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Abstract Scarce data and uncertainties in the spatial variation of geological properties lead
to different possible models of these heterogeneities. The aim of this study is to compare the
pressure results and CO2 behavior of different permeability field models for a large-scale
CO2 injection in a deep saline aquifer. Five ways of representing heterogeneities are tested
and compared. The simplest representation defines homogeneous equivalent properties over
the entire domain. A second representation is obtained by considering homogeneous layers.
Two other models represent the lateral and vertical variations in permeability in greater detail
by geostatistical methods with either a continuous model or a discontinuous model (discrete
values). The last model is the semi-homogeneous model combining a heterogeneous area
and a homogeneous area depending on the complexity of the flow process. Highly variable
predictions arise from theheterogeneities, and significant differences in estimates are obtained
using the variousmodelingmethods. The optimum resolution depends on the type of response
to be estimated. Averaged properties at large scale are not adequate to estimate the critical
pressure propagation far from the well. Averaged properties in the injection area are not
sufficient to assess the maximum increase in pressure or the extent of CO2 migration. Lateral
and vertical connectivities, and reservoir compartmentalization modeling are required to
obtain reliable results. But the resolution requirements are not to be at the finest scale: The
discontinuous model (discrete values) gives satisfactory results compared to the continuous
model. The way to represent spatial variability of porosity and pore compressibility is also
studied. The influence of these two properties is far lower than that of permeability.
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1 Introduction

Flow parameters related to rock properties, such as permeability, capillarity, porosity, and
pore compressibility, have a major effect on CO2 storage feasibility (e.g. Birkholzer et al.
2009; Doughty 2009; Farajzadeh et al. 2011; Lengler et al. 2010; Mathias et al. 2013; Zhou
et al. 2010). Thus, spatial variability of rock properties could cause variations in several orders
of magnitude in CO2 storage capacity predictions (Keating et al. 2011), but its representation
is problematic since geological data are generally sparse (Nordbotten et al. 2012).

Since the characterization of geological parameters is, in most cases, limited, how can
these parameters be represented spatially, at regional scale, so as to reproduce their influences
on system responses resulting from CO2 injection?

Marsily et al. (2005) deal with this problem in a hydrogeological framework based on
progress for the exploitation of hydrocarbon and mineral resources. They point out the dif-
ferent methods of heterogeneity modeling and their efficiencies according to the application
framework, from the definition of equivalent permeability (averaging), to the description
of the spatial variability of properties by continuous or discontinuous geostatistical models
[Boolean models, Indicator or Truncated Gaussian models (Fouquet et al. 1989), etc.] or by
genetic models which reproduce the depositional and rock formation processes. According to
Marsily et al. (2005), the resolution requirements of heterogeneity modeling should mainly
depend on:

– the scale of the problem. Averaged properties could be used for predictions at regional or
basin scale since flow and transport would be averaged by crossing different heterogeneous
structures

– the type of processes to be characterized. Averaged properties, based onwell testing, could
be sufficient for flow problems but not for transport or diphasic problems.

– the type of response studied. For example, averaged properties can be sufficient if a
contaminant transfer rate has to be assessed, but the assessment of amaximumcontaminant
concentration requires a detailed description of heterogeneities. The assessment of theCO2

drainage area and the maximum dissolution rate may also require different descriptions
of heterogeneities.

In the case of a CO2 storage study, can we ignore, even partly, the spatial variability of rock
properties?

For CO2 leakage risks and storage capacity, both flow and transport processes have to be
characterized. CO2 migration and dissolution have to be defined, and we need to determine
whether well pressure remains below the maximum admissible pressure (risks of fracturing).
For the risks of fluid-in-place leakage and of interference between injection wells, the extent
of pressure perturbations has to be known, in particular to define the area of review. This area
of review depends partly on the extent of a critical pressure perturbation, which could induce
fluid-in-place migration through water resource formations if potential leakage pathways
existed in the area. Transport and diphasic flow processes occur mainly in the injection area,
which could justify describing the spatial variability only in this area. However, averaged
rock properties in the area where simpler flow processes occur are not always necessarily
appropriate. The description of system perturbations based on model with averaged rock
properties may not be sufficiently detailed for the risk assessment in a CO2 storage context.
The risk assessment cannot rely on average results. In addition, the problem of uncertainties
in geological media may have to be addressed through stochastic modeling (Renard 2007;
Koch et al. 2014). Multiple realizations of a geological model could be needed to obtain
uncertainty estimates. Thus, it seems important to definewhether a simplifiedmodel, in terms
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of heterogeneities, could represent a maximum scenario of pressure perturbation propagation
and CO2 migration.

