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Abstract We formulate a problem describing the onset of multi-diffusive convection in a
horizontal porous layer. Our formulation collapses to a clear fluid case in a special limit. We
study this problem, analytically and numerically, for the case of two diffusing components.
We concentrate on the casewhen the boundary conditions at the twohorizontalwalls approach
isoflux conditions and thus the critical wave number approaches zero. We investigate how
the reduction in the critical wave number affects oscillatory instability.

Keywords Double-diffusive convection · Isoflux boundary conditions ·
Oscillatory instability

List of Symbols

a Dimensionless horizontal wave number
ALi Solutal flux coefficients at the lower boundary
AUi Solutal flux coefficients at the upper boundary
Bi Value of the Biot number for the case when four Biot numbers are equal
BLi Biot numbers at the lower boundary, H ALi

BUi Biot numbers at the upper boundary, H AUi

ca Acceleration coefficient, K
φH2ν

Ci Dimensionless solutal concentrations,
(
C∗
i − Ci0

)
/�Ci
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C∗
i Solutal concentrations

D d/dz
D̃ d/dz̃
Da Darcy number, μeK

μH2

g Gravitational acceleration
g Gravitational acceleration vector
H Dimensional layer depth
K Permeability of the porous medium
p Dimensionless pressure, K

μν
P∗

p∗ Fluid pressure
p̃ Pressure, excess over hydrostatic
Rai Solutal Rayleigh numbers, ρ0gβi K H�Ci

μκi

Sci Schmidt numbers, ν
κi

t Dimensionless time, t∗ν/H2

t∗ Time
(u, v, w) Dimensionless velocity components, H

ν
(u∗, v∗, w∗)

v∗ Darcy velocity, (u∗, v∗, w∗)
(x, y, z) Dimensionless Cartesian coordinates, (x∗, y∗, z∗)/H ; z is the vertically

upward coordinate
(x∗, y∗, z∗) Cartesian coordinates; z∗ is the vertically upward coordinate
(x̃, ỹ, z̃) Rescaled dimensionless Cartesian coordinates, Bi(x∗, y∗, z∗)/H

Greek Symbols

βi Solutal expansion coefficients
κi REV averaged diffusivities of solutal components

λ0

(
1+cas
Da

)1/2

μ Viscosity of the fluid
μe Effective viscosity in the Brinkman term
ν Kinematic viscosity of the fluid, μ/ρ0
ω Dimensionless frequency
ρ Fluid density
φ Permeability of the porous medium

Subscripts

0 Reference quantity
b Basic state
cr Critical value
L Value at the lower boundary
U Value at the upper boundary

Superscripts

′ Perturbation variable
∗ Dimensional variable
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1 Introduction

The onset of convection, induced by applied thermal or salinity gradients, is commonly
referred to as the Rayleigh-Bénard problem (for a fluid clear of solid material) or the Horton–
Rogers–Lapwood problem (for a porous medium). The double-diffusive extension in each
case has been extensively studied, and it is well known that oscillatory convection can gen-
erally result when the faster diffusing component (commonly heat) is destabilizing and the
slower diffusing component (commonly salt) is stabilizing. It is also known that in the case
when the perturbation concentrations of each component are subject to isoflux boundary
conditions, the instability appears at zero wave number (Nield 1967, 1968). However, the
authors are not aware of any detailed investigation of how the oscillatory instability is affected
by the critical wave number being zero. The purpose of this note was to discuss this matter
on the basis of an analytical investigation supplemented by numerical calculations.

2 Analysis and Discussion

With possible future extensions to multi-diffusive convection in mind, we formulate the
problem in a general manner, based on the Brinkman model for a porous medium. The case
of a Newtonian fluid clear of solid material can be dealt with as a special limiting case of the
general scheme. Thus, our general conclusions apply to a clear fluid as well as to a porous
medium. We confine ourselves to linear instability, and so the quadratic convective inertial
terms in the momentum equation are irrelevant and so can be neglected from the start.

