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Abstract In this paper, we present an analytical study on the onset of convection in a horizon-
tal layer of a saturated porous medium, uniformly heated from below but with a non-uniform
basic temperature gradient resulting from a pulsating vertical throughflow. We applied two
methods to analyze this problem: the frozen profile and the averaged equations.We found that
the two approaches lead to essentially the same results and discussed physical implications of
this finding, in particular, with respect to fundamental differences between the throughflow
modulation and the temperature modulation problems.
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Nomenclature

a Dimensionless horizontal wavenumber
ca Acceleration coefficient
D d/dz
f (z) Function characterizing the basic temperature gradient, defined by Eq. (28)
g Gravity
g Gravitational vector
H Dimensional layer depth
km Effective thermal conductivity of the porous medium
K Permeability of the porous medium
P∗ Pressure, excess over hydrostatic
P Dimensionless pressure, P∗K/(μαm)
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Q Péclet number defined by Eq. (13a)
Ra Rayleigh–Darcy number defined by Eq. (6)
t∗ time
t Dimensionless time, t∗αm/(σH2)

T ∗ Temperature
T Dimensionless temperature, (T ∗ − T0)/(T1 − T0)
T0 Temperature at the upper wall
T1 Temperature at the lower wall
(u, v, w) Dimensionless Darcy velocity components, (u∗, v∗, w∗)H/αm

V0 Mean throughflow velocity

v Dimensionless Darcy velocity,
(ρc) f H

km
v∗

v∗ Dimensional Darcy velocity, (u∗, v∗, w∗)
(x, y, z) Dimensionless Cartesian coordinates, (x∗, y∗, z∗)/H ; z is the vertically

upward coordinate
(x∗, y∗, z∗) Cartesian coordinates

Greek symbols

αm Thermal diffusivity of the porous medium, km
(ρc) f

β Volumetric expansion coefficient of the fluid
γa Acceleration coefficient defined by Eq. (11)
εV0 Amplitude of velocity pulsations
μ Viscosity of the fluid
ρ Fluid density
ρ0 Fluid density at temperature T0
(ρc) f Heat capacity of the fluid
(ρc)m Effective heat capacity of the porous medium
σ Thermal capacity ratio defined by Eq. (7)
� Angular frequency
ω Dimensionless angular frequency defined by Eq. (13b)

Superscripts

* Dimensional variable
′ Perturbation variable

Subscripts

b Basic solution

1 Introduction

There is a substantial literature on the effects of thermal modulation (whether of temperature
or heat flux) or gravity modulation (vertical vibration, g-jitter) on the onset of convection in a
horizontal fluid-saturated porous layer that is heated from below. This literature is surveyed
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in Sections 6.11.3 and 6.24 of the book by Nield and Bejan (2013). More detailed reviews
have been made by Rees et al. (2008), Govender (2008), Pedram Razi et al. (2005), and
Pedramrazi et al. (2008).

However,we are not aware of any similar studyof the effect ofmodulation of themagnitude
of vertical throughflow. In the present paperwe investigate the situationwhere the throughflow
pulsates with time about a mean that can be of either sign or zero. The new problem is
more complicated than the old ones. Whereas the temperature modulation and the gravity
modulation lead directly to an oscillation of the effective buoyancy force, the throughflow
acts indirectly, and a convection problem is involved from the outset. With the new problem
the oscillation enters in a nonlinear manner in the general case, and this potentially provides
both difficulty and interest.

Such problems involving modulation lead to a differential equation system in which a
coefficient is periodic in time. The system is commonly studied using one of three approaches:
Floquet theory, averaged equations, or frozen profile. The first two approaches are appropriate
for the case of high frequency and small amplitude. The third approach, in which it is assumed
that perturbations grow quickly in comparison with how quickly the throughflow velocity
changes, is more flexible.

For the gravity modulation problem, the time-averaged method has been extensively used
(see Pedramrazi et al. 2008). However, as Govender (2008) pointed out, subharmonic modes
are overlooked when this method is used.

For the temperature modulation problem, Chhuon and Caltagirone (1979) compared (i)
results obtained with Floquet theory, (ii) results obtained with frozen profile approach, and
(iii) experimental results. They found that the frozen profile approach gave a better fit
with experiments than did the Floquet theory (see Figure 6.13 of Nield and Bejan 2013).
(A reviewer commented that perhaps the conclusions of Chhuon and Caltagirone (1979) are
correct, given their experiments, but the fact remains that, given Darcy’s law, the method of
averaging yields approximate results, while Floquet theory is an exact theory. Both may, of
course, be subject to numerical errors.)

