distributions in open and closed cylinders packed with glass spheres. They observed the
velocity variance increased with applied voltage (Locke et al. 2001). Buhai et al. (2008)
studied EOF dispersion behavior in model porous media (VitraPor glass) closed to external
flowand observed hydrodynamic backflowand the breaking of similitude between the electric
and fluid fields. They also observed a transition from subdiffusive to superdiffusive dispersion
as the electric field strength or pore size was increased.

In a porous medium completely closed to external flow, the electroosmotic and induced
pressure-driven flows combine to yield zero net flow and maximum electroosmotic pressure.
Electroosmotic permeability, or the resistance to electroosmotic flow, is independent of the
pore size. An applied electric field generates the same electroosmotic slip velocity in capillar-
ies of different diameter (O’Brien 1986). However, the resistance to pressure-induced reverse
flow, hydraulic permeability, depends on the pore surface-to-volume ratio and decreases with
the square of the pore size. This is balanced by the electroosmotic pressure, which scales
inversely with the pore size squared and hence inversely with the hydraulic permeability
(Adamson and Gast 1997; Bear 2013).

In the case of an unconsolidated porous medium, electroosmotic pressure can be suffi-
cient to induce fluidization or consolidation. For particle classes subject to fluidization, the
theoretical minimum fluidization velocity umf is proportional to the square of the particle
diameter (Richardson and Harker 2002). As pressure is increased, rearrangement of the solid
matrix typically occurs before actual fluidization. With the onset of fluidization, dispersion
scales strongly with fluid velocity (Chung and Wen 1968).

Highly cohesive particles may resist fluidization, but strong interparticle attraction is
associated with channel and cavity formation during packing and such defects are associated
with greater dispersion (Schure and Maier 2006). Massimilla and Donsi (1976) compared
the magnitude of van der Waals and gravitational forces acting on particles and found a
crossover near 100µm (Massimilla and Donsi 1976). Their results are consistent with other
experimental work indicating difficulty in fluidizing beds below about 40µm. As the particle
size is decreased, channels become more stable and the bed more difficult to fluidize (Baerns
1966). Electroosmotic pressure induces shear flow in channels and cavities, which enhances
dispersion and may induce compaction or consolidation depending on the compressibility
of the matrix. Simulations indicate that hydrodynamic shear flows introduce irreversible
compaction in colloidal suspensions (Seto et al. 2012).

The present experiments and simulations involve electroosmotic flows with Helmholtz–
Smoluchowski slip velocities vs (1) on the same order as

√
6Dmt/t , i.e., the diffusion distance

over the experimental time, and the average pore velocity v̄ < vs in general. The sphere diam-
eters and average pore velocities in the experiments correspond to the Peclet number range,
0 ≤ Pe ≡ v̄d/Dm ≤ 25, which spans from diffusion-dominated transport to mechanical
dispersion. In the diffusion-dominated regime, Pe < 1, one expects restricted diffusion,
where asymptotic D ≈ Dm/τ , with τ the tortuosity, implying that D (t) is a decreasing
function of time because τ > 1 (τ = L2

e/L
2, where L is the length of the domain and Le

the average length of current flow (Bear 2013). In the mechanical regime, roughly Pe > 10,
dispersion is well predicted by a power–law relationship of the form DL/Dm = αPeβ ,
where β > 1, implying DL (t) is an increasing function of time. The present experiments
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and simulations investigate D (t) in the pre-asymptotic regime. Where D (t) < Dm , the pre-
asymptotic behavior is subdiffusive, while in cases where D (t) > Dm , the pre-asymptotic
behavior is superdiffusive. The timescale for asymptotic dispersion depends on the trans-
port mechanism. Under PDF, diffusion is the mechanism for exchange in dead-end pores
and the no-slip boundary layer. Where the characteristic length scales can be expressed
as an equivalent particle diameter, the dependence is often assumed to be t ∝ d2/Dm .
Under EOF, the exchange mechanism includes convection due to the slip velocity (bal-
anced by backflow in dead-end pores) in addition to diffusion. D (t) is a time-dependent
tensor (Bear 2013), and where isotropy is not assumed, longitudinal or axial dispersion is
denoted as DL and refers to the Dzz component of D. Transverse dispersion is denoted by
DT and refers to Dxx and Dyy , under the assumption of transverse isotropy. In the case of
no flow, the dispersion coefficient differs from the effective diffusivity in porous media as,
Deff = εD (t) = εθDm/τ , where ε is the porosity and the constrictivity, θ , is assumed
equal to one in the present work. The symbol D0 ≡ Dm is used in the figures for clar-
ity.

The constitutive equation describing current flow in porous media is J = σeffE ,
where J is the current density with unit A/m2, σeff is the effective conductivity with
unit S/m, and E is the macroscopic or applied electric field with unit V/m. The cur-
rent density is approximated as J = I/A, where A is the cross-sectional area of the
porous medium perpendicular to the orientation of the applied field, and the current
I = σ f V f from Ohm’s Law, with σ f the fluid conductivity and V f the flux with unit
Vm.

TheHelmholtz–Smoluchowski relation describes EOF at amesoscopic length scale where
the electric double layer (EDL) thickness is much smaller than the pore size. It predicts the
apparent slip velocity along a pore surface,

vs = μ0E = ε0εrζ

μ
E (1)

where μ0 is the electrophoretic mobility, ε0 and εr are the absolute and relative permittivity,
μ the dynamic viscosity, ζ the surface potential, and E the local electric field. Note, E is used
to denote both the applied and the local electric field and the meaning depends on the context
(Probstein 1989). The values ε0 = 8.854 × 10−12 F/m, εr = 75.0, and μ = 0.001 Pa s are
assumed in all cases.

The constitutive equation describing electroosmotic flow through porousmedia is a gener-
alization of Eq. (1), Q/A = KeE , where Q is the volumetric flow rate with unit m3/s and Ke

is the electroosmotic permeability with unit m2/(V s), defined as Ke ≡ μ0σeff/σ f ≡ μ0ε/τ .
The electroosmotic pressure can be defined in an equilibrium sense by expressing the

volumetric flow as the sum of hydraulic (Darcy’s Law) and electroosmotic contributions. In
the absence of an external applied pressure gradient,

Q/A = −Kh

μ
∇ p + KeE (2)

where Kh is the hydraulic permeability with unit m2 and ∇ p the pressure gradient
(Casagrande 1952). It follows that ∇ p = 0 when Q/A = vs and Ke = μ0 (i.e., an open
tube), and ∇ p = ∇ pmax = (μKe/Kh) /E when Q/A = 0 (i.e., a closed porous medium).
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2 Methods

2.1 Dynamic NMR Transport Measurement

NMRmeasurements of hydrodynamic dispersion induced by electroosmosiswere obtained in
a porous medium constructed from glass spheres. The sample cylinder was closed to external
flow, and an internal flow was induced by an applied electric field using a Keithly 2410
SourceMeter. NMR measurements were obtained on a DRX250 Bruker spectrometer with a
10-mm-diameter radiofrequency (RF) coil and a 1.4-T/m, three-dimensional microimaging
gradient probe. All experiments were conducted at a constant temperature of 20◦C.