We denote dimensional quantities by asterisks. We adopt a Cartesian coordinate sys-
tem with the z∗-axis oriented vertically upwards. The Darcy velocity is denoted by v∗ =
(u∗, v∗, w∗). The fluid is assumed to be incompressible and so the mass conservation equa-
tion is

∇∗ · v∗ = 0. (1)

We consider two diffusing solutal components (labeled in order of decreasing diffusivities)
whose concentrations are C∗

1 and C∗
2 . The Oberbeck-Boussinesq approximation is adopted,

and the momentum equation is taken to be

ρ0

φ

∂v∗

∂t∗
= −∇∗ p∗ + μe∇∗2v∗ − μ

K
v∗ + ρ0

[

1 −
2∑

i=1

βi (C
∗
i − Ci0)

]

g (2)

Here, the subscript 0 denotes a reference quantity (the value at the top of the layer); φ and
K are the porosity and permeability of the medium; t∗ is the time; p∗, ρ, and μ∗ are the
fluid pressure, density, and viscosity, respectively; μe is an effective viscosity; the factors
βi are solutal expansion coefficients; and g denotes the gravitational acceleration. (Note that
we have used the sign convention adopted in Nield and Bejan (2013), one for which the
coefficients βi have negative values in most practical situations. This allows solutal Rayleigh
numbers to appear in a symmetric fashion with a thermal Rayleigh number in the following
analysis. In each case, a positive Rayleigh number characterizes a destabilizing effect.)

The solutal mass conservation equations are

φ
∂C∗

i

∂t∗
+ v∗ · ∇∗C∗

i = κi∇∗2C∗
i , i = 1, 2, (3)

where κi is the REV averaged diffusivity of the i-th component.
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We study a layer of depth H , with bottom at z∗ = 0. We suppose that each boundary
is rigid and impermeable. We examine the stability of a diffusive solution in which the
concentrations at the boundaries are specified for the basic solution, but for the perturbations
they are subject to isoflux boundary conditions. Hence, for the basic solution, we impose
boundary conditions as follows.

At z∗ = 0,
v∗ = 0,C∗

i = Ci0 + �Ci , i = 1, 2; (4)

at z∗ = H ,
v∗ = 0,C∗

i = Ci0, i = 1, 2. (5)

We now put the equations in dimensionless form by introducing scalings as follows.

x = x∗/H, t = t∗ν/H2, v = v∗H/ν, p = p∗K/(μν),Ci = (
C∗
i − Ci0

)
/�Ci . (6)

Here,

ν = μ/ρ0 (7)

is the kinematic viscosity. The differential equations become

∇ · v = 0, (8)

ca
∂v
∂t

= −∇ p̃ + Da∇2v − v +
2∑

i=1

Rai
Sci

Ciez, (9)

φ
∂Ci

∂t
+ v · ∇Ci = 1

Sci
∇2Ci , i = 1, 2, (10)

where we have introduced an acceleration coefficient ca , a Darcy number Da, some solutal
Rayleigh numbers Rai , and some Schmidt numbers Sci defined by

ca = K

φH2ν
, Da = μeK

μH2 , Rai = ρ0gβi K H�Ci

μκi
, Sci = ν

κi
. (11)

The symbol p̃ has been chosen to denote an excess pressure above a hydrostatic pressure
relative to a suitably chosen reference value. (If the diffusing quantity is heat, then the usual
term would be Prandtl number rather than Schmidt number.)

Note that ca = μ
φμe

Da ≈ Da.
The equations are satisfied by the steady-state diffusive basic solution

vb = 0,Cib = −z, i = 1, 2. (12)

We now perturb this solution and write

vb = vb + v′, p̃ = p̃b + p̃′, Cib = Cib + C ′
i , i = 1, 2, (13)

where the primes denote small perturbation quantities. We substitute these expressions into
Eqs. (8)–(10) and linearize the equations to obtain

∇ · v′ = 0, (14)

ca
∂v′

∂t
= −∇ p̃′ + Da∇2v′ − v′ +

2∑

i=1

Rai
Sci

C ′
iez, (15)

φ
∂C ′

i

∂t
+ v′ · ∇Cib = 1

Sci
∇2C ′

i , i = 1, 2. (16)
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We now eliminate the pressure by operating on Eq. (15) with curl curl and using the operator
identity curl curl ≡ grad div − ∇2, using Eq. (14), and finally taking the z-component. The
result is

ca
∂∇2w′

∂t
= Da∇2∇2w′ − ∇2w′ +

2∑

i=1

Rai
Sci

∇2
HC

′
i , (17)

where ∇2
H ≡ ∂2/∂x2 + ∂2/∂y2.