The Snohvit project, a CO2 storage project in the North Sea, demonstrates the critical
consequences on injectivity predictions of a lack of knowledge of heterogeneities and of a
lack of model details on connectivities in the storage formation. The low injectivity could not
be predicted because the vertical heterogeneities in the storage formation were not described
prior to the injection (Hansen et al. 2013; Shi et al. 2013).

Themain studies of CO2 injection at basin scale generally assume a negligible influence of
the lateral variability of petrophysical properties to evaluate the system response. Basins are
mostly represented asmultilayered systems, either in the aquifer (Zhou et al. 2010;Yamamoto
et al. 2009; Zhao et al. 2012; Birkholzer et al. 2011) or for an alternating aquifers/aquitards
system (Birkholzer et al. 2009; Rohmer and Seyedi 2010). In any case, aquifers are not
vertically or laterally homogeneous at basin scale in reality. Yet, in Zhao et al. (2012) study,
even though the preliminary geological studies indicated great heterogeneities in the injection
formation, the permeability of the members of this formation was represented by an averaged
and uniform value for each main member. In Birkholzer et al. (2011) study, models are
represented by alternating continuous layers of sand and shale; and in the study by Doughty
(2009) based on geological data for the same basin (Southern San Joaquin Valley) but at a
smaller scale (injection area), these alternating sand/shale layers are represented as lenseswith
a lateral extent of several kilometers. These two studies do not analyze the same performance
[pressure behavior for Birkholzer et al. (2011) and CO2 plume migration and dissolution for
Doughty (2009)]. This would partly explain the differences in modeling methods and why
results are not comparable. However, we may examine the pressure-response consequences
of modeling as continuous layers rather than as discontinuous lenses which wouldmodify the
vertical connectivity. For transport modeling, Refsgaard et al. (2012) underlines this tendency
of interpreting geology as continuous layers although field data may describe less continuous
layers. Refsgaard et al. (2012) show that more heterogeneity in stochastic model based on
field data can give better results than model with geological layers assumed to be continuous.
The Sleipner project is another example where the heterogeneities in shale layers played a
key role in transport: Modeling this discontinuities in shale layers was needed to predict the
CO2 plume migration (Holloway 2003).

Three studies were carried out for the Mt Simon aquifer with different resolutions for the
spatial variability of rock properties (Zhou et al. 2010; Person et al. 2010; Bandilla et al.
2012). In Person et al. (2010) and Bandilla et al. (2012), lateral variability was modeled on
the entire domain, inferred from linear relationships between depth and porosity, and porosity
and permeability. Because of the lack of data, relationships were simplified by linearization
and more complex heterogeneities were not represented, even though they could possibly
influence the pressure propagation (Person et al. 2010). Bandilla et al. (2012) observed that
pressure perturbations propagated preferentially in highly permeable, shallow areas (depth
and permeability are correlated). They also examined the effect of vertical and lateral vari-
ability of rock properties (compared to lateral variability only). The discretization by layers
led to a reduction in the thickness of the injection interval and a decrease in the vertical
plume migration. Consequently, the increase in pressure was higher at the injection point,
and globally, the pressure perturbation of the aquifer system increased. The pressure per-
turbations could propagate farther, and new interference between injection areas appeared.
Moreover, a basin model calibrated for groundwater modeling (Nicot 2008) indicated that a
local permeability barrier (single-phase simulation of large-scale CO2 injection) could cause
a local increase in pressure that was critical for the system integrity.
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The sensitivity to heterogeneitymodeling still needs to be addressed to assess the resulting
uncertainties in a feasibility study of CO2 storage (Lemieux 2011). The aim of the present
study is to compare the performances of different methods for modeling heterogeneities
based on 200 stochastic realizations and to assess the uncertainties that arise due to the choice
of spatial variability modeling. The results help to understand the resolution requirements
for the characterization of heterogeneities in CO2 storage studies. Conclusions based on
this study have to take into account the limitations of the models (short timescale and 2D
models representing a vertical section of a reservoir: the lateral variations or connectivities
are restricted to only one direction; see the next sections).