The signal acquired in an NMR experiment may be sensitized to measure translational
motion over a range of displacements from 10−8 to 10−3 m on timescales from 10−4 s to 1 s
(Callaghan 1991; Fukushima 1999). This measurement of translational motion, whether via
self-diffusion, coherent velocity or dispersion, is made by the strategic application of a pair
of rectangular narrow gradient pulses of amplitude g, duration δ and separation �, termed
the pulsed gradient spin echo sequence, which encodes for displacements. Pulsed gradient
NMR enables the measurement of the time-dependent effective diffusion coefficient D (t) in
complex systems.

In theNMRexperiments presented in this paper, a variant of the pulsed gradient experiment
using a stimulated echo sequence (PGSTE) was combined with an electrophoretic pulse as
shown in Fig. 1 to allow formotion encodingwhile electroosmotic transport is being induced.
This electrophoretic nuclear magnetic resonance (eNMR) technique was originally presented
by Holz, Seiferling and Mao (Holz et al. 1993) and further developed by others (He et al.
1999; Holz et al. 2001; Stilbs and Furo 2006).

2.2 NMR Measurement in Sphere Packings

The sphere packing sample holder was a polyether ether ketone (PEEK) cylinder
(ID=6.55mm, L = 108mm) fitted with frits, platinum wire electrodes and PEEK plugs
at both ends according to the recommendations in (Holz et al. 2001). Current was supplied
through shielded wires. The length of the section between the two electrodes was 80 mm.
One end of the cylinder was fitted with a platinum electrode and frit to contain the spheres and
sealed with teflon tape. In order to remove impurities, the glass beads were washed with 10%

Fig. 1 PGSTE pulse sequence and electrophoretic pulse. τ is the time between initiation of the electrophoretic
pulse and the first r.f. pulse, δ and � are the gradient pulse duration and separation, respectively. A second
electrophoretic pulse of opposite sign and equal duration is applied after the signal is measured
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Fig. 2 Sample chamber for glass beads

HCl and rinsed with deionized water. The spheres were immersed in a 1 mM KCl solution
and incrementally added into the cylinder while accumulated air bubbles were removed from
the sphere packing by gentle stirring and cylinder vibration. In order to have a chemically
stable, steady solution, sphere packs with fresh 1 mM KCl solution were rebuilt after every
set of experiments that involved the presence of electroosmotic flow. Each set of experiments
with an applied electric field included five NMR experiments that differ in their displacement
encoding time �. The second PEEK plug and electrode were then fitted, and the cylinder
was sealed (Fig. 2). The electrodes were connected to a Keithly 2410 source meter, which
was triggered by the NMR spectrometer to supply the necessary constant voltage pulses to
the electrodes in step with the NMR sequence.

Borosilicate glass spheres of five different sizes, ranging in mean diameter from 30µm
to 1000µm, were obtained from Cospheric Microspheres. The zeta potential was measured
for each size of glass spheres immersed in 1 mM KCl solution (Table 3) using a PALS
Zeta Potential Analyzer (Ver. 5.59, Brookhaven Instruments Corp). The mean zeta potential
value was obtained after 10 runs for each bead size. The zeta potential data are impacted by
sedimentation of these large (>10µm) particles and are presented merely to demonstrate
the values are of similar order of magnitude for all particles.

The gradient amplitude gwasvaried from0.006 to 0.12T/m, using pulse duration δ = 3ms
and pulse separation � varying from 50 to 400 ms. The electrophoretic pulse was turned on
2.5 s before the initial RF pulse to allow the electroosmotic flow to reach steady state. After
data acquisition, the applied voltage was inverted and a second electrophoretic pulse of
identical duration was applied to reverse the effects of the electroosmotic flow and minimize
gas bubble formation at the top electrode. Finally, an interval of 13 s was allowed between
experiment repetitions to minimize Joule heating in the sample. The total time for one NMR
diffusion coefficient measurement at a specific value of observation time � was 27 min.

2.3 Pore-Scale Simulation

Electroosmotic flow and dispersion were simulated under the assumptions of a thin electric
double layer (EDL), uniform surface charge, steady flow and a conservative, charge-free
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Table 1 Simulated and
experimental sphere packings

Sample type, dimensions and
porosity. Simulated packing
dimensions given in terms of
particle diameter

Type Dimensions ε

Sim. Bulk 4.78d × 4.78d × 4.78d 0.40

Sim. Bulk 9.76d × 9.76d × 9.76d 0.36

Sim. Cyl. ID = 6.55d × L = 79.6d 0.42

Sim. Cyl. ID = 6.55d × L = 9.77d 0.43

Exp. Cyl. ID = 6.55 mm × L = 80 mm est. 0.42

solute in a porous medium saturated with a neutral electrolyte (Probstein 1989). The spatial
resolution of the pores was on the order of one micron or larger, several orders of magnitude
larger than the EDL. The zeta potential was assumed to be uniform over all solid surfaces.
This assumption is based on the small EDL thickness relative to the pore size, the washing
of the particles and replacement of the ionic solution between each sample run, and the use
of an opposite charge electric field pulse in each increment of the eNMR (Fig. 1) experiment
to redistribute the solution ions. The electric field was calculated under the assumption of a
neutral fluid electrolyte and non-conducting solid surfaces in the porous matrix and confining
walls. TheEDLslippingplane velocity (1)was applied at all solid surfaces using the computed
electric field and the zeta potential values from Table 3 (Probstein 1989). The applied voltage
drop was constant in time (DC), and the fluid flow field was assumed to have a steady,
time-independent solution. Solute transport was governed by hydrodynamic forces only, and
electrophoretic motion was not considered.