At this stage, we introduce isoflux solutal perturbation boundary conditions. We suppose
that Eqs. (16) and (17) are to be solved subject to

w′ = 0,
∂w′

∂z
= 0,

∂C ′
i

∂z
= 0, at z = 0 and at z = 1. (18)

The limiting case of a Darcy porous medium is obtained by setting Da = 0 and ca = 0.
In this case, the second equality in Eq. (18) (incorporating a no-slip condition) needs to be
dropped.

The limiting case of a fluid clear of solid material is obtained by replacing Ra by the
product DaRa, setting μe = μ, φ = 1, and then letting Da tend to infinity.

For the linear stability problem, we write
(
w′,C ′

i

) = [W (z), �(z)] exp(st + ilx + imy). (19)

On substitution in Eqs. (16)–(19), we get

cas(D
2 − a2)W = Da(D2 − a2)2W − (D2 − a2)W −

2∑

i=1

Rai
Sci

a2�i , (20)

φs�i − W = 1

Sci
(D2 − a2)�i , i = 1, 2, (21)

W = 0, DaDW = 0, D�i = 0, at z = 0 and at z = 1. (22)

(The second condition in Eq. (22) is to be dropped when Da = 0.)
We now confine our attention to the Darcy model that is case where Da = 0 (and hence

ca = 0). For a qualitative investigation, we use a single-term Galerkin approximation. The
natural trial functions to use are the lowest order polynomials that satisfy the boundary
conditions exactly. Accordingly, we introduce

WT = z − z2, �1T = 1, �2T = 1. (23)

(A reviewer pointed out that this choice of velocity trial function is apt because the leading
order shape of the disturbance velocity profile takes this quadratic form for the present
problem.)

For the onset of oscillatory convection, the real part of s is zero, and so we write s = iω.
Accordingly, we obtain

(D2 − a2)WT +
2∑

i=1

Rai
Sci

a2�T i = 0, (24)

iωφSci�T i − SciWT = (D2 − a2)�T i , i = 1, 2. (25)

We now solve these approximately using the usual procedure (for details, see Section 9.1 of
Nield and Bejan 2013), and we omit the details.
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This leads to the eigenvalue equation

Ra1

(
1 − iω

φSc2
a2

)
+ Ra2

(
1 − iω

φSc1
a2

)

= 6

5

(
10 + a2

)
(
1 − iω

φSc1
a2

) (
1 − iω

φSc2
a2

)
= 0. (26)

The real and imaginary parts of this equation give

Ra1 + Ra2 = 6

5

(
10 + a2

)
(
1 − ω2 φ2Sc1Sc2

a4

)
, (27)

iω

{
Sc2Ra1 + Sc1Ra2 − 6

5

(
10 + a2

)
(Sc1 + Sc2)

}
= 0. (28)

Hence, either ω = 0 and

Ra1 + Ra2 = 6

5

(
10 + a2

)
(29)

or

Sc2Ra1 + Sc1Ra2 = 6

5

(
10 + a2

)
(Sc1 + Sc2). (30)

In either case, Ra1 is minimizedwhen a = 0.We conclude that for non-oscillatory instability,
the critical wave number is zero and the stability boundary is given by

Ra1 + Ra2 = 12

(
1 + a2

10

)
, (31)

while for oscillatory instability, the criticalwave number is still zero and the stability boundary
is given by

Sc2
Sc1 + Sc2

Ra1 + Sc1
Sc1 + Sc2

Ra2 = 12

(
1 + a2

10

)
, (32)

with frequency ω given by

ω2 φ2Sc1Sc2
a4

= Ra1 + Ra2 − 12, (33)

provided that the right-hand side of Eq. (33) is positive.
Thus, it appears that oscillatory convection is not ruled out. But what sort of convection

is this in which the perturbation concentrations are arbitrary constants? For conservation of
the diffusing components, these constants must be zero, and in this case, the perturbation
velocity is zero. (A reviewer’s answer to the question is that the disturbances are formally
proportional to exp(iax) and therefore have a spatial structure even though the limit as a
tends to zero is being considered. He/she also remarked that Eq. (24) shows that the order of
magnitude of W is O(a2).)