In the present paper we first follow the frozen profile approach. This is relatively simple
and direct, and it is pertinent to the low-frequency case that is applicable to hydrological
situations. We have in mind convection driven by a salinity gradient in the bed of a tidal
basin.

Then we explore the consequences of adopting the averaged equations approach.

2 Analysis

2.1 Basic Equations

Single-phaseflow in a saturatedporousmediumofpermeability K is considered.Asterisks are
used to denote dimensional variables.We consider a horizontal layer occupying 0 ≤ z∗ ≤ H ,
where the z∗-axis is in the upward vertical direction. Uniform temperatures T0 and T1 are
imposed at the upper and lower boundaries, respectively. Consistent with this assumption we
suppose that there is a uniform basic flow with velocity V0 in the z-direction.

The Darcy velocity is denoted by v∗ = (u∗, v∗, w∗). The Oberbeck-Boussinesq approxi-
mation is invoked and local thermal equilibrium is assumed. The equations representing the
conservation of mass, Darcy’s law, and conservation of thermal energy take the form (see,
for example, Eqs. (6.3)–(6.6) of Nield and Bejan 2013):
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∇∗ · v∗ = 0, (1)

caρ0
∂v∗

∂t∗
= −∇∗P∗ − μ

K
v∗ − ρ0g[1 − β(T ∗ − T0)]ez, (2)

(ρc)m
∂T ∗

∂t∗
+ (ρc) f v∗ · ∇∗T ∗ = km∇2T ∗. (3)

Here (ρc)m and (ρc) f are the heat capacities of the overall porous medium and the fluid,
respectively, μ is the fluid viscosity, g is gravity, K is the permeability, km is the effective
thermal conductivity of the porous medium, ca is the acceleration coefficient, ρ0 is the fluid
density at temperature T0, v∗ is the Darcy velocity, T ∗ is the temperature, t∗ is the time, and
β is the volumetric expansion coefficient of the fluid, while P∗ is the excess of pressure over
the reference hydrostatic value.

We assume that there is upward throughflow with constant mean value V0, amplitude εV0
and angular frequency �, so that

v∗ = V0
(
1 + ε cos�t∗

)
. (4)

We introduce dimensionless variables by defining

x = x∗

H
, v = (ρc) f H

km
v∗, t = km

(ρc)mH2 t
∗,

T = T ∗ − T0
T1 − T0

, P = (ρc) f K

μkm
P∗. (5a,b,c,d,e)

We also define a Rayleigh–Darcy number (shortened to Rayleigh number in what follows)
Ra by

Ra = (ρc) f ρ0gβK H(T1 − T0)

μkm
(6)

and the heat capacity ratio

σ = (ρc)m
(ρc) f

. (7)

The governing equations then take the form

∇ · v = 0, (8)

γa
∂v
∂t

= −∇P − v + Ra

[
T − 1

β(T1 − T0)

]
ez, (9)

∂T

∂t
+ v · ∇T = ∇2T, (10)

where the dimensionless acceleration coefficient is defined by

γa = caρ0kmK

σμ(ρc) f H2 . (11)

We also have the basic flow vb, Pb, Tb, where

vb = Q [1 + ε cosωt] ez . (12)

Thus ε is the dimensionless amplitude of the pulsation, while Q is a Péclet number and
ω is a dimensionless angular frequency defined as
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Q = (ρc) f HV0
km

, ω = (ρc)mH2�

km
. (13a,b)

Then Eqs. (9) and (10) give

∇Pb + εγaQω sin(ωt)ez = −Q(1 + ε cosωt)ez + Ra

[
Tb − 1

β(T1 − T0)

]
ez, (14)

Q [1 + ε cosωt]
dTb
dz

+ εγaQω sin(ωt)Tb = d2Tb
dz2

. (15)

Equation (15) can now be solved subject to appropriate boundary conditions, which here take
the form

Tb = 1 at z = 0, Tb = 0 at z = 1. (16)

At this stage we assume that εγaω is small compared with unity. For a regular porousmedium
(one whose Darcy number K/H2 is small), the value of γa will be small, and hence this is
then a relatively weak constraint on the magnitude of the frequency ω.

The solution is then

Tb = exp[Q(1 + ε cosωt)] − exp[Q(1 + ε cosωt)z]

exp[Q(1 + ε cosωt)] − 1
. (17)

Then Eq. (14) can be solved to give Pb if that is required.

