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Abstract Predictive modeling of pore-scale multiphase flow is a powerful instrument that
enhances understanding of recovery potential of subsurface formations. To endow a pore-
scalemodeling toolwith predictive capabilities, one needs to be sure that this tool is capable, in
thefirst place, of reproducingbasic phenomena inherent inmultiphase processes. In this paper,
weoverviewnumerical simulations performedbymeans of density functional hydrodynamics
of several important multiphase flow mechanisms. In one of the reviewed cases, snap-off
in free fluid, we demonstrate one-to-one comparison between numerical simulation and
experiment. In another case, geometry-constrained snap-off, we show consistency of our
modelingwith theoretical criterion. In othermore complex cases such as flow in pore doublets
and simple system of pores, we demonstrate consistency of our modeling with published data
and with existing understanding of the processes in question.

Keywords Pore scale · Two-phase flow · Density functional hydrodynamics

1 Introduction

On the microscopic scale, displacement of multiple immiscible phases in cases where inter-
facial tension cannot be neglected is governed by elementary processes at liquid–liquid,
liquid–gas, liquid–solid, and gas–solid interfaces involving capillary, viscous, and also iner-
tial forces. Such situations are encountered in configurations that can be represented by
capillaries, e.g., microfluidic devices and porous media. In particular, porous media are of
large interest, due to their relevance for many natural processes in biology, geology, hydrol-
ogy, and technical processes ranging from fuel cells to oil recovery and CO2 sequestration.
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Many researchers have studied such processes in porous media or transparent micromodels
(Roof 1970; Chatzis and Dullien 1983; Lenormand et al. 1983; Lenormand 1990; Cramer
2004) and have identified a set of elementary microscopic processes into which multiphase
flow during displacement can be decomposed. The accurate modeling of such processes
poses a substantial challenge to numerical modeling, in particular with respect to simulating
microscopically resolved displacement in relatively large systems, e.g., multiphase flow in
porous media involving many thousands of pores.

To date, there are a number of techniques used for multiphase flow modeling including
possible application for multiphase flows in pores. The most commonly known methods
are (listed in alphabetical order) Cahn–Hilliard equation method, embedded interface, free
boundary problem, lattice Boltzmann, level set, phase field, pore network, smooth particle
hydrodynamics, and volume of fluid (VOF). These approaches address different challenges
of the general problem, while having multiple advantages and disadvantages. Our overviews
of these methods can be found elsewhere (Demianov et al. 2011, 2014) and are not repeated
herein. We also refer the reader to the reviews by Anderson et al. (1998), Jakobsen (2008),
Meakin and Tartakovsky (2009), Joekar-Niasar et al. (2012), Kim (2012), and Blunt et al.
(2013).

In this work, we describe the density functional hydrodynamics (Dinariev 1995, 1998)
and its application to the numerical study of basic multiphase phenomena. We start from a
brief historical overview pertaining to this method. This overview is a reduced version of the
more detailed one that is published elsewhere (Demianov et al. 2011, 2014).

Capillary action has been of scientific interest since the nineteenth century. Such famous
scientists as Laplace, Young, and Gauss performed studies of equilibrium capillary surfaces
even before 1830. Early studies by Poisson, Maxwell, and Gibbs provide the understanding
that immiscible phases are separated not by a mathematical zero-thickness surface, but by a
transition layer having finite thickness. Gibbs (1876) is also the author of the first consistent
model of thermodynamic equilibrium between phases, which is still in use today. The first
systematic works explaining the structure of the interfacial zone in the frame of the gradient
approach were conducted by Rayleigh and van derWaals. In particular, van derWaals (1894)
used his gradient theory to predict correctly the width of typical interfaces. Further on,
Korteweg (1901) enhanced the existing gradient models by calculating the static stress tensor
term responsible for surface tension.

Even with all their success, the first gradient theories of interfacial zone were phe-
nomenological. However, a rigorous description is possible in the frame of the density
functional theory (DFT), whose central idea is representation of energy of a heterogeneous
system as a functional of densities of chemical components constituting this system. The
first consistent results in this direction are related to Thomas–Fermi model of electron
gas developed in 1927; see review in the book by Parr and Yang (1989). But the gen-
uine interest in DFT occurred between 1964 and 1965 after the works by Hohenberg and
Kohn (1964). Since then, a lot of works on this subject were published. The 1998’s Nobel
prize in chemistry was awarded to Walter Kohn, the major contributor in developing the
DFT. Currently, this approach has been successfully applied to quantum chemistry, nuclear
physics, physics of semiconductors, superconductivity, and diamagnetics. In his Nobel lec-
ture, Kohn (1999) has identified 13 various directions of possible DFT generalization, among
them heterogeneous systems and Helmholtz free energy at finite temperatures. Density func-
tional hydrodynamics (DFH) of multiphase compositional mixtures, developed by Dinariev
(1995), can be considered as an example of such generalization of DFT. Previously, order
parameter functional methods in hydrodynamics were used for separate set of problems by
Hohenberg and Halperin (1977), Evans (1979), Harrowell and Oxtoby (1987), Emmerich
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(2003), and Onuki (2004). The DFH method presented here has no order parameter con-
cept.

DFH uses classical mass, momentum, and energy conservation laws with specific con-
stitutive relations. These constitutive relations are derived to ensure consistency between
hydrodynamic and thermodynamic descriptions of multiphase compositional systems in the
frame of the density functional approach. The specific expression for the density functional
uses square gradients of molar densities, which enables description of surface tension. The
thermodynamic state of the mixture is described by means of bulk and surface Helmholtz
energies, where the latter enables correct description of liquid–solid interaction, i.e., wetta-
bility and adsorption. The detailed theory of DFH is provided in Sect. 2, and a simple solution
to the DFH equations for 1D isothermal compositional flow is provided in the “Appendix 1.”
Lastly, the simulations presented in this paper have been carried out by means of the direct
hydrodynamic simulator (DHD) that is a numerical realization of DFH. This simulator is
described briefly in Sect. 3.

Validation is a crucial step for any new modeling approach. We have previously demon-
strated capabilities of DFH by modeling a set of simple two- and three-phase problems
(immiscible liquids without phase transitions) with simple geometry that allow for analytical
description (Demianov et al. 2011, 2014). The direct comparison between numerical and
analytical solutions resulted in maximum errors within 5% for stationary problems and 10%
for dynamic ones using numerical grids of modest resolutions. Also, we have made direct
quantitative comparison between two-phase flow modeling and two-phase flow experiments
in a micromodel (Armstrong et al. 2014, 2015).

In the paper Demianov et al. (2011), we have also presented modeling of problems with
complex physics involving those with the presence of surfactant, mobile solid phase, phase
transitions (even between liquid and solid), with temperature effects and turbulence. The
modeling results have showed both versatility and consistency of DFH over a wide range of
physical phenomena. In this paper, we narrow the focus on more applied problems, particu-
larly on the processes inherent in porous media multiphase flows.

Multiphase flow in porous media is characterized by extremely complex flow patterns; the
complexity is primarily derived from the intricacy of pore channels throughwhichmultiphase
fluids move. Besides, such type of flow is essentially cooperative meaning that events in
some of the pores may have non-local effects triggering a cascade of developments in other
pores (Armstrong et al. 2014; Moebius and Or 2014). Usually, one is interested in averaged
characteristics of such flows representative for Darcy-scale behavior. Probably the most
essential among them is the so-called residual fluid saturation. For example, speaking in oil
industry terms, this is the residual, or unrecovered, oil saturation after water flood. Correct
prediction of such macroscopic quantities, however, requires comprehensive understanding
of the basic multiphase mechanisms that drive fluids on the pore scale. These mechanisms
are essentially related to the balance between viscous and interfacial forces. Even a slight
change in the balance between forces may considerably influence residual fluid saturation.
This is why correct and detailed understanding and prediction of the relevant elementary
multiphase displacement mechanisms is paramount.