Given that the expected critical wave number is zero, an asymptotic expansion in terms
of a small parameter a is appropriate. Accordingly, we return to Eqs. (20)–(22), and let

(W, �1, �2) = (W0, �10, �20) + a2(W1, �11, �21) + a2(W2, �12, �22) + . . . . (34)
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At order zero, we then have

DaD4W0 − D2W0 − casD
2W0 = 0, (35)

1

Sc1
D2�10 − φs�10 + W0 = 0, (36)

1

Sc2
D2�20 − φs�20 + W0 = 0, (37)

W0 = 0, DaDW0 = 0, D�10 = 0, D�20 = 0 at z = 0 and at z = 1. (38)

For the case Da = 0, ca = 0, Eq. (35) reduces to

D2W0 = 0, (39)

and the solution satisfying the boundary conditions is W0 = 0. Then, Eq. (36) reduces to

D2�10 − λ21�10 = 0, (40)

where λ1 = √
φSc1s. The general solution of Eq. (40) is of the form

�10 = E cosh λ1z + F sinh λ1z, (41)

where E and F are arbitrary constants. The boundary conditions require that F = 0 and
sinh λ1 = 0. Hence, λ1 = 0, and so s = 0 and thus ω = 0.

This implies that oscillatory instability is ruled out when Da = 0.
In the case where Da is not zero, the general solution of Eq. (35) is

W0 = A + Bz + C cosh λ0z + D sinh λ0z, (42)

where λ0 =
(
1+cas
Da

)1/2
.

After some algebra, one finds that satisfaction of the boundary conditions requires that
cosh λ0 = 1, and hence λ0 = 0, a real quantity. Again, the implication is that ω must be
zero.

(This analysis suggests that there is also something singular about the non-oscillatory
instability problem except when Da is infinite, the case of a fluid clear of solid material.)

For a further investigation, we introduce general solutal perturbation boundary conditions.
We suppose that Eqs. (16) and (17) are to be solved subject to

w′ = 0,
∂w′

∂z
= 0,

∂C ′
i

∂z
− BLiC

′
i = 0, at z = 0, (43)

w′ = 0,
∂w′

∂z
= 0,

∂C ′
i

∂z
+ BUiC

′
i = 0, at z = 1. (44)

Here,

BLi = H ALi and BUi = H AUi , (45)

where the ALi and AUi are solutal flux coefficients at the lower and upper boundaries,
respectively.

The parameters defined by Eq. (45) are commonly called Biot numbers in the case when
the diffusing quantity is heat. They take the value zero for the case of constant flux and
infinity for the case of constant concentration (or temperature). We will call all of them Biot
numbers.
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The boundary conditions given by Eq. (22) now generalize to

W = 0, DaDW = 0, D�i − BLi�i = 0, at z = 0, (46)

W = 0, DaDW = 0, D�i + BUi�i = 0, at z = 1. (47)

For simplicity, in this paper we confine ourselves to the case where the four Biot numbers
are equal, with value Bi . In this case, the critical wave numbers for oscillatory instability and
non-oscillatory instability are the same and can be denoted by acr . We are interested in the
case where Bi is small and consequentially acr is also small. We now have the possibility of
performing an asymptotic analysis in terms of Bi . To this end, it is convenient to introduce
a new length scale so that Bi is moved from the boundary conditions to the differential
equations. Accordingly, we now take H/Bi as the length scale and write

x̃ = Bix = Bix∗/H and D̃ ≡ d/dz̃. (48)

The set of Eqs. (24), (25), (46), and (47) becomes

cas(Bi
2 D̃2 − a2)W = Da(Bi2 D̃2 − a2)2W − (Bi2 D̃2 − a2)W −

2∑

i=1

Rai
Sci

a2�i ,

(49)

φs�i − W = 1

Sci
(Bi2 D̃2 − a2)�i , i = 1, 2, (50)

W = 0, DaD̃W = 0, D̃�i − �i = 0, at z = 0, (51)

W = 0, DaD̃W = 0, D̃�i + �i = 0, at z = 1. (52)

We immediately see that in Eqs. (49) and (50), the highest order derivatives are multiplied
by the small parameter and so constitute a singular perturbation problem of sixth order. This
is a non-trivial problem whose solution (something that involves boundary layers at both top
and bottom surfaces) we are leaving for a future investigation. In the meantime, to attack the
problem directly, we have made a numerical investigation.