2.3.1 Simulated Porous Media

Sphere packings were generated with a hard-sphere molecular dynamics algorithm which
slowly compresses a dilute array of spheres to a specified porosity (Maier et al. 2000).
Packings were created in a cylinder to study wall effects associated with relatively large
sphere-to-cylinder diameter ratios, while periodic sphere packings were created to approxi-
mate the “bulk” packing structure which predominates in columns with smaller ratios. Planar
boundaries were imposed to simulate packings closed to external flows.

When computing the electric, velocity and effective diffusion fields, the sphere packings
were mapped to 3D regular grids. Grid cells were classified as solid or void voxels, yielding a
“stair-step” representation of solid surfaces. Packing and sample dimensions are summarized
in Table 1.

2.3.2 Simulated Electrical Field

An electric field was simulated under the assumptions of a neutral electrolyte with conduc-
tivity σ f , a non-conducting solid matrix with uniform surface potential, and fixed potential
external boundaries. Under these assumptions, the potential field is described by Laplace’s
equation, ∇2φ = 0 subject to no-flux boundary conditions at the solid surfaces (Probstein
1989).

The potential field was approximated with a lattice-Boltzmann (LB)method, which solves
the discrete-velocity Boltzmann equation for the charge and current density distributions. The
LBmethod with single-time relaxation (BGK) applies a finite-difference discretization to the
Boltzmann equation (Sterling andChen 1996). Cartesian space is discretized on a cubic lattice
and velocity space is discretized by q = 7 lattice vectors, ei , i = 1, . . . , q , consisting of the
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three Cartesian unit vectors, their negations and the null vector (the D3Q7 LB-BGKmethod).
In dimensionless form,

fi (x + ei , t + 1) = fi (x, t)− 1

ω

[
fi (x, t) + f EQ

i (ρ, v)
]
+F (x) · ei , i = 1, . . . , q (3)

where fi denotes the charge carrier distribution function associated with ei, and the position
x denotes the center of the lattice cell. The dimensionless charge and current densities are
defined as the velocity moments

ρ =
∑q

i=1
fi , ρv =

∑q

i=1
fi ei (4)

where v is the local drift velocity. The current density is related to the potential gradient
through the conductivity, σ f ∇2φ = ρv. The equilibrium distribution function, f EQ

i , is a

first-order expansion in the velocity, f EQ
i (ρ, v) = ρ [Ai + Biei · v], whose coefficients are

derived to recover Poisson’s equation (see, e.g., Wolf-Gladrow 2000). The no-flux condition
is enforced at solid surfaces and periodic boundary conditions are used elsewhere. At a solid
surface, where x is in a solid cell and x+ei is in a neighboring fluid cell, fi (x, t) is undefined
and is therefore approximated as fi (x, t) = f j (x + ei, t), where ej = −ei, also known as
the bounce-back technique. The fixed potential boundary values, φ0 and φL were assigned at
the z = 0 and z = L planes of the numerical grid, corresponding to the ends of the cylinder
or opposite faces of the box. Physical units are recovered from the dimensionless equation
by assigning the lattice cell size �x and the ratio of lattice to physical charge densities.

The electrical flux in the axial direction is calculated by summing the z-component of the
potential gradient. Let ui = ∇zφ (xi ) denote the z-component of the potential gradient in
the i th grid cell with unit V/m. The mesoscopic expression for electrical flux through the
i th cell of the simulation grid is (�x)2ui , where �x is the grid cell size. Integrating over
the entire domain (flow through a volume) and dividing by the domain length give the total
flux V f = (�x)2

∑n
i=1 ui/L . The dimensionless ratio of effective conductivity vs. fluid

conductivity is solved from V f /A = (
σeff/σ f

)
E , where the applied field is approximated as

E = (φ0 − φL) /L , and φ0, φL denote fixed potential boundary values at z = 0 and z = L .

2.3.3 Simulation of Fluid Flow

Fluid flow was simulated under the assumptions of steady, saturated flow of a neutral elec-
trolyte at smallMachnumber in the thin-EDL limit. Fluidmotion in the pore space is described
by the incompressible Navier–Stokes equations, ρ [∂v/∂t + (v · ∇) v] = ρF−∇ p+μ∇2v,
with appropriate initial and boundary conditions, where v denotes the pore velocity, μ the
dynamic viscosity, F a body force and p the pressure.

The equations of fluid flow were solved on a regular grid with the D3Q19 LB-BGK
method (Qian et al. 1992). The method is given by (3), but in this case the fi denote fluid
mass distribution functions, and the moments (4) denote the fluid mass and momentum
densities. The equilibrium distribution function, in this case, is a second-order expansion in
the velocity, whose coefficients are chosen to recover Navier–Stokes behavior in the low-
Mach-number limit (see, e.g., Chen et al. 1992). The dimensionless kinematic viscosity is
given by vl = (2ω − 1) /6 and the equation of state by p = csρ, where c2s = 1/3 is the square
of the lattice sound speed. Physical units are recovered from the dimensionless equation based
on these dimensionless lattice parameters, their equivalent physical definitions and the value
of �x .
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Flow was driven either by prescribed-velocity boundary conditions at the solid surfaces,
corresponding to the Helmholtz–Smoluchowski slip velocity, or by a uniform pressure gra-
dient in the case of non-electroosmotic, pressure-driven flows. In the latter case, the pressure
gradient was implemented as a uniform body force, F in (3), with no-slip conditions at
all solid boundaries implemented by bounce-back, described in the previous section. Grav-
itational force was not simulated. For geometries with open external boundaries, periodic
boundary conditions were used to wrap the flow around to the opposite face of the simulation
box.

The flow simulation was initiated at zero velocity and iterated to a steady state, i.e., until
the relative change in the mean pore velocity was less than a specified tolerance

tol > η = 2 | v̄k+m − v̄k | / | v̄k+m + v̄k (5)

where the superscript k refers to the kth iteration andm is a small integer that filters fluctuations
in η. The values m = 10 and tol = 1 × 10−6 were used unless otherwise noted.

The volumetric flow rate, Q, is calculated by summing the z-component of the fluid
velocity, similar to the case of electrical flux described earlier. Let vi = v (xi ) denote the
axial velocity component in the i th grid cell. Integrating (�x)3vi over the entire domain and
dividing by the domain length give the volumetric flow Q = (�x)3

∑n
i=1 vi/L with unit

m3/s.