A particular strength of our method, DFH, comes from its capacity to model complex
physics (e.g., surfactants, phase transitions, non-Newtonian rheologies, temperature effects,
mobile solid bodies, and turbulence) within the practical problem statements relevant for
industrial applications; the simulations are always performed using a single numerical code.
Recently, we have demonstrated a set of such applications for the problems in oil industry
(Koroteev et al. 2013, 2014) and microfluidics (Armstrong et al. 2014, 2015).
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In Sect. 4, we present a number of practical simulation scenarios demonstrating various
elementary multiphase processes related to immiscible fluid/fluid displacement in simple
geometries for a range of capillary numbers. The modeling results are compared to experi-
mental observations and/or literature data. The main focus is given to displacement processes
where interfacial discontinuities occur, such as snap-off, which is considered to be the main
mechanism responsible for capillary entrapment of non-wetting fluids. Our results are pre-
sented for two-phase flow in crossing ducts similar to those described in the classical work
by Lenormand et al. (1983) and Lenormand (1990), circular pore with constriction analo-
gous to that studied by Roof (1970), and different pore doublet models used routinely for
studying basic two-phase mechanisms (Chatzis and Dullien 1983; Lake 1989). The results
demonstrate that DFH constantly reproduces the published experimental data. In addition,
we provide one-to-one comparison between the numerical simulation and experiments on
droplet pinch-off dynamics recorded with a high-speed camera. We validate consistency
with the existing theory of geometry-related snap-off. Overall, the results affirm the predic-
tive capability of the method to model multiphase flow either in porous media or in highly
constricted geometries.

2 Theoretical Base of the Density Functional Hydrodynamics

Density functional theory is widely known as a breakthrough approach in quantum chemistry
(Hohenberg and Kohn 1964; Koch and Holthausen 2001). It is based on the idea that the
energy of the system considered can be represented as a functional depending on the density
of particles. The application of density functional theory to compositional hydrodynamics
was first presented by Demianov et al. (2011) and Demianov et al. (2014). An exposition
of the theoretical base for this approach is given by Dinariev (1995) and Dinariev (1998).
Herein, we restrict ourselves to the basic concepts and equations, which are necessary for
modeling multiphase flow.

First, one must specify basic fields describing the instantaneous state of the mixture. It
is convenient to introduce, as basic fields, the following quantities: chemical component
molar densities ni , average mass velocity va , and internal energy density u. Here is a brief
summary of how these parameters can be defined. The summation over repeated indices is
implied everywhere.We use shortened notations for partial derivatives in respect of Cartesian
coordinates ∂a = ∂/∂xa , to time ∂t = ∂/∂t and to molar density of i th chemical component
∂ f,i = ∂ f/∂ni .

Let us assumeahomogeneousmixture ofM chemical components inside a spatial region D
of volume V with the amount of each type of molecules being NiD (i = 1, . . . , M). To avoid
large numbers, the quantities NiD are measured in moles and by definition ni = NiD/VD .
If the mixture is inhomogeneous, one can define ni locally by establishing a small volume
limit, such as ni = ni (t, xa) = limV→0(NiD/VD). Here, t is time and xa are Cartesian
coordinates.

By counting the flow rate of molecules through a small area inside the mixture, one can
define the component flux Iia = Iia(t, xb). The component fluxes are used to calculate the
mass flux Ia = mi Iia , wheremi is the molar mass of the i th component. By introducingmass
density ρ = mini , it is possible to define an average mass velocity va = ρ−1 Ia . Component
flux Iia can be represented as a combination of average transport niva and diffusion flux
Qia :

Iia = niva + Qia, (1)
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where by definition diffusion flux does not influence net mass transfer.

mi Qia = 0. (2)

To calculate the total energy ED of the molecules inside region D, which is the sum
of kinetic and potential energy (the latter being the result of molecular interaction), the
energy density can be calculated by establishing a small volume limit, ε = ε(t, xa) =
limV→0(ED/VD). Internal energy density can be defined by subtracting the kinetic energy
density from the total energy:

u = u(t, xa) = ε − 1

2
ρvava . (3)

If a mixture occupies some spatial region D, then we assume the existence of the entropy
functional

SD = SD[u, ni ]. (4)

Here, the value of entropy SD = SD(t) is determined at any moment of time by the density
fields ni = ni (t, xa) and internal energy field u = u(t, xa). It can be argued that the entropy
functional can also depend on the velocity field va = va(t, xb). But, the absence of velocity
dependence in the right side of Eq. (4) can be derived rigorously from the local Galilean
invariance (Zubarev 1974). In Eq. (4) and below, the term “functional” is used in the sense
that the considered quantity depends on the spatial fields (and not on point values) at a
particular moment of time.

The explicit expression (4) is introduced into mechanics of continuous media, in general,
(and into hydrodynamics in particular) from other branches of science, such as physical
chemistry and statistical physics. In many cases, it is possible to use the following functional,
which is considered a good approximation to the exact functional:

SD = SD[u, ni ] =
∫

D

θ̃dV +
∫

∂D

s∗dA, (5)

θ̃ = s(u, ni ) − 2−1αi j (nk)∂ani∂an j , (6)

where ∂D is the boundary surface for the region D (when the region is finite), s = s(u, ni )
is the entropy bulk density for homogeneous mixture, αi j is the positive-definite symmetric
matrix, and s∗ = s∗(u, ni ) is the entropy surface density (not equal to zero if ∂D is a contact
surface with some immobile solid). Substantiation of the square gradient approximation (6)
used in the density functional (5) can be found in (Barral and Hansen 2003; Hansen and
McDonald 2006).

The model, shown in Eqs. (5) and (6), is adequate for many important phenomena, but it
is not universal. Up to now, it was successfully used to simulate multiphase multicomponent
phenomena with or without phase transitions, surfactants, mixtures with solid phases (e.g.,
gas hydrates or sand particles), and thermal effects (Demianov et al. 2011, 2014). However,
it is not sufficient for the simulation of electrokinetic phenomena or structured liquids (e.g.,
liquid crystals), which require more complex expressions for the entropy functional.

For the hydrodynamic variables, we use the classical continuous mechanics set of equa-
tions that are local conservation laws for chemical components of the mixture, momentum,
and energy, respectively (Sedov 1997):

∂t ni + ∂a(niva + Qia) = 0, (7)

ρ(∂tva + vb∂bva) = ∂b pab, (8)

∂t u + ∂a(uva + qa) = pab∂bva . (9)
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The boundary conditions at the immobile solid walls are as follows:

va
∣∣
∂D = 0, (10)

la Qia
∣∣
∂D = 0, (11)

∂t u∗
∣∣
∂D = la(q

ext
a − qa), (12)

(u∗,i − T s∗,i − Tαi j la∂an j )
∣∣
∂D = 0. (13)

Here, pab is the stress tensor, qa is the heat flux inside themixture, T−1 = (
∂s
∂u

)
ni
—inverse

temperature, u∗ = u∗(u, ni ) is the surface energy, la is the internal unit normal for ∂D, and
qexta is the external heat flux. Boundary conditions (10) through (13) possess clear physical
meaning and can be explained in the following way:

• Eq. (10) is the usual no-slip condition for the average mass velocity
• Eq. (11) determines that the solid surface ∂D is impermeable to the diffusion flux Qia

• Eq. (12) is the boundary energy conservation law
• Eq. (13) reflects the wetting properties of the boundary ∂D

The hydrodynamic model can be closed by specifying: (a) explicit expressions for the ther-
modynamic potentials s, u∗, s∗, and (b) constitutive relations for the fluxes Qia , pab, qa .
The former are determined by the chemistry of the mixture, while the latter should be intro-
duced in accordance with the entropy production principle. The thermodynamic properties
of mixture are better described by Helmholtz energy functions

f = f (T, ni ) = u − T s, (14)

f∗ = f∗(T, ni ) = u∗ − T s∗, (15)

because all other thermodynamic potentials can be derived from (14) and (15). Explicit
expressions for (14) and (15) will be discussed later. In order to derive constitutive relations,
it is useful to break the stress tensor pab into the sum of the static part σab and the viscous
part τab

pab = σab + τab. (16)

The static stress tensor does not depend on the velocity field and can be calculated from
the density functional using variational approach (Dinariev 1995, 1998, concerning calculus
of variations see also Gelfand and Fomin 1963).