3 Numerical Investigation and Discussion

For neutral stability, we set s = iω, where ω is the dimensionless frequency; ω must be
real and without loss of generality can be taken as nonnegative. We substituted this into Eqs.
(20) and (21) and separated these equations into their real and imaginary components. We
concentrated on the case N = 2. The path described in Straughan (2008), Rees and Bassom
(2000), Barletta and Storesletten (2011), and Barletta et al. (2012) was followed. We treated
Ra1 as an eigenvalue, and for numerical purposes, we treated Ra1 as a function of z. The
statement that Ra1 is in fact a constant then gives the following:

DRa1 = 0. (53)

For the case of Da = 0, the resulting set of equation was solved subject to the following
boundary conditions (which were also separated into their real and imaginary components):

W = 0, D�1 − BL1�1 = 0, D�2 − BL2�2 = 0, �1 = 1 at z = 0, (54)

W = 0, D�2 + BU2�2 = 0 at z = 1. (55)

The last equation in (54) is a normalization constraint for the eigenfunction �1 (z).
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In addition, the following boundary condition at z = 1 was utilized:

DIm (�1) + BU1Im (�1) = 0 at z = 1. (56)

For given values of a and Ra, we solved the resulting boundary value problem by using the
Chebfun V4 package (Driscoll et al. 2008; Driscoll 2010) written for MATLAB (MATLAB
R2015a, MathWorks, Natick, MA, USA). We then iterated with respect to ω (using the
MATLAB routine fzero) until the following boundary condition was satisfied:

D Re (�1) + BU1 Re (�1) = 0 at z = 1. (57)

We then varied a until we found the smallest value of Ra. The MATLAB routine fminbnd
was used to find the minimum. The values of Ra1cr and acr were thus obtained.

Unfortunately, we found that for the system of Eqs. (49)–(52), we were unable to obtain
convergence for values of Bi less than 0.1. However, for the system (20), (21), (53)–(57), we
were able deal with Bi as small as 0.000001. Calculations were made for the case Da = 0,
ca = 0, Sc1 = 1, Sc2 = 10.Our results indicated that the non-oscillatory instability boundary
is given by

Ra1 + Ra2 = Ra0, (58)

while the oscillatory instability boundary is given by

Sc2
Sc1 + Sc2

Ra1 + Sc1
Sc1 + Sc2

Ra2 = Ra0, (59)

with frequency ω given by

ω2 φ2Sc1Sc2
a2cr0

= −μ(Bi)�R, (60)

provided that the right-hand side of Eq. (60) is positive. The general picture of the situation
is given in Figure 9.2 of Nield and Bejan (2013).

Here, Ra and acr0 are the critical Rayleigh number and critical wave number for the
mono-diffusive case, with values given in Table 1 (which are more precise than the values
presented graphically by Wilkes 1995), while

�R = Sc1
Sc1 + Sc2

Ra1 + Sc2
Sc1 + Sc2

Ra2 (61)

and μ(Bi) is a factor given approximately by

μ = 0.38Bi1/2. (62)

Further, approximately

acr0 = 2.13Bi1/4. (63)

Thus,

ω ∼ μ1/2acr0 ∼ Bi1/2. (64)
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Table 1 Values of the
mono-diffusive critical wave
number and critical Rayleigh
number for various values of the
Biot number Bi

Bi acr0 Ra0

0.000001 0.068 12.010

0.00001 0.120 12.033

0.0001 0.214 12.105

0.001 0.381 12.332

0.01 0.677 13.059

0.1 1.201 15.391

1 2.057 22.352

10 2.879 33.860

100 3.111 38.721

1000 3.138 39.400

10,000 3.141 39.471

100,000 3.142 39.478

4 Conclusions

The imposition of isoflux boundary conditions for the perturbation concentrations leads to a
singular solution for the oscillatory instability problem. Formally, oscillatory instability can
still occur as Bi tends to zero, but the frequency of oscillation tends to zero. Thus, in practical
situations, it is likely that no oscillations will be observed. In this sense, isoflux boundary
conditions do indeed inhibit oscillatory double-diffusive convection.
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