2.3.4 Velocity Distribution Functions

The results of flow simulations are presented as empirical velocity distribution functions. Let
Hj denote the velocity histogram

Hj =
n∑

i=1

1
(
vhj − h < vi < vhj + h

)
, j = 1, . . . , M (6)

where the indicator function 1 counts the grid cell velocities falling into M bins of width
2h = (vmax − vmin) /M and vhj = vmin + 2 ( j − 1/2) h are the bin midpoints. The grid
cell velocity vi maps to the j th bin as j = min (M, 	vi − vmin) /2h
 + 1). The discrete

probability density function is defined as f
(
vhj

)
= Hj/ (2hn), such that 2h

M∑
j=1

f
(
v j

) = 1,

which enables the comparison of distributions with different ranges. If v �→ j , f (v) is the
scaled probability that v falls into the j th bin,

Pr
(
vhj − h < v < vhj + h

)
= 2h f (v) .

2.3.5 Simulation of Dispersion

Solute transport was simulated in the digital geometry under the assumptions of a dilute,
conservative, charge-free solute moving only under the influence of Brownian motion and
solvent advective velocity. Transport was modeled by the motion of tracer particles gov-
erned by the Langevin equation (Maier et al. 2003). The connection between the convection
diffusion equation (CDE) and the Langevin equation is described by Brenner (Brenner and
Edwards 1993). The Langevin equation for the position of an individual tracer was solved
by the forward Euler method,

x (t + �t) = x (t) + v (x (t)) �t + ξ
√
2Dm�t (7)
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where x is the position vector, v (x) is interpolated from LB velocity field, and ξ is a random
vector on the surface of a sphere of radius

√
3 (see, e.g., Kloeden 1992). Solute dispersion

was calculated as the time rate of change in the particle displacement variance, D (t) =
(1/2) dσ/dt , where σ (t) = (1/n)

∑n
i=1(xi − x̄)(xi − x̄)T and n denotes the number of

particles.

3 Results

3.1 Electroosmotic Flow in a Closed Fluid-Filled Cylinder

Electroosmosis in a closed cylinder with current flow along the axis is characterized by
flow along the walls, in the direction of the applied electric field, and a counterflow in the
center, which combine to yield zero net flow (Manz et al. 1995; Rice and Whitehead 1965;
Yao and Santiago 2003). The flow equation is a superposition of electroosmotic flow and
a reverse pressure-driven flow. The electroosmotic flow along the wall induces the reverse
pressure gradient, which is proportional to the applied electric field (Marcos et al. 2005).
Electroosmotic flow in the thin-EDL limit was simulated to illustrate the phenomenon of
pressure-driven reverse flow. Figure 3 shows contours of the axial velocity in a cross section.
The flow is upward along the wall, turns at the top and returns down the center of the cylinder.
Most of the cylinder volume is occupied by slower return flow. The forward and reverse flows
have the same mean velocity exactly at the midplane, but away from the midplane, the mean
return velocity decreases. At the midplane, the computed velocity profile is approximately
parabolic (not shown) and the transverse velocity component vanishes, vx = vy = 0. The
axial velocity also vanishes for radial coordinate r0 = R

√
2, which divides the midplane disk

into two annular regions of equal area, i.e., vz (r0) = 0. Figure 3 also shows the axial velocity
distribution over the entire cylinder. The positive velocities have an approximately uniform
distribution, indicating that the electroosmotic profile is fairly constant along the cylinder
length. The negative velocities, however, are distributed in a roughly exponential form, which
is the characteristic form (with opposite sign) of pressure-driven flows in packed spheres
(Maier et al. 2000). In this respect, the velocity distribution in a closed cylinder resembles a
porous medium more than an open cylinder.

Fig. 3 Cross section of EOF in a closed cylinder. Contours of the scaled axial velocity vz/vS are shown at
left. Scaled axial velocity distribution with fitted function f = αeβv are shown as dashed line, at right. The
cylinder I.D. = L = 1 mm, with E = 25 kV/m, ζ = −0.03 V, and �x = 10−5 m
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3.2 EOF and PDF Simulations in Open Sphere Packings

Simulation results for EOF in open sphere packings have been presented by Hlushkou et al.
(2005, 2007). Their results illustrate the shape of the velocity probability distribution function
f (v). Their results also demonstrate a linear relationship between the applied electric field
strength and the mean pore velocity. They also note the variation of electroosmotic velocities
within the pore spaces of the sphere packing, in contrast to uniformEOFflow in a simple tube.

In the present work, EOF and PDF were simulated in bulk packings with periodic flow
boundaries applied in all three dimensions (Table 1). The applied potential gradient was
5kV/m oriented along the z axis. The zeta potential was matched to the experimental sphere
diameter according to Table 3. The PDF body force was chosen to match the EOF mean
velocity. The grid resolution was �x = d/40 except where otherwise noted.

Figure 4 illustrates the effect of varying the sphere diameter and fluid driving force on the
shape of the velocity distribution. The results show that for both EOF and PDF, the velocity
distributions collapse when scaled by their mean. The scaled EOF velocity distribution is
roughly Gaussian with mode approximately equal to its mean, i.e., v/v̄ ≈ 1, and only a
small fraction of velocities near zero. In contrast, the scaled PDF velocity distribution has its
mode near v = 0 and decreases exponentially. The relatively small fraction of zero velocities
in EOF indicates most of the fluid is in motion. The scaled EOF and PDF modes have
similar amplitude, but the EOF distribution is narrower, indicating lower velocity variance
and consistentwith the idea that EOF ismore uniform.Note that themaximumEOFvelocities
attained in the packingswere several times greater than themaximum imposed slip velocity vS
tabulated in Table 2, whereas the mean velocities are roughly half the value of vS . The actual
volume of fluid moving faster than vS is small but clearly visible in Fig. 4. The shape of the
EOF distributions contrasts with the experimental results in (Locke et al. 2001, Fig. 7), where
the EOF distributions more closely resembled a PDF with a mode at v = 0 and decreasing
exponential form.Thedifference results from the orientation of the electrical fieldwith respect
to the gravitational field. Locke et al. (2001) placed the cathode at the top of the column, so
EOF was against gravity, while the present experiments placed the cathode at the bottom.