σab = ( f + 2−1Tαi j∂ani∂an j + T	i ni )δab − Tαi j∂ani∂bn j . (17)

Here and below, we use notation κi =
(

∂ f
∂ni

)
T
as chemical potential,

	0 = T−1,	i = −T−1κi − 1

2
αk j,i∂ank∂an j + ∂a(αi j∂an j ). (18)

It is important to mention two properties of σab. First, it is proportional to hydrostatic
pressure p in the case of a homogeneous equilibrium mixture

σab = −pδab. (19)

Second, if the mixture is in a state of equilibrium, σab satisfies the equations of mechanical
equilibrium

∂bσab = 0. (20)

This tensor can be used to calculate the interfacial tension (IFT) between fluid phases.
Indeed, if we consider an equilibrium 1D solution T = const, ni = ni (x1) describing the
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transition from one phase ni− at x1 → −∞ to another phase ni+ at x1 → +∞, then IFT is
calculated by the following procedure (Ono and Kondo 1960)

γ =
+∞∫

−∞
(σ22 − σ11)dx

1 = T

+∞∫

−∞
αi j∂1ni∂1n jdx

1. (21)

From (5), (6) and (7)–(13), one can derive equations for local and global entropy change
rate

∂t θ̃ = −∂a Jsa + σ, (22)
dSD
dt

=
∫

∂D

laT
−1qexta dA +

∫

D

σdV, (23)

Jsa = (u	0 + ni	i )va + T−1σabvb + 	AQAa + αi j∂t ni∂an j , (24)

σ = QAa∂a	A + T−1τab∂bva . (25)

From here on, we use indices A, B = 0, 1, . . . , M . As before, the summation is implied
over the repeated indices. The canonical form of the entropy Eqs. (22) and (23) implies that
quantities (24) and (25) should be interpreted as entropy flux and local entropy production
rate, respectively (de Groot and Mazur 1962; Prigogine 1967). To obtain the nonnegative
entropy production, one must keep constitutive relations consistent with inequalities

QAa∂a	A ≥ 0, (26)

τab∂bva ≥ 0. (27)

There are many ways to satisfy these inequalities. Here, we give only the simplest options.
For the fluxes QAa , one can use the following constitutive relation:

QAa = μAB∂a	B (28)

withμAB being a nonnegative definite symmetric matrix with one zero eigenvalue:μAimi =
0. For the viscous stress tensor τab, one can use the following constitutive relations:

τab = ηvδab∂cvc + ηs

(
∂avb + ∂bva − 2

3
δab∂cvc

)
(29)

with ηv and ηs being nonnegative bulk and shear viscosity coefficients, respectively. In a
viscous linear model, these coefficients can depend on local temperature and component
densities. In nonlinear viscous models, they can depend also on local velocity gradient.

The constitutive relations (28), (29) close the hydrodynamicmodel. To apply this model to
the description of particular multiphase flow scenarios, one should specify explicitly the ther-
modynamic potentials (14) and (15) and the transport coefficients, as shown in (28) and (29).
This can be done using experimental or tabular data on bulk and surface thermodynamics,
thermal and diffusive transport, and viscous stresses. Also, certain interpolation/extrapolation
procedures can be used when input data do not cover the entire range of temperature and
component density values (Demianov et al. 2014).

Isothermal hydrodynamic equations can be derived using non-isothermal equations, if one
assumes constant temperature

T = const (30)
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and excludes from consideration the energy Eq. (9) with boundary condition (19). In this
case, the constitutive relations are effectively reduced to a simpler system of equations

Qia = μi j∂a	 j . (31)

In this paper, we consider several applications to isothermal problems, though the existing
numerical simulator (see below) can handle non-isothermal cases, as well.

To conclude this section, we provide a brief summary of the equations presented and
explain how various multiphase phenomena are accounted for in the framework of DFH
(Demianov et al. 2011, 2014).

• DFHgoverning equations are expressed by conservation laws (7) through (9) closed using
relations (16) through (18) and (28) and (29) together with the boundary conditions in
(10) through (13). In isothermal case condition, Eq. (30) holds, and Eq. (9) is omitted
together with the boundary condition (12), while Eq. (28) is reduced to (31).

• Interfacial tension is taken into account by means of molar density gradient terms that
enter the expression for bulk entropy (6) or bulk Helmholtz energy (14) in isothermal
case. Each of these expressions includes the set of gradients of componentmolar densities
as indicator of interfacial region. The interfacial tension γ is related to the coefficients
αi j by Eq. (21). Assuming γ is known from experiment, Eq. (21) is solved numerically
to find parameters αi j . Alternatively, αi j can be found by numerical modeling of a typical
3D Laplace jump problem. In both approaches, quantities αi j are corrected upon results
of the modeling and thus found iteratively. The number of free parameters in αi j should
represent the number of physical degrees of freedom that dependon the particular problem
conditions, i.e., number of chemical components and phases. In the simple case of two
immiscible phases and two components, only one free parameter is needed. Therefore,
matrix αi j is taken to be proportional to the identity matrix. In the modeling examples
described in this paper, interfacial tension does not depend on composition and so it is
sufficient to use constant αi j .

• If adsorption phenomena are to be modeled (not the case for the examples presented in
this paper),αi j can no longer be constant. Indeed, adsorption into interfacial area between
mobile liquid phases is governed by assuming that coefficients αi j in (6) are functions of
local composition, i.e., αi j = αi j (nk). In this case, the minimum energy state is achieved
when certain components (i.e., surfactants) adsorb on the interface to reduce interfacial
tension, which leads to reduction in energy. Thus, adsorption and reduction in interfacial
tension are two interrelated processes that happen simultaneously.

• Wettability (interfacial tension between liquid and solid) and adsorption onto solid bound-
aries are determined by the boundary condition (13).

• Coalescence and breakup of droplets and any other topological changes in interfacial
boundaries occur naturally and can be traced from the evolution of molar density fields
that occurs in such a way as to increase total entropy of the system; see Eq. (22) through
(27).

• Motionof interfacial boundaries over solid surface, i.e., contact linemovement, is possible
despite the presence of no-slip boundary condition (10); it is enabled by the nonlinear
diffusion fluxes (28) that enter the molar density conservation Eq. (7). These fluxes are
allowed to be nonzero over the surface, because even in being so they do not transfer mass
[see the definition in Eq. (28) and the comment therein] and, therefore, do not violate the
boundary condition (10).

• DFH is not limited to Newtonian rheology and can handle non-Newtonian rheologies by
simply using an appropriate expression for viscous stress tensor instead of the Navier–
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Stokes’s one in (29). In particular, viscoelastic, visco-elasto-plastic, as well as the well-
known Herschel-Bulkley rheological models, can be employed (Demianov et al. 2011,
2014).

• Phase transitions are simply governed by the bulk entropy or Helmholtz energy prop-
erties following the classical theories (Prigogine 1967; Stanley 1971); their particular
expressions should be selected to represent fluid experimental behavior.

• The same system of hydrodynamic Eqs. (7)–(9) is solved in each spatial point of a
domain containing multicomponent mixture. Accordingly, the evolution of the system is
described by the evolution of molar densities of chemical components and average mass
velocity. Information about actual distribution of phases is obtained by analyzing molar
density distributions. By knowing composition of phases (in molar densities), one is able
to tell at which point which phase is currently present. Thus, no phase indicator field is
used in DFH. Phase boundaries also do not require any special description. One learns the
position of an interface by simply analyzing local molar density gradients. The interface
is always determined by sharp (but continuous) transition of mixture composition from
that related to one phase to that inherent in another phase (such approach is similar to
the so-called diffuse-interface method, which is usually used over concentration or phase
indicator fields, e.g., Emmerich (2003).