2.2 Perturbation Analysis, Frozen Profile

We now involve the frozen profile assumption. In the expressions for the basic solution (Eqs.
(12) and (17)) we write t0 for t . For shorthand we introduce

Q̂ = Q(1 + ε cosωt0). (18)

We now perturb this basic solution and write

v = vb + v′, P = Pb + P ′, T = Tb + T ′, (19)

where the primed quantities are functions of x and t , so that, on linearizing the equations, we
have

∇ · v′ = 0, (20)

γa
∂v′

∂t
= −∇P ′ − v′ + RaT ′ez, (21)

∂T ′

∂t
+ v′ · ∇Tb + vb · ∇T ′ = ∇2T ′. (22)

Operating on Eq. (21) with ez · curl curl and using Eq. (20) we get
(
1 + γa

∂

∂t

)
∇2w′ = Ra∇2

HT
′, (23)

where ∇2
H denotes the horizontal Laplacian operator. In terms of normal modes, one can

write
(w′, T ′) = [W (z),�(z)] exp(st + ilx + imy), (24)

which can be substituted into Eqs. (22) and (23), to obtain

(1 + γas)
(
D2 − a2

)
W = −a2Ra�, (25)
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− f W =
(
D2 − a2 − Q̂D − s

)
�, (26)

where

a = (
l2 + m2)1/2 , D ≡ d

dz
, f (z) = −dTb

dz
. (27)

In the special problem that is investigated we have

f (z) = Q̂eQ̂z

eQ̂ − 1
. (28)

Equations (25) and (26) constitute a pair of coupled ordinary differential equations which
can then be solved subject to appropriate boundary conditions on W and �. In the case of
impermeable constant-temperature boundaries, one has

W = 0,� = 0 at z = 0, 1. (29)

If the temperature gradient has constant sign, then oscillatory disturbances are ruled out and
one can take s = 0.

The differential equation system consisting of Eqs. (25), (26) and (29) then constitutes an
eigenvalue problem in which Ra can be regarded as the eigenvalue.

For the case of small Q an approximate expression, useful for an investigation of trends
as parameters are varied in a new situation, for the value of Ra can be found by using a
single-term Galerkin expansion. We write W = AW1,� = B�1, with constants A and B,
where W1 and �1 are trial functions satisfying the boundary conditions, and substitute into
Eqs. (25) and (26) to obtain two residuals. These can then be made orthogonal toW1 and�1,
respectively, to give two equations from which the ratio B/A can be eliminated. This results
in the equation

Ra = 〈W1(D2 − a2)W1〉
{〈�1(D2 − a2)�1〉 − Q〈�1D�1〉

}

a2〈W1�1〉〈 f W1�1〉 (30)

where 〈(·)〉 ≡ ∫ 1
0 (·)dz.

2.3 Time—Averaged Formulation

We now return to Eqs. (1)–(3), concentrating on the case of high frequency and small ampli-
tude pulsation, and we follow the presentation of Pedram Razi et al. (2005). Under these
conditions two time scales are pertinent, and we divide the fields into two parts. For the
first part (slow time) the characteristic time is large compared with the pulsation period. The
second part (fast time) varies rapidly with time and is periodic with period τ = 2π/ω. Thus
we write

v∗(M, t∗) = v̄∗(M, t∗) + v′∗(M, ωt∗),
T ∗(M, t∗) = T̄ ∗(M, t∗) + T ′∗(M, ωt∗), (31)

P∗(M, t∗) = P̄∗(M, t∗) + P ′∗(M, ωt∗).

Here the average of a given function f (M, t∗) is defined as

f̄ (M, t∗) = 1

τ

∫ t∗+τ/2

t∗−τ/2
f (M, s∗)ds∗. (32)

Here M denotes the spatial domain of interest.
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Substitution into Eqs. (1)–(3) gives rise to two coupled systems of equations. First we
have the mean flow equations

∇∗ · v̄∗ = 0, (33)

caρ0
∂ v̄∗

∂t∗
= −∇∗ P̄∗ − μ

K
v̄∗ − ρ0g[1 − β(T̄ ∗ − T0)]ez, (34)

(ρc)m
∂ T̄ ∗

∂t∗
+ (ρc) f v̄∗ · ∇∗T̄ ∗ + (ρc) f v′∗ · ∇∗T ′∗ = km∇∗2T̄ ∗. (35)