Fig. 4 Velocity histograms for EOF and PDF simulated in an open sphere packings for different values of
sphere diameter and driving force. The value of the mean pore velocity v̄ is shown in the legend. The curves
for EOF and PDF collapse when scaled by v̄ (inset)
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Table 2 Velocity statistics for open sphere packings, including flow type, sphere diameter d, surface potential
ζ , slip velocity vS from (1), and theminimum,maximum,mean and standard deviation of the simulated velocity
field

Flow d (mm) ζ (V) vS vmin vmax v̄ s(v)

EOF 100 −0.02 −6.72e−5 −1.08e−5 2.27e−4 3.20e−5 1.57e−5

EOF 200 −0.045 −1.48e−4 −2.42e−5 5.11e−4 7.20e−5 3.54e−5

PDF 200 −4.26e−5 5.80e−4 7.19e−5 6.72e−5

EOF 300 −0.03 −1.00e−4 −1.61e−5 3.41e−4 4.80e−5 2.36e−5

EOF 1000 −0.03 −1.00e−4 −1.61e−5 3.41e−4 4.80e−5 2.36e−5

PDF 1000 −2.92e−5 3.97e−4 4.93e−5 4.61e−5

Units are m/s unless otherwise noted. Applied field strength was 5 kV/m

Fig. 5 EOF in a closed column packed with 1000µm spheres. Direction of potential flow is upward. Vector
length corresponds to the velocity magnitude and vectors with a negative, or backflow, component are shown
in red. Pore-scale rotational flow shown in the enlargement at right

3.3 EOF and PDF Simulations in Closed Sphere Packings

EOF was simulated in cylindrical and bulk packings closed to external flow (Table 1), using
a 5 kV/m applied potential gradient and zeta potential matched to sphere diameter (Table
3). Figure 5 illustrates flow patterns in a cross section of the closed cylindrical packing. The
applied electric field is oriented in the vertical direction, and the return flow is downward (the
force of gravity is not simulated). Axial and transverse velocity components have similar
magnitudes. Slip flow appears everywhere at the sphere surfaces, while backflow appears
concentrated in some pores and absent in others. The forward and reverse flow networks
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Fig. 6 Normalized axial (left) and transverse (right) velocity distributions in closed sphere packings. The
80-mm cylinder distribution illustrates the effect of simulation continuity errors

are not isomorphic to the pore network. Turning flows are common, and some pore-scale
recirculation patterns are evident. Although recirculation cells are not uncommon, the flow
patterns responsible for most of the recirculation flow have a longer length scale.

Axial velocity distributions exhibit symmetry about zerowhich is expected fromcontinuity
(Fig. 6), but the positive and negative tails differ in a way that reflects two different driving
forces. The negative tail (v/s (v) < −1) represents the pressure-induced reverse flow and the
positive tail (v/s > 1) corresponds to the forward electroosmotic flow. The pressure-driven
tail is better fit by an exponential distribution, while the electroosmotic tail is better fit by a
Gaussian. The pressure-driven flow has a larger variance than the electroosmotic flow, which
is also the case for PDF and EOF in open packings. These results are consistent with the
observations in Locke et al. (2001) (Fig. 5) for E = 50 V, where the electroosmotic tail
(negative velocities in their case) appears less dense than the pressure-driven tail. The mean
backflow pore and superficial velocities vB and uB are tabulated in Table 3. It was conjectured
that the forward flow distribution might correspond to a pure electroosmotic flow, while the
reverse flow distribution might conform to a pure pressure-driven flow, and some numerical
fitting was performed to test this idea. EOF and PDF distributions from the open packs in
Fig. 4 were superposed and compared to the closed pack in Fig. 6. The overall match was
not very compelling, which confirms that electroosmotic pressure affects both forward and
reverse velocities.

Transverse velocity distributions exhibit symmetry about zero and both tails conformmore
closely to an open EOF distribution than to PDF (Fig. 6). Their amplitudes and extreme values
are similar to the axial velocity distributions, consistentwith the similarity between transverse
and axial velocity vector magnitudes captured in the spatially resolved Fig. 5. Closed and
open velocity distributions are plotted together in Fig. 7. Closed and open packings with
similar diameters have correspondingly similar modal amplitudes. The open packings have
larger positive velocities, but the closed packings have a somewhat broader range and larger
velocity variance.

Flow simulations in the closed sphere packings exhibited slower convergence to steady
state and greater continuity errors than in open packings. Simulations in a cylindrical packing
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Table 3 Velocity statistics for closed sphere packings, includingflow type, sphere diameterd, surface potential
ζ , slip velocity vS from (1), minimum fluidization velocity um f , and mean backflow pore and superficial
velocities vB and uB from simulation

d (µm) ζ (V) vS umf vB uB

30 −0.018 −6.08E−05 −6.27E−06 −1.80E−05 −7.20E−06

50 −0.017 −5.63E−05 −1.74E−05 −1.67E−05 −6.67E−06

100 −0.02 −6.72E−05 −6.97E−05 −1.99E−05 −7.96E−06

200 −0.045 −1.48E−04 −2.79E−04 −4.38E−05 −1.75E−05

1000 −0.03 −1.00E−04 −6.97E−03 −3.04E−05 −1.22E−05

Values of 50µm, 100µm, and 200µm spheres are extrapolated from the results for 30µm based on the ζ

potential. Applied field strength was 5 kV/m. Units are m/s unless otherwise noted

Fig. 7 EOF velocity distribution from a closed packed cylinder and an open 10d×10d×10d periodic packing
for different values of the sphere diameter and zeta potential (E = 5 kV/m in all cases). The curves for open
and closed packings collapse when scaled by the square root of the velocity variance (inset)

matching the experimental length 80d converged slowly with η = 6 × 10−5 after 50,000
iterations. The resulting partially converged velocity distribution is shown in Fig. 6. A shorter
cylindrical packing with L ≈ 10d matching the experimental diameter required on the order
of 20,000 iterations for convergence and was used instead. But even with a shorter column,
the number of LB iterations required to satisfy (5) was on the order of 104, compared to 103

for open packings. The average pore velocity should be zero, but the computed value of v̄

exhibited the effects of continuity errors (see Fig. 6). For example, in the cylindrical closed
pack, the computed value of v̄ was approximately one order of magnitude smaller than vS , at
a resolution of �x = d/20. Although continuity errors depend upon the spatial resolution, it
is the distance which pressure waves must travel that slows convergence to steady state in a
closed packing. Recirculation patterns develop and pressure waves propagate on the length
scale of the closed container, whereas in an open packing, downstream pressure fluctuations
don’t propagate far upstream. A conclusion is that implicit methods designed for steady-state
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solutions would be more efficient than the pseudo-transient method used here, for solving
closed-pack flows.