There are extensions of DFH published elsewhere (Demianov et al. 2014) that significantly
widen the range of phenomena that can be modeled. Further clarification of the DFHmethod
can be found in “Appendix 1” where we provide a detailed overview of a 1D analytical
solution to the DFH equations for two-phase system.

3 DHD Simulator

The direct hydrodynamic (DHD) simulator is a computer code that solves numerically the
dynamical equations of the density functional hydrodynamics (7)–(9) with boundary con-
ditions (10)–(13). The code uses an explicit conservative uniform finite volume numerical
scheme on a staggered grid. The numerical method possesses first-order approximation in
time and second order in space. A particular numerical scheme implemented in DHD was
specifically designed to accommodate for the DFH equations. The scheme is called Tensor-
Aligned Conservative Uniform scheme on a Staggered grid (TACUS); its description can be
found in Demianov et al. (2014). A detailed description and analysis of numerical methods
belonging to the same class can be found, for example, in the monographs by Versteeg and
Malalasekera (1995) and Ferziger and Peric (2002).

Historically, DHD simulator was developed by Schlumberger Moscow Research (SMR)
in 2005; however, the first rudimentary versions of the code were created by some of the
authors as early as 2000. In 2009–2011, an optimized GPGPU version of the DHD simulator
code for GPU-based computer clusters was developed in SMR. This version of the code
has enabled a 30- to 40-fold increase in performance in comparison with the previous CPU
version. Depending on the physics of the multiphase problem, the typical scenarios can be
simulated on models with sizes from 2003 (using several GPGPU cards) to 10003 (using a
64-GPGPU computer cluster) grid blocks within a day.

To date, DHD simulator has been extensively verified by numerous numerical exercises
comprising: a) standard grid convergence tests (Demianov et al. 2014), b) various single-phase
and multiphase problems that have analytical solutions (Demianov et al. 2011, 2014). Also,
simulator’s capabilities were demonstrated by solving various multiphase problems with
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complexphysics, e.g., non-Newtonian rheology, phase transitions, the presenceof surfactants,
mobile solid phase, turbulence, and thermal effects (Demianov et al. 2011, 2014). In this
paper, we demonstrate additional verification of the DHD simulator in respect of typical
two-phase pore-scale phenomena inherent to porous media flow. We start with elementary
displacement mechanisms and then pay special attention to snap-off processes which involve
topological changes in interfaces.

4 Numerical Results

In this section, we focus onmodeling typical two-phase phenomena observed at the pore scale
(orders from about 1µm to 1mm, where interfacial tension is usually dominating) in porous
materials and in microfluidic devices. The typical macroscopic flow rates in porous media are
on order of 0.1 to 1 m/day (Lake 1989). The balance between viscous forces and interfacial
tension is usually described by the concept of capillary number Nc = ηsv/γ , which lies
mostly between 10−5 and 10−8, i.e., the displacement is an interfacial tension-dominated
process. However, Haines jumps and snap-off events typically last only a few milliseconds
as shown by acoustic measurements of pore-scale displacements (DiCarlo et al. 2003). This
leads to Reynolds numbers Re > 1 (Mohanty et al. 1987), which implies that inertial forces
are also relevant for such processes. These forces are described by the full viscous stress tensor
(29) present in DFH. In single-phase single-component case, DFH equations are reduced to
the classical Navier–Stokes equations (providing that accounting for liquid–solid interaction
that may be relevant even in single-phase case is not needed). The timescale of the snap-off
indicates that the short time stepping is needed when solving the equations numerically. This
is compatible with the explicit numerical scheme used in DHD.

Some of the basic two-phase mechanisms that involve interfacial tension are:

• piston-type wetting fluid displacement by non-wetting fluid (drainage) and vice versa
(imbibition) (Fig. 1a, b) (Sect. 4.1)

• wetting fluid meniscus collapse (Fig. 1c) (Sect. 4.1).
• snap-off in free fluid (Sect. 4.2.1).
• geometrically constrained snap-off through wetting films (Sect. 4.2.2).
• snap-off and trapping in pore doublets (Sect. 4.2.3)
• trapping and flow pattern at different flow regimes in simple system of pores (Sect. 4.2.4)

All these phenomena happen more or less simultaneously in different regions of a complex
pore system, such as hydrocarbon reservoir rock. Consequently, adequate modeling of such a
system requires resolution of the mentioned mechanisms using a single unified approach. In
other words, interfacial tension, wettability, topological changes in phase boundaries (includ-
ing droplet coalescence and breakup), and moving contact lines must be accounted for in a
consistent way and in the presence of significant density and viscosity contrasts that may span
several orders of magnitude. This poses a significant challenge for many traditional modeling
techniques; however, it lies completely within the scope of DFH (the corresponding review
can be found in Demianov et al. 2011).

Simulation of the problems described in the following sections was carried out by the
DFH-based (Sect. 2) DHD simulator (Sect. 3) using a small portion of a GPU-based cluster
solution. In all cases, we used the same code with the same discretized equations discussed
in Sect. 2. Depending on the particular case, the simulation was performed using 1 or 2
computational nodes (each node has four GPU Fermi cards with 3 Gb RAM connected via
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high-speed PCI Express bus), while the simulation time ranged from a fewminutes to several
hours.

Unless otherwise stated, the simulations were carried out using the same pair of flu-
ids specified by the following properties: ρA = 1000 kg/m3, ρB = 800 kg/m3, m1 =
18 kg/kmol,m2 = 100 kg/kmol, where ρA, ρB—mass density of phase A, B, m1,m2—
molar mass of component 1, 2. The phases were defined in such a way that phase A consisted
100% of component 1, while phase B consisted 100% of component 2. Interfacial surface
tensionwas γAB = 0.044N/m. Shear viscosities of phases A andBwere ηA = 0.001 Pa s and
ηB = 0.003 Pa s. The construction of Helmholtz energy functions (14) and (15) is essentially
a problem of chemical thermodynamics. For the present simulations, we used an approach,
which is described in our previous publications; see Demyanov and Dinariev (2004a, b),
Dinariev and Evseev (2005), and also Demianov et al. (2011, 2014) and references therein.
The key statements are also provided in “Appendix 2.”

In visualization of numerical results (see below), we represent by color the relative amount
of either fluid inside the respective grid block. So the resolution of the interface is determined
by the size of the grid cell.

4.1 Piston-Type Motion and Meniscus Collapse in Two Crossing Ducts

Piston-type displacements have been proposed by Lenormand et al. (1983) and Lenormand
(1990) as elementary processes in two-phase flow at the microscale. For drainage (non-
wetting fluid displaces wetting fluid), the flow can only occur when pressure at the entrance
of a capillary equals or exceeds a threshold pressure determined by the capillary geometry
and interfacial tension between wetting and non-wetting fluids (Lenormand et al. 1983),
whereas in the case of imbibition (wetting fluid displaces non-wetting fluid), the process
starts spontaneously once the wetting fluid is put in contact with the capillary entrance.

There is also a simple related case of capillary–gravity equilibrium in a single circular
capillary, which can be analytically specified in both statics and dynamics. We had already
used this case for the validation of the DFH and DHD simulator (Demianov et al. 2014) in
the past. Our aim here is performing a study in a more complex geometry with two crossing
square-shaped ducts (Fig. 1) described by Lenormand et al. (1983) and Lenormand (1990).
Some preliminary results related to this study have been reported by Koroteev et al. (2013,
2014).

The parameters used in the simulations are as follows:
Geometry: 3D model with sizes 6mm× 6mm× 1mm approximated by 300× 300× 50

cubic cells, the square duct side length was 1mm.
The wetting properties were defined by γBs − γAs = 0.031N/m (case 1) and γAs − γBs =

0.031N/m (case 2), where γAs and γBs are the surface tensions in contact with the solid

Fig. 1 Schematic representation of piston flow (a, b), and meniscus collapse (c) in a square duct
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Fig. 2 Piston-type flow from three ducts in imbibition scenario of case 1. Phase A is shown in blue, and phase
B is shown in red semitransparent

(ducts’ walls) for phases A and B. The corresponding contact angle follows from the Young
formula

cos θ = γAs − γBs

γAB
(32)

and equals 45◦ for case 1 (phase A is wetting) and 135◦ for case 2 (phase B is wetting).
In Fig. 2, we present the simulation results corresponding to case 1. Initially, both ducts

of the model are filled with non-wetting phase B (Fig. 2a). In the simulation, three out of
four ducts were connected to phase A reservoir with the same reference pressure as in phase
B. The wetting phase A invaded the model spontaneously causing piston-like displacement
of the non-wetting phase (Fig. 2b–f). The contact angle is close to 45◦, and corner flow of
wetting fluid is observed throughout the simulation. The overall displacement development
corresponds closely to the description given by Lenormand et al. (1983).