We analyze results in terms of pressure response at the well and its propagation from
the well, and in terms of CO2 behavior for a large-scale CO2 injection problem. The spatial
variations and the scatter of these results are studied according to the various models.

2 Approach

2.1 Different Methods for the Spatial Modeling of Rock Properties

As the resolution requirements will depend on the scale of the problem, the type of processes
and responses, we compare different scales of modeling the spatial variability of rock prop-
erties from the coarsest resolution to the finest: averaging at large scale (i.e., for the entire
reservoir), at layer scale (averaged laterally), and at local scale and the combination of two
scales (far from the well and close to the well). We do not study upscaling methods related
to mesh resolution (same mesh size for all models).

(a) Model homogenization with one value over the entire domain. This value corresponds
to a mean of the available data or can be inferred from well testing (Marsily et al. 2005).
Equivalent, uniform properties are assumed to approximate the flow behavior at large
scale. In this study, this model is used to examine whether results from a homogeneous
model can come close to the statistical properties of results from heterogeneous models.

(b) Layered models with a laterally averaged value per layer (vertically heterogeneous, one
value per layer over the entire domain). Layered models are often explained by the site
geology, but, at regional or basin scale, rock properties of the layers are probably not
homogeneous. The assumption of lateral homogeneity, even if it seems justified at local
scale, is sometimes too restrictive (e.g. Refsgaard et al. 2012) and specially for a CO2

storage study (e.g. the Sleipner project Holloway 2003). This layering can be represented
as an upscaling of lenses or an upscaling of the lateral correlation length. This model is
used to assess whether vertical variability modeling alone is sufficient to represent the
main constraints on CO2 migration and pressure response.

(c) Geostatistical simulations for modeling lateral and vertical spatial variabilities. In this
study, the variability is represented either by a continuous model with a fine variability
resolution (continuous spatial variability) or by a discontinuous model for which prop-
erties are discretized by classes. The model by classes assesses the influence of fine
variability resolution: either the necessity to characterize heterogeneities finely (e.g.,
within a facies) or the predominant influence of the contrasts in rock properties (con-
trasts higher than one order of magnitude) on the system response. In this study, notice
that the lateral variability is defined in only one lateral direction (2D models).

(d) Combination of a fine resolution model in the injection area (area of major non-
linear processes) and homogeneous model where flow processes are simpler (semi-
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homogeneous model). If this type of model is sufficient to represent the variability of
results due to heterogeneities, then the characterization of rock properties could be lim-
ited to the injection area.

For the modeling, we assume that the data available to describe the aquifer properties are
scarce (e.g., pre-injection stage). Only some data on permeability distribution are known.We
compare the most detailed heterogeneous model with the models using averaged values. The
continuous spatial variability model is used as the base case (the most detailed model, 200
stochastic realizations based on the moving average method). In general, simple models are
first used, and then, more details are added as the amount of available data increases. Here, a
backward approach is adopted: Models are built on the basis of the continuous model to keep
some consistency among models. Equivalent permeabilities are based on the permeability
distribution of the continuous model (not calculated by numerical simulation). Multiphase
flow simulations are applied to each model (from continuous to homogeneous models).

A similar study was carried out by Li et al. (2011) on a 3D geological model of an
aquifer. From a fully heterogeneous model, they built a facies model, a layered model, and
a homogeneous model. They compared the models’ predictions in terms of CO2 migration
and dissolution, average reservoir pressure with different boundary conditions. The facies
model gave a satisfactory description of pressure and CO2 behaviors. In contrast, results
from the layered model were the least reliable, even when compared to the results of the
homogeneous model. The homogeneous model would be sufficient to estimate the average
reservoir pressure, which is consistent with the findings of Marsily et al. (2005). However,
for open boundaries, the differences in pressure between homogeneous and heterogeneous
models may not be negligible (up to 10MPa) and, as mentioned earlier, the average pressure
is not an adequate criterion for risk assessments.