The grid convergence rate indicates the dependence of error on spatial resolution. The cal-
culated rate was approximately linear, indicating that the boundary condition implementation
is restricting grid convergence, since the LBmethod is known to otherwise converge quadrat-
ically away from boundaries (Sterling and Chen 1996). Numerical investigations revealed
the calculation of the electric field at the sphere surfaces as a source of error with poor grid
convergence, even using the nominally second-order accurate boundary methods described
in (Maier and Bernard 2010). Nonetheless, velocity distributions using spatial resolutions of
�x = d/20 and �x = d/40 exhibit only incremental differences in amplitude and shape,
indicating that qualitative features of the velocity field are captured by this level of resolution.

Flow curvature and shear gradients are much greater in a closed packing under EOF and
place greater demands on the numerical methods. For example, recirculation cells require a
minimum of around ten grid points to resolve the flow curvature using the present methods.
Since the insphere diameter in pore spaces of a random monosize sphere packing ranges
effectively from 0.15d to 0.40d (Mason 1971; Shiota and M. 1997) (6–16 grid points at a
spatial resolution �x = d/40) only those recirculation cells on the order of the insphere
diameter are resolved in the simulations.

3.4 Dispersion Simulations in Open Sphere Packings

Solute dispersion under pressure-driven flow has been simulated in sphere packings by a
number of groups (Maier et al. 2000; Sullivan et al. 2005). Dispersion under electroosmotic
flow has been presented in (Hlushkou et al. 2007). Their results demonstrate that for similar
Pe, dispersion is much greater under PDF, and they attribute this to the relative uniformity
and lower variance of EOF. Dispersion under EOF and PDF in a model porous medium
(VitraPor glass) open to flow was presented in Buhai et al. (2008). The short-time behavior
ranged from subdiffusive to superdiffusive depending on the applied field strength and mean
pore size. Although they did not indicate Peclet numbers, it is estimated that their results
cover the range of Pe in the present work and extend somewhat further into the mechanical
dispersion regime. Solute dispersion was simulated in open sphere packings under conditions
of no flow, electroosmotic flow, and pressure-driven flow (Fig. 4). Tracer particle motion was
simulated for a period of 1 s, corresponding roughly to the NMR observation time.

3.4.1 Restricted Diffusion

The results obtained in the absence of the electric field and the absence of a pressure gradient
demonstrate restricted diffusion, in which the dispersion coefficient is initially equal to bulk
self-diffusion and decreases over time to a value theoretically equal to the tortuosity τ of
packed spheres, which depends on the porosity. Previous simulations have found τ−1 ≈ 0.74
for loosely packed spheres (Ghassemi and Pak 2011; Maier et al. 2000) but a value in the
range, 2/3 < τ−1 < 1/

√
2 is often cited for closed packed spheres (Huizenga and Smith

1986). After one second of simulated time, the dispersion coefficients straddle this range.
The explanation is in part that D (t) was measured in the pre-asymptotic regime in most of
the experiments. When diffusion dominates over convection, the time for asymptotic D (t) is
t ∝ d2/Dm , i.e., the time for solute to diffuse over the pore length scale. The value of d2/Dm

is 500, 45, and 5 s for spheres of diameter 1000, 300, and 100µm, respectively. Of these,
only the smallest might be expected to be close to its asymptote while the larger diameter
cases are certainly pre-asymptotic. The trends in D (t) under no flow shown in Fig. 8 are
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Fig. 8 Transverse and axial dispersion simulated in an open random sphere packing in the absence of the
electric field and a pressure gradient and while undergoing EOF and PDF

consistent with these expectations. The coefficients for the larger spheres are still decreasing
after one second of simulation. The fully developed value for 100µm is DL ≈ 2/3 which is
consistent with some authors (e.g., Bear 2013).

3.4.2 Dispersion Under EOF

Based on the Peclet number range, DL should span the range from diffusion-dominated
to mechanical-dominated dispersion. The 100-µm packing has Pe = 1.6, and the value of
DL/Dm is the same as that observed in experiments without electroosmotic flow and without
a pressure gradient. The 200- and 300-µmpackings both have Pe = 7 and DL/Dm exhibits a
transition from diffusion-dominated to mechanical-dominated dispersion. After one second,
DL/Dm ≈ 0.9 in both packs, but the trend is upward (Note Pe = 7.2 for both cases because
the values of ζ are −0.030 and −0.045 V for 300 and 200µm spheres, respectively). The
1000µm sphere packing has Pe = 24 and DL/Dm = 1.1, and the trend is clearly upward.

3.4.3 Dispersion Under PDF

The results for PDF correspond to the mechanical-dispersion regime based on their magni-
tudes and upward trends. The (pre-asymptotic) values of DL/Dm are 1.3 and 1.1 for 1000
and 200µm, respectively, after 1 s. Previous PDF results (Maier et al. 2000) suggest asymp-
totic value of DL/Dm ≈ 5 for the 1000µm spheres (Pe = 24) and DL/Dm ≈ 2 for the
200µm spheres (Pe = 7). The magnitude of dispersion under PDF is greater than EOF,
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Fig. 9 Transverse and axial dispersion in closed sphere packings as a function of sphere diameter and applied
field strength from NMR experiments

and the upward trend is stronger. This is consistent with the difference in velocity variance
between the two flow types (see Table 2) and with the idea that dispersion is proportional to
the velocity variance scaled by the mean, i.e., DL ∝ s2 (vz) /v̄) (Bear 2013).

3.5 Dispersion Experiments and Simulation in Closed Sphere Packings

Dispersion was measured in closed sphere packings for a range of sphere diameters
using eNMR methods. The particle Peclet number for closed packings is defined as
Pe = vBd/Dm , where vB is the mean backflow velocity. The values of vB are esti-
mated from simulation and given in Table 3 along with the minimum fluidization velocity
um f = [(

ρs − ρ f
)
gε3d2

]
/ [150 (1 − ε) μ] (Richardson and Harker 2002). DT and DL vs.

time, t are plotted in Fig. 9 for a case of absence of electroosmotic flow and for two values
of the applied field gradient. Dispersion was isotropic in the transverse plane under EOF.
Because the measurements were made over a maximum displacement time of t = 400 ms,
the presumption is that D (t) is more fully developed for smaller d unless evidence suggests
heterogeneities that would extend the development time. Results for DL are compared with
simulation and with the correlation (Edwards and Richards 1968)

DL

Dm
= 1

τ
+ 1

2
Pe (8)

which is expected to be an overestimate of EOF dispersion because it is based on PDF
experiments. PDF has been found to be more dispersive than EOF in the present work as
well as in (Hlushkou et al. 2007) and (Ghosal 2006).
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3.5.1 Diffusion in the Absence of Electroosmotic Flow

In the absence of flow, measurements indicate that dispersion is essentially isotropic and
that D (t) decreases with time to a value less than the molecular diffusion constant, for each
sphere diameter (Fig. 9). The values of DL and DT differ by less than 5% for each sphere
diameter, except for the 100 and 200µm spheres where, for reasons not entirely understood,
DL is about 25% lower than DT . In any case, it demonstrates the sensitivity of the restricted
diffusion coefficient to the details of these small computer-generated packings. The values
of DL/Dm and DT /Dm range from 0.25 to 0.5 at t = 0.4 s for all sphere diameters except
for the 1000µm spheres, for which DL/Dm ≈ DT /Dm = 0.75 and the trend is decreasing.