In Fig. 3, we demonstrate a similar scenario except that the reservoirs with the wetting
phase A are now connected to two ducts (Fig. 3a). The frames (b)–(f) show the piston-like
displacement. The particular phase configuration enables for the temporal formation of a
single meniscus (c) inside the wider area of the crossing ducts. The meniscus soon meets the
corner (d) and breaks into two menisci again (e). This mechanism has also been observed
experimentally by Lenormand et al. (1983).

In the final simulation of this series, we deal with non-wetting fluid displacing the wetting
fluid with the end of Case 2 as the initial condition. Figure 4a shows the model filled with
wetting phase A. The non-wetting phase B was injected through two ducts, while the other
two were connected to the reservoirs with phase A at reference pressure. The injection
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Fig. 3 Piston-type flow from two ducts in imbibition scenario of Case 1. Phase A is shown in blue, and phase
B is shown in red semitransparent

pressure was slightly above the minimum pressure enabling for the entrance of the non-
wetting phase into the ducts. The dynamics are presented in Fig. 4b–f. Both phases, in the
captured frames, were made semitransparent to better reveal the structure of the interfaces.
Unlike the scenarios from Case 1, now we notice trapping of the wetting phase in corners of
the ducts (Fig. 4e, f). This feature is characteristic for drainage processes and is observed in
experiments (Lenormand et al. 1983 and Lenormand 1990).

4.2 Snap-Off Mechanisms

Another important class of two-phase phenomena is related to snap-off, i.e., when a single-
phase body breaks or disrupts into two. This can occur under various circumstances; for
example, a liquid phase can drip from an outlet (nozzle or needle) forming a droplet. Eventu-
ally, the droplet can become separated from the liquid cluster’s body as it grows larger and the
pressure inside it falls below the pressure on the outlet end. Under the influence of gravity, the
separation can occur earlier; a growing droplet gets so heavy that surface tension connecting
it to the outlet becomes insufficient and the droplet detaches. In some cases (depending on the
liquid properties and flow rate), liquid pouring from an outlet can form a single continuous
filament. But, gravity–capillary waves propagating along the filament can disrupt it in one or
several locations, thus causing snap-off (Rayleigh instability). Both of these mechanisms are
related to snap-off in free fluids and are reviewed by Clift et al. (1978) and Cramer (2004).
Alternatively, snap-off can occur without influence of any particular bulk force in cases when
the phase body is geometrically constrained by solid walls or bodies in such a way that the
single-phase body becomes unstable and breaks apart (this breakup leads to the forming of
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Fig. 4 Piston-type flow from two ducts in imbibition scenario of Case 2. Phase A is shown in blue semitrans-
parent and phase B is shown in red semitransparent

two fragments having less total surface energy than the parent single body). This phenom-
enon, from here on, called “geometry-constrained snap-off” was studied quantitatively by
Roof (1970).

4.2.1 Snap-Off in Free Fluid

We start by presenting numerical simulations from an example demonstrating snap-off in free
fluid. It is the basis for other snap-off processes studied later. It serves here as an example
demonstrating that topological changes in interfaces are modeled correctly, which is verified
by presenting a spatial and temporal match with experimental data. The model corresponds
to an experimental study performed with water and decane. In the experiment, decane was
slowly injected into water, through a vertical nozzle using a syringe pump to form a droplet
that eventually disconnects from the nozzle. The geometry of the nozzle is specified with
an outer diameter of 1.65mm and inner diameter of 1.19mm. The dynamics of this process
(Fig. 5) was captured using a high-speed camera. The first frame (a) from Fig. 5, captured
at the moment of time 0 s, shows the beginning of necking. At 8 ms, the neck becomes very
thin (b), and at 9 ms (c), it breaks and a decane droplet is formed. Dragged by buoyancy, the
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Fig. 5 Experimental results for pinch-off of a droplet in free fluid. The frames (a) through (f) are captured at
the time moments 0, 8, 9, 10, 15, and 24ms correspondingly

droplet rises and undergoes gravity–capillary oscillations as seen in frames (d) through (e)
captured at 10, 15, and 24 ms, respectively.

In the numerical simulation of this experiment, a parallelepiped model with sizes
18.4mm × 18.4mm × 26.6mm approximated by 400 × 400 × 580 cubic cells was used.
Attached to the center of its lower side (the model was oriented vertically along its longest
edges), the model has a single nozzle with outer diameter equal to 1.65mm and inner diam-
eter equal to 1.19mm. Gravity was applied vertically. To match the physical properties of
the fluids used in the experiments, some of the data in this scenario were different from that
used in the other simulations: ρB = 730 kg/m3, m2 = 142 kg/kmol, ηB = 0.00092 Pa s
and γAB = 0.029N/m. Initially, the model was filled with phase A and phase B was
injected slowly through the nozzle. The results of the numerical simulation are presented
in Fig. 6. The successive frames (a) through (f) correspond to the same moment of time as
the experimental images in Fig. 5. The resemblance between the experimental and numer-
ical results is good. Similar to the experiment results, the model shows necking, breaking
of the neck and pinch-off, and gravity–capillary oscillations. Also, the shapes of the exper-
imental droplet and the simulated droplet are similar at the identical moment of time. Also,
the secondary “satellite” droplet observed in the experiment (Fig. 5d–f) was reproduced
in the numerical simulation (Fig. 6d, f). However, the exact dynamics of this secondary
droplet cannot be expected to be accurate because accuracy in reproduction of this phe-
nomena requires a higher-resolution numerical model; instead, it is worth stressing that
the prediction of this tiny secondary droplet in our numerical simulation is highly signifi-
cant.
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Fig. 6 Numerical modeling results for pinch-off of a droplet in free fluid. The frames (a) through (f) are
captured at the time moments 0, 8, 9, 10, 15, and 24ms correspondingly

We conclude the snap-off in free fluid discussion by referring the reader to Finn (1986)
where pendant drops of various shapes were studied. Also in Thoroddsen et al. (2007), an
experimental series similar to that presented herein can be found.

4.2.2 Geometry-Constrained Snap-Off

Geometry-constrained snap-off occurs in porous media flows in narrow constrictions (pore
throats) where the non-wetting phase is disconnected by swelling of wetting films. It occurs
in imbibition and drainage processes. The example shown here follows closely the work by
Roof (1970) where the non-wetting phase snaps-off in a circular capillary with a constriction
(Fig. 8). Previously, simulations of a similar problem have been demonstrated using an
axisymmetric formulation and the commercial computational fluid dynamics software by
Beresnev et al. (2009) and Beresnev and Deng (2010).

We start with a 3D model with sizes 15mm × 2mm × 2mm approximated by 750 ×
100 × 100 cubic cells, and the diameter of the constriction is equal to 0.28mm (Case 1).
Initially, the model was filled with phase A (Fig. 8a), which uniformly wets the entire surface
of the capillary with a zero contact angle. Then, phase B was injected from the left side of
the model very slowly (the head gradient is close to zero) in order to make dynamic effects
as small as possible. Frames (b)–(g) in Fig. 8 demonstrate the simulation results. It is seen
that the wetting phase has formed a film on a contact with solid boundaries, while the non-
wetting phase comes through the center as a single stream. Frame (b) shows the distribution
of fluids just before phase B reaches the constriction. The subsequent frames (c)–(e) were
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captured with very fine time resolution (0.5 ms) to reveal the snap-off process in detail. Once
phase B passes the constriction, necking occurs in the narrowest point of the constriction
(c). Then, the non-wetting phase filament rapidly becomes thinner (d) and snap-off occurs
(e). The detached droplet flows away and forms a spherical shape once a sufficiently wide
region of the capillary is reached (f). At the same time, more of phase B passes through the
constriction and detaches by the exact same snap-off mechanism. In due course, a train of
detached droplets forms (g).