In this study, we use a stochastic approach (200 realizations for all types of heterogeneous
models: continuous, by classes, by homogeneous layers and semi-homogeneous models) to
take the uncertainties in the spatial variability of rock properties into account. Additionally,
to the CO2 migration and well pressure, the spatial variability of pressure response is studied
since the area of review depends on the propagation of pressure perturbations. The main limit
of this study is the geometry of the model: Models are in 2D so as to obtain results rapidly
for the stochastic approach. This study is also limited to an infinite-acting aquifer.

We first study the sensitivity to the resolution of spatial variability on permeability and
related capillary pressure (Leverett 1941). The spatial variability of these parameters is
assumed to have a predominant influence on results. The influence of the spatial variability
of other rock properties (relative permeability, porosity, pore compressibility) is assumed
negligible. These properties are uniform over the entire domain. This assumption is based on
results from Chadwick et al. (2009) and Buscheck et al. (2012). For uniform values, porosity
has little impact on pressure response or on plume migration [CO2 breakthrough time for
Buscheck et al. (2012)] compared to the influence of permeability.

However, in most cases, rock properties are correlated and considering the related spatial
variability of these parameters is a more realistic approach. So, in a second part, the validity
of the previous assumption is evaluated. We progressively study the influence of permeabil-
ity, porosity, and pore compressibility spatial variability on pressure and CO2 migration at
regional scale.

2.2 Modeling Basis and Hypothesis

We used 2D conceptual models representing a vertical section of a reservoir at regional scale
(height 154m, lateral extent 140km, section width 7m) and its horizontal well (Fig. 1). With
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Fig. 1 2D models representing the vertical section of an aquifer with a horizontal well. The finest cell
measures 7*7*7 m (injection cell). The shading lines represent the closed boundaries. The red lines are a
schematic representation of the linear flow from the well

Table 1 Models input parameters

Reservoir parameters Values

Depth (top of reservoir) −1550m

Thickness 154m

Boundary conditions Closed

Initial pressure (hydrostatic) 166E+05 Pa

Temperature (isothermal) 65 ◦C
Porosity 12%

Pore compressibility 9.65 × 10−10 Pa−1

Relative permeability and capillary pressure cf. Andre et al. (2007)

Salinity 20g/L

Blocks size in y- and z-direction 7m

Blocks size in x-direction Increases from 7m up to 14m from 0
to 8km of the injection point and
up to 595m at the boundaries

the large extent of the model, the lateral boundary conditions do not influence the system
response.

The model parameters are defined in Table 1 and Fig. 2. Values and uncertainty intervals
are based on data collected on the Dogger aquifer in order to keep the values and intervals
realistic. However, the 2D models do not specifically describe the geology of the Dogger
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Fig. 2 Relative permeability curves based on Dogger aquifer data from Andre et al. (2007)

aquifer; they are conceptual models of carbonate aquifers intended to test the methodology
for modeling rock properties.

The 2Dmodel setting (intersection of a horizontal well) implies the assumption of a linear
flow, perpendicular to the well. To respect the conditions of linear flow and to keep a realistic
well setting, only a short-term injection period is studied: 1year of injection. For a well length
between 1.5 and 4km, with an injection rate of 0.185kg/s in the section, the total injection
rate is equivalent to 1.25 up to 3.3Mt/year. CO2 injection is simulated via the multiphase
flow simulator TOUGH2/ECO2N (Pruess and Oldenburg 1999).

The 2Dmodel setting takes account of themajor flow and transport processes that could be
affected by vertical and lateral (in one direction) heterogeneities but does not take into account
the connectivity in the third dimension. It may be considered that grouping realizations
of heterogeneous models according to the third direction would bring out the influence
of heterogeneities on system response. However, it is unlikely that sections would behave
independently of each other. The linear flow is a strong assumption for heterogeneous media,
even if the temporal design is set to respect the period during which the linear flow is valid.
The short timescale needs also to be taken into account when concluding on this study.

Therefore, this model is not used to give accurate predictions but for general indications
on pressure and CO2 migration behaviors during the injection.