3.5.2 Dispersion Due to Electroosmotic Flow in Sphere Packs

Under a 2.5-kV/m applied field in packed beds of spheres of d = 1000µm, Pe = 7.5.
Dispersion is isotropic and the measured coefficients are DL/Dm = DT /Dm = 1.3 after
t = 0.4s (Fig. 9). Under a 5 kV/m field, Pe = 15 and dispersion doubles: DT /Dm = 2.8
and the trend appears decreasing, while DL/Dm = 2.5 and the trend is flat. Simulation in the
present work predicts DL/Dm = 1.1 in a closed cylinder after 0.4 s, increasing to 1.4 after 1
s (Fig. 10), whereas (Hlushkou et al. 2007) found a fully developed value of DL/Dm = 1.25
for Pe = 15 in an open bulk packing (Hlushkou et al. 2007). There are probably two factors
at work. The closed packing has a higher velocity variance than the open packing (Fig. 7). A
second factor is the sphere packing effect associated with the small ratio of cylinder to sphere
diameter, 6.55. The packing effect does not necessarily manifest as higher velocity variance,
but it has a substantial impact on short-time dispersion [cf. Figures 7 and 11 in (Maier et al.
2003)]. Although the experimental and simulated packings had the same ratio of cylinder
and sphere diameters, the experimental packing was eight times longer than the simulated
cylinder and the packing process may therefore have introduced greater heterogeneity. Bed
rearrangement due to fluidization is not thought to be a factor, nor is particle cohesion.
Dispersion under PDF is significantly higher than EOF. For Pe = 15, (Hlushkou et al. 2007)
found DL/Dm = 4 under PDF in bulk packings, while the correlation (8) for PDF predicts

Fig. 10 Transverse and longitudinal dispersion simulated in open and closed sphere packings. Peclet number
for closed packings is based on mean backflow velocity
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DL/Dm = 8. Simulations in the present work show that the upward trend in PDF is much
stronger than EOF in open and closed packs.

Packed beds of spheres of d = 200µm with E = 2.5 kV/m, yields Pe = 2. The
dispersion measurements indicate mild anisotropy with DL/Dm = 0.3 and DT /Dm = 0.4,
both slightly larger than their corresponding values in experiments without electroosmotic
flow (Fig. 9). For E = 5 kV/m, Pe = 4, DT /Dm = 0.6, DL/Dm = 0.7 and the trends
appear flat. In this case, the closed packing is not more dispersive than open packings. For
Pe = 4, (Hlushkou et al. 2007) reported DL/Dm = 0.8 for fully developed EOF in an open
bulk packing and, in the present work, DL/Dm = 0.9 was obtained after 1 s. Wall effects
are thought minor in this case compared to the 1000µm spheres because the larger ratio of
cylinder to sphere diameter, 32.75, indicates that the structured region does not propagate into
the core of the cylinder. Also, neither fluidization nor particle cohesion is thought to play a
role in the packing. In sum, there are no factors that would tend to createmajor heterogeneities
in the closed packing. Dispersion under PDF is higher than EOF, as in the case of 1000µm
spheres. For Pe = 4, (Hlushkou et al. 2007) reported DL/Dm = 1.25 for fully developed
PDF. A similar value for PDF was obtained in (Maier et al. 2000). The correlation (8) for
PDF predicts DL/Dm = 3.

At a sphere diamer of 100µm and E = 2.5 kV/m, Pe = 0.5. After 0.4 s, DT /Dm = 0.4
with no trend and DL/Dm = 0.6 with an increasing trend (Fig. 9). For E = 5 kV/m,
Pe = 1, DT /Dm = 0.7, with an increasing trend and DL/Dm = 1.6 with a strongly
increasing trend. In this case, the closed packing is more dispersive than both open EOF and
PDF. For Pe = 1, (Hlushkou et al. 2007) reported DL/Dm = 0.7 for EOF in an open bulk
packing. In the present work, simulation in an open bulk packing yielded DL/Dm = 0.7
after 0.4 s with a slight decreasing trend. The same value was reported for PDF in (Hlushkou
et al. 2007) and (Maier et al. 2000). The correlation (8) for PDF predicts DL/Dm = 1.2.
The difference between experiment and simulation is thought to result from heterogeneities
in the experimental packing. In 100µm spheres, reverse velocities are probably not large
enough to cause local bed movement during the flow experiment. However, cohesive forces
are strong enough to balance gravitational forces, and it is conjectured that channels were
formed in the experiment by particle aggregation during the packing process.

Further reduction of the sphere size to d = 50µm with E = 2.5 kV/m further lowers
the Peclet number to Pe = 0.2. After 0.4 s, DT /Dm = 0.6 and the trend is flat to slightly
increasing, while DL/Dm = 1.0 and the trend is increasing (Fig. 9). For E = 5 kV/m,
Pe = 0.4 and DT /Dm = 1.1 while DL/Dm = 2.7 with a strongly increasing trend. In this
case, the evidence for heterogeneities is quite strong. Dispersion in the closed packing is
significantly higher than the results for PDF and comparable to the values obtained at much
higher Pe in 1000µm sphere packs. Based on Pe, the dispersion coefficient is expected
to have subdiffusive behavior, whereas the actual behavior is superdiffusive. The trend is
strongly increasing even though the development time is arguably in the asymptotic time
frame. The correlation (8) for PDF predicts DL/Dm = 1. In 50µm spheres, reverse flow
velocities likely attained in the experiment were locally on the same order as the minimum
fluidization. It is conjectured that channels were formed due to particle aggregation during
the packing process and that bed movement occurred locally during the flow experiment,
further contributing to heterogeneities in the pack structure.