Tomake our studymore comprehensive,we carried out twomore simulations in the similar
geometries: One 3D model with the size of 15mm × 2mm × 2mm and approximated by
750× 100× 100 cubic cells (the size of the cubic grid block is 20 µm) with the constriction
diameter equal to 0.46mm (Case 2). And another 3Dmodel with the size of 15mm×3mm×
3mm and approximated by 750×150×150 cubic cells, with the constriction diameter equal
to 0.68mm (Case 3). The simulation results for these additional models are presented in
Fig. 9. In each case, the dynamics follows a similar pattern: necking at the constriction [(b)
and (f)] is followed by snap-off [(c) and (g)]. The detached droplet travels away and regains
a spherical shape once the geometrical constrictions are no more preventing it (d).

Also we have conducted a small grid convergence study and simulated one additional case
(Case 2*) with all the parameters of the Case 2 except that the numerical grid was refined
with a factor of 2, so that the grid dimensions were 1500 × 200 × 200.

Roof (1970) describes the snap-off mechanism in a similar geometry. In this paper, both
experimental results and a simplified theoretical model are presented. The energy balance
considerations lead to the conclusion that snap-off occurs in the constriction of the capillary
tube when the radius of the detaching drop is approximately two times larger than the radius
of the non-wetting phase stream in the constriction. Indeed, the stream inside the constriction
has a near cylindrical shape with only one curvature radius rj meaning that capillary pressure
equals pj = γAB/rj. At the same time, the detaching droplet has a near spherical leading
interface with two identical curvature radii rd (Fig. 7). Therefore, capillary pressure of the
detaching droplet is pd = 2γAB/rd. The detachment can only occur when pd ≤ pj (meaning
that separate droplet is more energy favorable since it has less pressure).

The pictures in Figs. 8 and 9 allow for measuring the curvature radii at the outer interface
of the detaching droplet rd(x) and inside the constriction rj. A quantitative analysis of the
simulation results is presented in Table 1 and in Fig. 10, which visualizes the table. The
error bars for the numerical simulation results are determined by the grid resolution; the
smallest error bar corresponds to Case 2* with refined grid. The straight dashed line in
Fig. 10 corresponds to the energy balance criterion rd = 2rj discussed above.

To conclude this subsection, we note first that in all of the simulated cases, the snap-off
occurs exactly in the constriction, which is in complete accordance with the theory. Also,

Fig. 7 Schematic representation of a non-wetting fluid jet and its leading spherical interface inside a capillary
with constriction
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Fig. 8 Geometry-related snap-off, Case 1

the dependence of the detaching drop radius as it appears in the numerical simulation (r̃d)
versus the radius of the jet inside the constriction (rj) follows the correct trend. A quantitative
look at the simulation results reveals a minimal systematic difference between the radii r̃d
and the theoretical one (rd) following from the energy balance. However, the difference
becomes significantly smaller for Case 2* with refined grid. Here, it also worth noting that
the energy balance criterion is a quasi-static approximation not accounting for inertial effects
(snap-off is a fast process having Re > 1 (DiCarlo et al. 2003)) and deformation of the
interface caused by viscous friction. Therefore, one should not ultimately expect an exact
correspondence between the simulation based on the full system of hydrodynamic equations
and this criterion. The correspondence is improved (in relative quantities) for Case 3, where
the constriction is wider and all types of errors (both simulation inaccuracies caused by finite-
difference approximation and inertial effects unaccounted in the energy balance criterion)
become smaller.

4.2.3 Immiscible Displacement and Snap-Off in Pore Doublets

In porous media flows, next to the geometry-related snap-off due to the swelling of wetting
films in narrow constrictions, another type of snap-off occurs which is observed in imbibition
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Fig. 9 Geometry-related snap-off, a–d Case 2, e–f Case 3

Table 1 Simulation results for the geometrically constrained snap-off

rj
a (mm) rd

b (mm) r̃d
c (mm)

Case 1 0.09 0.18 0.12 ± 0.04

Case 2 0.18 0.36 0.28 ± 0.04

Case 2* 0.19 0.38 0.34 ± 0.02

Case 3 0.24 0.48 0.44 ± 0.04

a rj is the jet curvature radius measured from the numerical simulation results
b rd = 2rj is the leading interface curvature radius at the moment of snap-off following from the model by
Roof (1970)
c r̃d is the leading interface curvature radius measured from the numerical simulation results

Fig. 10 Comparison of the DHD
results (red dots) against the
energy balance snap-off criterion
by Roof (dashed line)

when the front of thewetting phase advances faster through narrowpores and then disconnects
and traps the non-wetting phase in larger pores (Unsal 2013). This situation can be reduced
to the very simple model geometry of pore doublet models (PDM) that are widely used for
studying two-phase flow and trapping mechanisms (Chatzis and Dullien 1983; Lake 1989).
The basic pore doublet consists of two capillaries (pores) with different diameters connected
to each other. In some cases, both capillaries may have a common inlet and outlet. This model
represents an idealized pore space where the balance between capillary and viscous forces
can be studied in great detail. At the same time, a theoretical understanding of the relevant
processes is known since (at least) 1956 (Moore and Slobod 1956).
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Fig. 11 Drainage dynamics in two paths pore doublet. The wetting phase A is shown in blue semitransparent
and the non-wetting phase B is shown in red

First, we describe a simple PDM constructed of two connected bent circular capillaries
with different radii (Fig. 11): The thin capillary has radius equal to 0.3 and 0.6mm, and the
outlet capillary is 0.4mm. A grid with 500 × 300 × 60 cubic cells was used to represent a
model with dimensions of 10mm × 6mm × 1.2mm. The capillary walls are uniformly wet
by phase A with a zero contact angle.

Initially, the model was filled with phase A as shown in Fig. 11a. Then, non-wetting phase
B was continuously injected through the left-side capillary inlet. When phase B reached the
nearest crossing of the two capillaries with different diameters, it flows through the broadest
one [frames (b) and (c) of Fig. 11] as expected. Once phase B forms a single connected
cluster, the steady-state regime is established (Fig. 11d) and Phase B never enters the thin
capillary.

In the other scenario, the samemodel was filled initially with the non-wetting phase Bwith
the wetting phase A present as a thin film on the walls of the capillaries (Fig. 12a). Then, the
model was connected at the left inlet to the phase A reservoir. Phase A flows along the walls
displacing the non-wetting phase B [frames (b)–(i) of Fig. 12] As a first remarkable feature
of this process, a neck on the phase B cluster appears inside the thin capillary (c). Then,
snap-off occurs and phase B rapidly recedes from the thin capillary (d, e). Only after phase B
was completely displaced from the thin capillary did it start receding from the broad capillary
(f). Soon a neck appears on the phase B cluster inside the exit outlet (g), quickly followed
by snap-off causing the remaining portion of the non-wetting phase to become trapped (h).
After being trapped, phase B recedes from the thinner capillary outlet back into the broader
capillary where it remains (i).

The phenomena observed, in these two simulations, are consistent with the experimental
behaviors described by Chatzis and Dullien (1983) when using similar PDM.

4.2.4 Trapping and Flow Pattern in Systems of Connected Pores

Here, we describe the next level of complexity in multiphase flowwhere the capillary number
dependency of snap-off is demonstrated using a different type of model. For that purpose, a
system of four identical connected simple sections is employed, each made of two circular
pores with different radii (Fig. 13) similar to those described by Lake (1989). The larger
capillary has a diameter equal to 0.8mm, and the thinner diameter is equal to 0.15 mm.
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Fig. 12 Imbibition dynamics in two paths pore doublet. The wetting phase A is shown in blue semitransparent
and the non-wetting phase B is shown in red

A grid with 480 × 80 × 80 cubic cells was used to represent the model with dimensions
4.8mm × 0.8mm × 0.8mm. Capillary walls are uniformly wet by phase A with a zero
contact angle.