Despite their limitations, the 2D models are useful for the description and understanding
of the underlying phenomena for large-scale CO2 injection while reducing the computing
cost, in particular for the 200 realizations of heterogeneous models.

The number of 200 realizations of heterogeneous models was selected by considering the
differences in results between sets of 100, 150, 200, and 250 realizations. Comparing the
results of the different sets, we observe a results’ stabilization (mean, percentile,…) with 200
realizations. Moreover, the mean results obtained by bootstrapping on the 200 realizations
are superimposed for the pressure results (Appendix, Figs. 17, 18) and fall within a small
interval for the plume extent. Thus, the method error is quite low, and the use of the 200
realizations seems relevant to represent the main result variations due to the spatial variability
of permeability.
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Table 2 Labels of permeability field models

Model Label

Continuous spatial variability model (log-normal distribution, σLog = 1.5,
mean=100mD, median=32.5mD)

KHE

Model by classes (discontinuous) KClasses

Semi-homogeneous model, arithmetic mean Ksemief−A

Semi-homogeneous model, geometric mean Ksemief−G

Model by layers KLayers

Homogeneous model, arithmetic mean Kef−A

Homogeneous model, geometric mean Kef−G

For computational efficiency, the mesh is irregular with fine discretization close to the
well and length in x-direction increasing with distance from the well.

2.3 Modeling of Permeability Fields

1. The continuous spatial variability model was built up through unconditional geostatis-
tical simulations (moving average method, 200 realizations). Variables were correlated
following a circular variogram (Chilès and Delfiner 1999) with a geometrical anisotropy
(correlation length of 600m in X direction and 20m in Z direction (normal to the bedding
plane), no nugget effect, and the sill is equal to 1 before gaussian anamorphosis). This
anisotropy was based on previous studies of the Dogger aquifer which used a ratio of
1/30 for the vertical and horizontal ranges (Diedro 2009). Moreover, geothermal studies
indicate a productive thickness of about a dozen meters and marked lateral variability
of the productive unit, making their correlations at kilometer scale difficult (Lopez et al.
2010; Rojas et al. 1989).
The permeability field had a log-normal distribution (Table 2), and 99% of values lay
between 0.31mD and 3.16D (consistent with local data for the Dogger aquifer (e.g.,
Delmas et al. 2010; Rohmer and Seyedi 2010; Brosse et al. 2010; Casteleyn et al. 2010;
Lopez et al. 2010; Rojas et al. 1989)).
Stochastic simulations were applied on an initial fine and regular mesh (cell size of 7*7*7
m). To obtain the previously mentioned irregular mesh, the geometric mean of perme-
ability values was calculated as an equivalent permeability. On this specific model, this
upscaling technique gave consistent flow results with results on the fine mesh (Bouquet
et al. 2013).

2. For themodel by classes (discontinuous), permeability valueswere discretized depending
on threshold values applied to the permeability fields (realizations) of the continuous
model. Low variations of permeability values were eliminated.
Eight classes of permeability values (from the continuous model) are defined with a
factor of ten between each class (Table 3). The value allocated to each cell is equal to
the median of the class to which the cell belonged. This model by classes is close to
facies models, but a facies model is generally defined according to the rock types and
depositional environments, which are not modeled in this study. Results with the chosen
discretization were compared to those of the continuous model in order to determine the
resolution of heterogeneities necessary for relevant CO2 storage predictions.

3. For the layered model, the permeability for the entire layer was approximated by the
geometrical mean of cell values around the well from the continuous model. Cells were
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Table 3 Distribution of permeability coefficients (multiplier of 10−13 m2) of the continuous model

Log10Kin f Log10Ksup Mean Min Max Median Class mean Log10K

−4.5 −3.5 0 5 0 0 0.02 −4

−3.5 −2.5 0 5076 0 0 28 −3

−2.5 −1.5 0 28, 667 0 0 1804 −2

−1.5 −0.5 0 27 0 14, 214 14,817 −1

−0.5 0.5 33, 763 0 18 19, 556 15,153 0

0.5 1.5 7 0 28, 339 0 1938 1

1.5 2.5 0 0 5397 0 30 2

2.5 3.5 0 0 16 0 0.08 3

Selection of eight classes of permeability coefficients for the model by classes. Each row represents a class.
The column “Log10K”’ gives the coefficient assigned to each class. Log10Kinf and Log10Ksup = the bounds
of the class interval. Class Mean column = mean number of cells belonging to each class (from the 200
realizations, the sum is equal to the total number of model cells: 33,770). Mean (or Min, Max, or Median)
column = Number of cells in the “Mean model” which fall within each class interval. The “Mean model” is
obtained by calculating the mean value in each cell based on the 200 realizations (similar for Min, Max, or
Median)