The final sphere size studied was d = 30µm. In this size spherical bead pack, for E =
2.5 kV/m, Pe = 0.14 and dispersion appears isotropic; DT /Dm = DL/Dm = 0.6 after 0.4
s and the trend is weakly increasing (Fig. 9). For E = 5 kV/m, Pe = 0.27 and DT /Dm ≈
DL/Dm = 0.76 with an increasing trend. In this case, the evidence for heterogeneities is
also strong, but is based more on trends than observed magnitude. Simulation in the present

123



86 R. S. Maier et al.

work predicts DL/Dm = 0.55 after 0.4 s, and 0.45 after 1 s, with a decreasing trend. The
correlation (8) for PDF predicts DL/Dm = 0.8, and while the experimental coefficient is not
greater than this value, the trend is increasing. In 30µm spheres, cohesive forces dominate
gravitational force, and particle aggregation is likely to have created channels during packing
of the experimental cylinder. The backflow velocity likely attained during the experiment is
greater than theminimumfluidization velocity, but fluidization of the entire bed is not thought
to have occurred because cohesive forces are sufficient to inhibit large-scale particle motion.
However, local bed movement may have contributed to channel formation.

3.5.3 Summary of Results

EOF dispersion in closed sphere packings is over-predicted by the PDF correlation (8) for
larger sphere diameters (200, 1000µm) but well predicted or under-predicted at smaller
diameters (30, 50, 100µm). At the smallest diameters, 30µm and 50µm, where the mea-
surement time is on the same order as the diffusion timescale, measurements still show
increasing trends, indicating the dispersion coefficient is not yet fully developed. The most
likely explanation is the existence of channels and cavities in the packing that introduce a
length scale larger than the sphere diameter. This explanation is consistent with evidence for
pressure-driven flows in columns as well as the evidence on fluidization of particles less than
about 100µm.

The dispersion coefficient in 50µmand 100µmpackings exceeded the PDF correlation to
a greater extent than for 30µm, in spite of the fact that at 30µm, themean backflow exceeded
the minimum fluidization velocity. The 50-µm and 100-µm packings also exhibited stronger
upward trends, indicating larger heterogeneities with longer correlation length. This suggests
the possibility that greater cohesive forces in the 30-µm spheres inhibited large-scale bed
movement and formation of large channels, compared to slightly larger spheres. Lift and
cohesion are both less significant at 50µm and 100µm, but may combine to more readily
shift and freeze sphere positions in response to local pressure gradients.

The conclusion is that for a given Pe, dispersion under EOF is greater in a closed packing
than an open packing, but less than under PDF, provided the bed is fixed.Where EOF-induced
backflow is significant, the fluid pressure can cause structural changes in an unconsolidated
medium.These changesmayalter theflowand increase dispersion.Thepotential for structural
change appears greatest for particle size less than 100µm, where cohesive forces begin to
balance gravitational forces (Massimilla and Donsi 1976), and where typical EOF velocities
are sufficient for fluidization.

The plots of DL (t), and DT (t) to a lesser extent, go through minima in cases where
the Peclet number is transitional between the diffusive and mechanical-dispersion regimes.
At short times, D (t) has the dynamics of restricted diffusion, while at longer times, the
effects of mechanical dispersion are manifested. Location of the minimum depends on the
Peclet number. These results confirm observations in Buhai et al. (2008). The mechanics
of the short-time competition between diffusion and advection are discussed in (Codd and
Altobelli 2003).

4 Conclusions

Fully developed electroosmotic flow in an open cylinder is uniform outside the slip layer. In
a sphere packing open to external flow, the EOF velocity is not uniform, but virtually all the
fluid is in motion, compared to a pressure-driven flow where the mode is v = 0. Where the
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mean flow rates are equal, the modes of EOF and PDF have similar amplitude but the EOF
distribution is narrower, indicating lower velocity variance than a PDF of comparable force.
For a given Peclet number, dispersion under PDF is greater than EOF, consistent with the
idea that dispersion is proportional to the velocity variance scaled by the mean.

Electroosmotic flow in a closed cylinder forms a recirculation cell and the velocity distri-
bution has a zero mode corresponding to the shear layer between slip flow along the wall and
reverse flow through the interior. Reverse flow is induced by electroosmotic pressure, which
reaches a maximum in the case of a porous medium completely closed to external flow. In a
closed sphere packing, reverse flow is concentrated in larger pathways and, although pore-
scale recirculation patterns are not uncommon,most of the flow recirculates on a longer length
scale. The pressure-driven reverse flow is better fit by an exponential distribution, while the
electroosmotic forward flow is better fit by a Gaussian. The reverse flow has greater variance
than in the forward flow, analogous to the difference between pure PDF and EOF in an open
porous medium. Sphere diameter affects EOF flow and dispersion in closed sphere packings
in several ways, including the potential for bed movement in response to back pressure.

Dispersion under EOF is greater in a closed than an open sphere packing, but less than
under PDF, provided the bed is fixed. Where induced backflow is significant, EOF has the
potential to induce structural changes in an unconsolidated medium. In smaller spheres,
reverse flow velocities may reach the minimum fluidization velocity and induce bed move-
ment. Cohesive forces are also significant below this diameter, and while they may inhibit
fluidization, particle aggregation may also contribute to heterogeneities in the pack structure,
leading to superdiffusive behavior at Peclet numbers otherwise associated with subdiffusive
dispersion. The potential for structural change appears greatest for particle size less than
100µm, where cohesive forces begin to balance gravitational forces, and where typical EOF
velocities are sufficient for fluidization.

Flow curvature and shear gradients are much greater in a closed packing under EOF
and place greater demands on the numerical methods. Flow simulations in closed sphere
packings exhibited slower convergence and greater continuity errors than in open packings,
although qualitative features of the velocity distribution are capturedwith fairly coarse spatial
resolution. Numerical investigations revealed the calculation of the electric field at the sphere
surfaces as a source of error with poor grid convergence, and hence, improvements are needed
in this direction.

The mechanisms for fluid exchange with dead-end pores differ between EOF and PDF.
At short times, the power-law exponents corresponding to dispersion under PDF are larger
than EOF, suggesting the possibility of a longer timescale for asymptotic dispersion. How-
ever, neither the experimental nor simulation results provide direct evidence on long-time
dispersion under EOF and PDF. Longer simulations and theoretical analysis are necessary
to deduce this behavior.
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