Initially, the model was filled with non-wetting phase B, i.e., no wetting films of phase
A were initially present. The left side of the model is connected to the Phase A reservoir,
and the right side is assigned with constant pressure boundary condition. Three scenarios
with different injection rates from the left reservoir were simulated. The scenarios were
distinguished by the corresponding capillary numbers for Phase B: Case 1 –Nc = 3× 10−5,
Case 2 –Nc = 3 × 10−4, Case 3 –Nc = 3 × 10−3, where Nc = vBηB/γAB and vB is the
average velocity of Phase B.

Simulation results obtained for low capillary number Case 1 are presented in Fig. 13.
Frame (a) shows the initial condition. After the start of injection of wetting phase A, it
quickly propagates along the walls forming a film and displacing the non-wetting phase from
the thin entry pore (b). In the next thin pore, a collar of phase A around phase B forms
and then breaks the non-wetting phase cluster by snap-off, while at the same time the film
advances to the beginning of the third largest pore (c). At the next stage, the film breaks
through the entire model forming a continuous cluster, where in the thin neck regions phase
B is snapped-off in a process analogous to that just described above (d). But displacement
of Phase B does not stop here. Actually, it continues through successive dripping of phase
B from one large pore to the next one through the neck regions in between the larger pores
(d)–(g). During this process, the non-wetting phase is gradually depleted from the leftmost
large pore, which is evident by comparing the consecutive images from (d) through (g). At
the same time, the amount of phase B in the other large pores remains approximately the
same as it is always restored by dripping from its neighbor to the left. Finally, the size of the
residual blob of the non-wetting phase becomes so small that the increased surface tension
does not allow it to enter the thin pore at the present phase A’s induced drag. At this moment,
the described above “dripping and feeding” process stops and all four non-wetting blobs
become terminally trapped (h).
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Fig. 13 Imbibition dynamics in single path pore doublet, Case 1 (Nc = 3 × 10−5). The wetting phase A is
shown in blue semitransparent, and non-wetting phase B is shown in red

At higher capillary number (i.e., Case 2). the imbibition process actually becomes less
featured (Fig. 14). The speed at which the wetting phase film forms becomes comparable
with Phase B displacement speed: In each frame of Fig. 14, the current position of the film is
just one pore ahead the current position of meniscus and thus leaving no time for forming the
collar, which could lead to snap-off and entrapment. The displacement of the non-wetting
phase in this case goes smoothly and piston-like. This finding gives an important insight into
the capillary de-saturation behavior, i.e., the dependency of residual non-wetting phase as a
function of capillary number in imbibition (Lake 1989).

The imbibition process at even larger capillary number (Case 3) becomes more interesting
(Fig. 15). Now, the wetting phase injection rate is so great that formation of the film lags
behind the rush of the flux of phaseA,which jets right through the phaseB cluster. Overall, the
flow is dominated by viscous forces rather than interfacial tension. Hydrodynamic instability
leads to complex topological changes seen throughout the simulation (a)–(i). The interface
between the phases fragments with forming of droplets. The droplets further breakup and
coalesce. Also, temporary trapping of smaller droplets in hydrodynamic vortices can be
observed (i).

Thus, the simulation series described above, in a range of capillary numbers covering three
orders of magnitude, shows transition from interfacial tension-dominated flow to viscous
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Fig. 14 Imbibition dynamics in single path pore doublet, Case 2 (Nc = 3 × 10−4). The wetting phase A is
shown in blue semitransparent, and non-wetting phase B is shown in red

force-dominated flow. The behavior in Cases 1 and 2 corresponds to the description given
by Moore and Slobod (1956) for an experiment with similar geometry.

5 Conclusion

It was demonstrated that DFH applied to modeling two-phase hydrodynamics is able to
reproduce elementary physical phenomena linked with both interfacial tension and vis-
cous force-driven flow in simple representative geometries. Particularly, we have reproduced
drainage and imbibition processes in a square duct. These simple processes play a funda-
mental role in multiphase flow through porous media. Our simulation results have appeared
in full agreement with the experimental observations presented by Lenormand et al. (1983)
and Lenormand (1990).

We have simulated various types of snap-off, including processes in free fluids and geo-
metrically constrained systems. Snap-off is another fundamental mechanism relevant to
multiphase flow in pores and determines the amount of the residual fluid trapped inside the
pores aswell as the efficiency of the recovery techniques.Wehave performedone-to-one com-
parison between a controlled experiment and numericalmodeling of droplet pinch-off. All the
details of the pinch-off dynamicswere reproduced.Wehave correctly captured the droplet size
and shape, necking andpinch-off, gravity–capillary oscillations, formationof a tiny secondary
droplet, and all stages in both the numerical simulation and the experiment were compared
at the same moments in time. Also, our modeling results compare well to the experiments
on snap-off in free fluids reported by other authors (Cramer 2004; Thoroddsen et al. 2007).

In the geometrically constrained case, we have modeled snap-off in several slightly dif-
ferent geometries and demonstrated that snap-off occurs in the proper spatial location and
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Fig. 15 Imbibition dynamics in single path pore doublet, Case 3 (Nc = 3 · 10−3). The wetting phase A is
shown in blue semitransparent, and non-wetting phase B is shown in red semitransparent

shows correct quantitative trends consistent with the energy balance criterion given by Roof
(1970).

We modeled more complex processes where various multiphase as well as the purely
hydrodynamic phenomena interplay. Particularly, we have simulated drainage and imbibition
in the pore doublet model similar to that used by Chatzis and Dullien (1983) and demon-
strated that our results are consistent with the experimental observations reported therein.
Then, we modeled two-phase flow in a system of connected pores for different flow regimes
distinguished by capillary number. In addition to the simple scenarios, where the flow is
mostly governed by interfacial tension, we simulated a high capillary number regime where
viscous force is also significant. In the latter scenario, we demonstrated the ease, with which
complex topological changes in the interfacial boundaries are captured by our modeling
approach.

Overall, we demonstrated the application of DFH to the modeling of basic two-phase
mechanisms relevant to multiphase flows through pores. Correct reproduction of these basic
mechanisms is the necessary precursor for opening usage of DFH for simulation of more
complex scenarios, including multiphase flow in realistic pore structures.
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Appendix 1: 1D Problem for DFH Equations

Let us begin by writing the full system of governing equations for 1D isothermal composi-
tional flow. From (7) and (8), we have

∂t ni + ∂x (nivx + Qix ) = 0, (33)

ρ(∂tvx + vx∂xvx ) = ∂x pxx , (34)

where symbol ∂x denotes partial derivative in respect of the only spatial coordinate x . Bound-
ary conditions for this system are the 1D isothermal form of the boundary conditions (10),
(11), and (13):

vx
∣∣
∂D = 0, (35)

Qix
∣∣
∂D = 0, (36)

∂xni |∂D = 0. (37)

The symbol ∂D in (35)–(37) denotes two ends of the 1D domain. The boundary condition
(37) exhibits the fact of the neutral wetting properties (i.e., no contact angle in 1D geometry)
leading to no gradient in molar densities at both ends of the domain.

The constitutive relations, which are 1D isothermal analogs of the Eqs. (16)–(19), (28),
and (29), are follows:

pxx = σxx + τxx , (38)

σxx = f − 1

2
νi j∂xni∂xn j − Φi ni , (39)

Φi = κi − νi j∂xxn j , (40)

Qix = −Di j∂xΦ j , (41)

τxx =
(

ηv + 4

3
ηs

)
∂xvx . (42)

where νi j is related to αi j by νi j = Tαi j , and Di j is the part of μAB corresponding to
A, B = 1, . . . , M , namely Di j = T−1μi j , i, j = 1, . . . , M .