included in the mean calculation if they could be included in a hypothetical investigation
radius of well testing. An intermediate radius value of about 100 m was chosen. Each of
the 200 realizations, transformed into a layered model, had 22 permeability values, one
for each layer.
Figure 3 is an example of the models by classes and by layers from the continuous model,
for one realization.

4. For the homogeneous model, the equivalent permeability was calculated by averaging
the permeability distribution of the continuous model (one isotropic permeability value
for the entire aquifer). Two cases were considered:

(a) the arithmetic mean (Kef−A = 100mD), i.e., the upper limit of the equivalent per-
meability [default value for few available data as in Zhao et al. (2012)].

(b) the geometric mean (Kef−G = 32.4mD), i.e., the equivalent value for a 2D parallel
flow for an isotropic, log-normal permeability distribution (Matheron 1967).

5. For the semi-homogeneousmodel, the influence of spatial variability of permeability was
assumed to be significant in the diphasic, nonlinear process area, where perturbations are
themost significant. Thus, permeability values from the continuousmodelwere preserved
in the injection area, over a distance of about 8.7km from thewell. For the injection period,
CO2 should not migrate outside this zone. Outside this zone, averaged properties could
be used since the system was monophasic and perturbations were weaker. In this zone,
the permeability value is equal to either the arithmetic mean or to the geometric mean
(Ksemief−A or Ksemief−G).

For all of these models, the same correlation was used between permeability and capillary
pressure. Capillary pressure is scaled according to the permeability values, following the J-
Leverett function (Leverett 1941). Therefore, the spatial variability of the capillary pressure
was similar to that of permeability. Table 2 summarizes the models and the labels used to
refer to each of them.
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Fig. 3 Example of the relations between the three spatial variability models for one realization. Injection
area (well at X = 0m, Z = −136.5m) of one realization of the models: continuous (top), by classes, by
homogeneous layers (bottom). The intersection of the two gray lines represents the injection point

3 Sensitivity to the Spatial Variability of Permeability and its
Representation

3.1 Pressure Response

On well pressure (Figs. 4, 5):

(i) The spatial variability led to a large spread of well pressure results up to 3MPa (contin-
uous spatial variability model results: spread of points on the horizontal axis, Fig, 4).
The relationship between permeability at the injection point and increase in pressure
is not linear (black symbols, Fig. 5). The increase in pressure can be smaller for a
lower permeability at the well than in some realizations with a higher permeability,
sometimes by several orders of magnitude. We also get a large spread of results for a
similar permeability at the injection point. So, the pressure response at the well not only
depends on the permeability at the injection point, but it is also strongly influenced by
the permeability field around the well. This underlines the importance of connectivities
modeling, at least in the injection area.

(ii) Well pressure results from semi-homogeneous and continuous models were identical
(triangle and diamonds, Fig. 4).

(iii) Well pressure results from the model by classes were close to those of the continu-
ous model (red squares, Fig. 4). The predominant influence of connectivities on well
pressure was also clear: The pressure differences between realizations of the model by
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Fig. 4 Comparison of well pressure perturbations between permeability field models (homogeneous, semi-
homogeneous, by layers and by classes) and results from the continuous model. Two hundred realizations for
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Fig. 5 Well pressure perturbation versus permeability value at the well for the different permeability field
models. Results after an injection period of 1year

classes were between 1 and 2MPa for an identical permeability value at the well (red
squares, Fig. 5).