Then we have equations for the oscillatory part of the flow

∇∗ · v′∗ = 0, (36)

caρ0
∂v′∗

∂t∗
= −∇∗P ′∗ − μ

K
v′∗ + ρ0gβT

′∗ez, (37)

(ρc)m
∂T ′∗

∂t∗
+ (ρc) f v′∗ · ∇∗T̄ ∗ + (ρc) f v̄∗ · ∇∗T ′∗ + (ρc) f v′∗ · ∇∗T ′∗

−(ρc) f v′∗ · ∇∗T ′∗ = km∇∗2T ′∗. (38)

We now need to apply some scale analysis to obtain a closed set of equations for the time-
averaged fields. Our starting assumption, based on Eq. (4), is that

O(v′∗) ≈ εV0, O

(
∂v′∗

∂t∗

)
≈ ε�V0. (39)

First we look at the oscillatory momentum equation. We make the assumption, appropriate
for a layer of infinite horizontal extent, that

O(T̄ ∗ − T0) ≈ T1 − T0 ≡ �T, O

(
∂(·)
∂t∗

)
≈ �(·), O

(
∂(·)
∂z∗

)
≈ 1

H
(·). (40)

We also assume that T ′∗ 
 �T . Then the orders of magnitudes of the relevant terms are as
follows:

Inertia: O

(
caρ0

∂v′∗

∂t∗

)
≈ caρ0ε�V0, (41a)

Buoyancy: O
(
ρ0βT

′) ≈ ρ0β�T, (41b)

Friction: O
( μ

K
v′∗) ≈

( μ

K
εV0

)
. (41c)

We assume that the inertial and buoyancy terms are in balance, so that

caε�V0 ≈ β�T . (42)

We also assume a high pulsation frequency so that the pulsation time scale, 1/�, is small in
comparison with the hydrodynamic time-scale, caρ0K/μ, and that means that we can neglect
the viscous friction term in Eq. (37).

In a similar manner we look at the terms in the oscillatory thermal energy equation. The
relevant terms have the following orders of magnitude:

Transient: O

(
(ρc)m

∂T ′∗

∂t∗

)
≈ (ρc)mT

′∗�, (43a)

Convective: O
(
(ρc) f v′∗ · ∇∗T̄

) ≈ (ρc) f εV0
�T

H
, (43b)
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Diffusive: O
(
km∇∗2T ′∗) ≈ km

T ′∗

H2 . (43c)

Now we assume that the diffusive term is small in comparison with the transient term. This
is so if the pulsation time scale 1/� is small in comparison with the diffusive time scale
(ρc)mH2/km . The transient and convective terms are then in balance if

σT ′∗� ≈ εV0
�T

H
. (44)

Since we are also assuming that T ′∗ 
 �T , Eq. (44) is a restraint on the magnitude of the
pulsation amplitude,

ε 
 σH�

V0
. (45)

We now apply the results of this scale analysis to the system of Eqs. (33)–(38). We need to
relate the oscillatory fields to the mean flow fields. In the present problem, the mean flow
equation of continuity and the momentum equation (Eqs. (33) and (34)) do not require mod-
ification and that leaves the thermal energy equation (35) to be modified. We are controlling
the oscillatory velocity field and so we already know that

v̄∗ = V0ez, v′∗ = εV0 cos(�t∗)ez . (46a,b)

We need information about the oscillatory temperature field, T ′∗. In accordance with the
scale analysis, we can neglect the term on the right-hand side of Eq. (38), which then gives

(ρc) f v′∗ · ∇∗T ′∗ = (ρc)m
∂T ′∗

∂t∗
+(ρc) f εV0 cos�t∗ ∂ T̄ ∗

∂z∗
+(ρc) f V0

(
1 + ε cos�t∗

) ∂T ′∗

∂z∗
.

(47)
Thus Eq. (35) becomes

(ρc)m
∂ T̄ ∗

∂t∗
+ (ρc)m

∂T ′∗

∂t∗
+ (ρc) f v̄∗ · ∇∗T̄ ∗

+(ρc) f εV0 cos�t∗ ∂ T̄ ∗

∂z∗
+ (ρc) f V0

(
1 + ε cos�t∗

) ∂T ′∗

∂z∗
= km∇∗2T̄ .∗ (48)

Finally we neglect the terms in T ′∗ to obtain the modified averaged thermal energy equation

(ρc)m
∂ T̄ ∗

∂t∗
+ (ρc) f v̄∗ · ∇∗T̄ ∗ + (ρc) f εV0 cos�t∗ ∂ T̄ ∗

∂z∗
= km∇∗2T̄ ∗. (49)