The system (33)–(42) is closed after specifying Helmholtz energy density function f . It
can be solved numerically to obtain a 1D compositional flow dynamics.

To present a simple analytical solution, we introduce several assumptions:

• The system is in static equilibrium state
• The fluid is two-phase single component
• Helmholtz energy is taken in a special form
• Boundary condition (37) is satisfied at infinity

Under these assumptions, let us turn to analyzing equilibrium solutions of the system (33)–
(42). Firstly,we observe that in case of single-component fluid, there is no diffusion. Secondly,
in equilibrium there is no flow, and velocity is zero, and all time derivatives are zeros.
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Therefore, the Eq. (33) is totally discarded, while the Eq. (34) yields the static equilibrium
condition

∂xσxx = 0, (43)

which is equal to (20). With regard to (39) and (40), it is easy to see that

∂xσxx = n∂xΦ, (44)

where index i has been dropped as according to the first assumption, we now deal with the
only chemical component with molar density n. Because n cannot be zero everywhere in the
domain, we have from (43) and (44)

Φ = Λ. (45)

To find the unknown constant Λ, we need to observe that in equilibrium, the second term in
(40), which is the definition forΦ, vanishes everywhere except the interface between phases.
At the same time, within the equilibrium phases A and B, their chemical potentials are equal
κA = κB. Therefore, we have everywhere

Φ = κA = κB. (46)

To move further, we must specify particular form of Helmholtz energy density f . We take it
to be as follows

f = A(n − nA)2(n − nB)2, (47)

where nA, nB are known values of molar density corresponding to the equilibrium phases
A and B, and A is positive model coefficient, which can be fixed to fit compressibility data.
This is done by noticing that bulk modulus K is related to Helmholtz energy using the
thermodynamic relations K = ∂p

∂n n and p = nκ − f , where p is pressure. The expression
in (47) has only one free parameter, which means that bulk modulus for only one of the two
phases can be fit, and the second one appears determined by the first.

It is easy to see that the simple expression (47) allows for description of two-phase single-
component equilibrium: The function is nonnegative and has two minimums corresponding
to two equilibrium phases (Fig. 16).

According to the definition (47), κA = κB = 0 in equilibrium phases corresponding to
molar densities nA, nB. Now with regard to (40) and (46) and remembering that κ = ∂ f

∂n , we
come to the following equation describing equilibrium solution:

Fig. 16 Schematic
representation of the model
double-well Helmholtz energy
function
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Fig. 17 Structure of the interfacial zone in 1D static equilibrium solution

∂ f

∂n
− ν∂2x n = 0. (48)

Multiplying this equation by ∂xn, we arrive to ∂x f − 1
2ν∂x (∂xn)2 = 0, and then to

f = 1

2
ν(∂xn)2, (49)

where we took notice of the fact that ∂xn is zero at infinity. Rearranging terms in (49) and
using (47), we have

∂xn =
√
2A

ν
(n − nA)(nB − n). (50)

This equation is integrated analytically and yields

n(x) = eaxnB + nA
eax + 1

= nB + nA
2

+ nB − nA
2

th
ax

2
, (51)

where a =
√

2A
ν

and integration constant was fixed from the condition n(0) = nB+nA
2 .

A schematic representation of the solution (51) is given in Fig. 17.
It is instructive to note that the shape of the interface is determined by both Helmholtz

energy (i.e., through coefficient A) and coefficient ν. This is the manifestation of the fact
that interface is the finite thickness zone, whose properties must necessarily be dependent on
thermodynamics.

To conclude overview of this 1D problem, we calculate interfacial tension using the
Eq. (21), which in our case reads

γ =
+∞∫

−∞
ν(∂xn)2dx . (52)

Comparing (52) with (49), we have

γ = 2

+∞∫

−∞
f dx = 2

nB∫

nA

f dn

∂xn
= √

2ν

nB∫

nA

√
f dn, (53)
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which is integrable given the convenient Helmholtz energy expression in (47) and yields

γ = √
2νA

nB∫

nA

(n − nA)(nB − n)dn = 1

3
(nB − nA )3

√
νA

2
.

The described solution has a demonstrational value. In majority of practical applications,
Helmholtz energy model is much more complex than (47), and obtaining analytical solution
even for simple static equilibrium problems requires numerical simulation. Therefore, let
us briefly touch an important aspect related to obtaining solutions like (51) numerically.
In numerical simulation of partial derivative equations using Eulerian point of view, it is
conventional to introduce some type of finite approximations, e.g., finite-differences, finite-
volumes, and finite-elements. Regardless of what type of approximation is used, the mere
fact of approximation puts constraints on accuracy of the numerical solution, which are
determined by numerical grid resolution; these constrains are removed as grid step converges
to zero. In case of the solution in (51), there is a constraint on width of the interface, which
is quite similar to that described by Kim (2012) with regard to phase-field methods. Indeed,
there should be enough numerical cells across the interface for one to be able to calculate
finite-difference high-order spatial derivatives of molar density fields. On the other hand, if
there are too many cells, the interface profile becomes undesirably diffused. Our experience
gives 5–8 as an optimal estimation for the number of cells across the interface. In numerical
modeling, we conventionally define the interface as a region where molar density is in the
range nA + nB−nA

20 < n < nB − nB−nA
20 . Using this definition in (51), it is easy to obtain the

condition

L = xB − xA = 4

a
Arth

9

10
= mh,

where L is width of the interface, xA is coordinate where n = nA + nB−nA
20 , xB is coordinate

where n = nB − nB−nA
20 , h is the cell size, and m is the number of cells. Therefore, given

the Helmholtz energy parameter A and coefficient ν, one has the constraint on the numerical
grid resolution to adequately represent the solution in (51)

h =
√

8ν

Am2 Arth
9

10
. (54)

The result in (54) is similar to reported by Kim (2012) for the case of phase-field models. Let
us stress again that the constraint like (54) is the result of finite approximation; this constraint
does not exist in the original equations.

Appendix 2: Helmholtz Energy Model

This appendix contains description of the model Helmholtz energy used in numerical simu-
lation of examples present in this paper. We followed our previous experience in numerical
modeling by DFH (Demyanov and Dinariev 2004a, b; Dinariev and Evseev 2005).

For the homogeneous liquid (Phase A) near thermodynamic equilibrium, Taylor series
expansion for its Helmholtz energy can be used in the form

fA(ni ) = fA0 + fAi (ni − niA) + 1

2
fAi j (ni − niA)(n j − n jA), (55)
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where niA, i = 1, 2 is composition of Phase A in molar densities. Expansion coefficients
fA0 and fAi vanish from hydrodynamic equations when Helmholtz energy in the form (55)
is used; therefore, only symmetric matrix fAi j is relevant for modeling. Coefficients fAi j are
constrained by the relation KA = fAi j niAn jA, where KA is bulk modulus of Phase A. The
Helmholtz energy model for the second phase, Phase B, is similar to (55).

For two-phase flow case, it is necessary to calculate Helmholtz energy f (ni ) at arbitrary
point ni , i = 1, 2. In order to do this, we use interpolation with fA(ni ) and fB(ni )

f = fA fB
fA + fB

. (56)

Given the symmetry of the matrices fAi j and fBi j and the constraint related to bulk moduli,
there are two free parameters left in each matrix. One of these parameters (in each matrix)
is used to fix the interface thickness as explained in “Appendix 1.” However, in case of two
components, the interface should not be necessarily symmetric as it is in Fig. 17; this is
why free parameter from each of the matrices is required to fix the shape. The residual free
parameter in each matrix is not needed in the problems modeled for this paper. Therefore,
we factor it out by assuming additional symmetry of the matrices. This passes analogy with
calibration in field theories.

For the surface Helmoltz energy, we use the model

f∗ = ξ1i ni , (57)

where parameters ξ1i are found from the system of two linear algebraic equations

f∗A = ξ1i niA, f∗B = ξ1i niB, (58)

where f∗A, f∗B are known values of surface energy for Phases A and B. The surface energies
are related with the contact angle θ by the Young equation cos θ = f∗B− f∗A

γAB
.
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