In terms of dimensionless quantities defined in Eq. (5), the time-averaged equations are

∇ · v̄ = 0, (50)

γa
∂ v̄
∂t

= −∇ P̄ − v̄ + Ra

[
T̄ − 1

β(T1 − T0)

]
ez, (51)

∂ T̄

∂t
+ v̄ · ∇ T̄ + Qε cosωt

∂ T̄

∂z
= ∇2T̄ . (52)

We see that, when the substitution from Eq. (12) is made, Eqs. (51) and (52) are essentially
the same as Eqs. (14) and (15). This means that the basic temperature field is not affected
by the type of approach. This implies in turn that the linear stability problem is not affected
by the type of approach, and thus the utilization of averaged equations gives essentially
the same result as the utilization of the frozen profile approach. Thus the situation for a
pulsating velocity field is dramatically different from that for a pulsating gravity field. This
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feature could have been anticipated. For the former situation there is nothing analogous to the
thermo-vibration effect that ariseswith the latter,where themean andoscillatory contributions
to buoyancy interact directly. The throughflow modifies just the basic temperature gradient
and does not itself provide any destabilizing agency. The throughflow modulation problem
is also fundamentally different from the temperature modulation problem. For the latter,
the modulation of the temperature difference applied at the boundaries produces a change in
buoyancy force that is felt throughout the layer. For the former, themodulation of throughflow
merely modifies the distribution of buoyancy force within the layer.

3 Results

For the case of constant-temperature boundaries one can take W1 = sin π z,�1 = sin π z.
This choice leads to

Ra = (π2 + a2)2

a2
< sin2 π z >

< f sin2 π z >
. (53)

In the absence of throughflow one has f = 1 and

Ra = (π2 + a2)2

a2
. (54)

As the wavenumber a varies this takes the minimum value 4π2 when a = π . These are
the familiar exact values of the critical Rayleigh number and the corresponding critical
wavenumber in this case.

In the presence of a small amount of throughflow, one has

< f sin2 π z >= 2π2

Q̂2 + 4π2
(55)

and so

Ra = (π2 + a2)2

a2

[

1 + Q̂2

4π2

]

. (56)

In this case the critical Rayleigh number is

Rac = 4π2 + Q̂2. (57)

This approximate formula gives a value accurate to 1% when Q̂ = 1. (Eq. (57) gives 40.784
whereas a more exact value, obtained by methodology described by Barletta et al. (2016), is
40.8751). We infer that the single-term Galerkin approximation is satisfactory for this case
when Q̂ is less than unity.

As one would expect from the symmetry of the problem, this result does not depend on
the sign of Q̂. The effect of throughflow in either vertical direction is stabilizing.

As t0 varies, the value of (Q̂/Q)2 varies between a minimum (1 − ε)2 and a maximum
(1 + ε)2. The mean of these two values is 1 + ε2, something greater than unity, and so the
pulsation has an overall stabilizing effect. The value of Rac varies between

Racmin = 4π2 + Q2(1 − ε)2 (58)

and
Racmaz = 4π2 + Q2(1 + ε)2. (59)
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When Ra is less than Racmin, no convection takes place. When Ra is greater than Racmax,
continuous convection occurs. For intermediate values of Ra, convection occurs for just part
of each cycle.

4 Conclusions

Weapplied the frozenprofile and the averaged equations approaches to investigate the effect of
pulsating throughflow on instability in a fluid occupying a horizontal fluid-saturated porous
layer, which is heated from below. We investigated the situation where the throughflow
pulsates with time about a mean that can be of either sign or zero. The frozen profile approach
predicts that the effect of throughflow in either vertical direction is stabilizing. [A physical
explanation was provide by Nield (1987) and is given in Section 6.10.2 of Nield and Bejan
(2013).] An increased amplitude of throughflow oscillations leads to increased stability by an
amount that depends on the frequency. The application of the averaged equations approach
leads to the same results, and this leads us to conclude that the situation for a pulsating
velocity field is dramatically different from that for a pulsating gravity field. The throughflow
modulation modifies just the basic temperature gradient and does not itself provide any
destabilizing agency. We also established threshold values of the Rayleigh number which
separate three possible regimes: (1) no convection takes place, (2) a state inwhichdisturbances
grow during the first part of the cycle and decay during the second part and thus substantial
convection occurs for just part of each cycle, and (3) convection occurs at a continuous level.
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