(iv) The model by layers overestimated maximum pressure results compared to the con-
tinuous model, and inversely for minimum results (blue circles, Fig. 4). Maximum
well pressure results from the layered model were obtained when there was a low-
permeability layer above the injection point, and not for the lowest permeability value
at the injection point itself (blue symbols, Fig. 5). This effect could have been attenu-
ated if this low-permeability layer had presented some lateral variability. The inverse
effect is also observed on the Fig. 5 (i.e., the lowest well pressure is not observed for
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Fig. 6 Well pressure perturbation versus equivalent permeability value at the well for the continuous model
and for homogeneous models. Results after an injection period of 1year

the highest permeability value but for a value around 4.10−14 m2). So, well pressure is
strongly influenced by the vertical connectivity. The objective of injection in the highest
permeability layer may not be relevant in regard to this vertical connectivity.

(v) To compare well pressure results from homogeneous and heterogeneous models, we
calculate the equivalent permeability from each continuous model (based on values
close to the well, within a radius of 100m). We draw (Fig. 6) the well pressure results
from the continuous model versus its calculated equivalent permeability and the results
from both homogeneous models. According to the continuous model, we would have
expected a lower pressure perturbation at the well for an equivalent permeability similar
to the Kef−G model and a higher pressure perturbation for an equivalent permeability
similar to the Kef−A model. In particular, the well pressure results from the Kef−A

model is weaker than all results for the realizations of the continuous model (Fig. 5).
Averaged value of the permeability values in the injection area failed to reproduce the
pressure behavior due to the heterogeneities (and so variable connectivities) close to
the injection point.

On the propagation of pressure perturbations (pressure profiles, Figs. 7, 8, 9, 10):

(i) As for the well pressure, the spatial variability (continuous model) led to a large spread
of pressure perturbations (about 1MPa up to 10km from the injection point, Fig. 7). The
spread (stochastic dispersion) reached several kilometers for pressure perturbations of
0.05 and 1MPa (Fig. 11).

(ii) The results from semi-homogeneous models were close to those from the continuous
model up to 7km from the well (Fig. 8).

(iii) Pressure profiles from the model by classes were similar to those of the continuous
model (Fig. 9).

(iv) Maximum and minimum pressure profiles (Fig. 9), and standard deviation results
(Fig. 10) from the model by layers were drastically different from those of the con-
tinuous model. In contrast, mean pressure behaviors were relatively close for both
models. For pressure perturbations lower than 1MPa, layered models overestimated the
maximum extent and underestimated the minimum extent compared to the continuous
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Fig. 7 Minimum, mean, and maximum pressure perturbation profiles from the 200 realizations of the contin-
uous model and profiles from the homogeneous models. Results after an injection period of 1year. Minimum,
mean, and maximum profiles are based on, respectively, minimum, mean, and maximum values in each cell
from the 200 realizations. Thus, minimum and maximum profiles do not correspond to a specific realization
but give the dispersion of the results. Results are given for all cells along z, but the pressure is vertical at
equilibrium except closed to the injection point
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Fig. 8 Minimum, mean, and maximum pressure perturbation profiles from the 200 realizations of the con-
tinuous model and the semi-homogeneous models. Results after an injection period of 1year
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Fig. 9 Minimum, mean, and maximum pressure perturbation profiles from the 200 realizations of the con-
tinuous model, model by classes, and model by layers. Results after an injection period of 1year
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Fig. 10 Standard deviations of pressure perturbation profiles at 1year of injection for models with different
spatial variability of permeability (continuous, by classes, by layers, and semi-homogeneous)

model (Fig. 9). Differences in the propagation of pressure perturbations of 0.05MPa
reached several kilometers (up to 17km for the maximum extent, Fig. 11)

(v) Both homogeneous models underestimated the maximum extent of high pressure per-
turbations (e.g. 1MPa) compared to the continuous model (differences up to several
kilometers, Fig. 11). For lower pressure perturbations, far from the well (e.g. 0.05MPa),
results from the continuousmodel fell within the range of results given by the two homo-
geneous models. But the uncertainty interval of homogeneous models was significantly
larger than the stochastic dispersion1 of the continuous model (7.5 vs. 4km at 1year).
Likewise, the mean behavior of the continuous model was between those of the two
homogeneous models, but the interval was large (Fig. 7).

In summary, the homogeneous model results bracketed the mean pressure behavior of
the continuous model, but the interval between both homogeneous models’ results is large.
Averaged properties at large scale are only a rough approximation of the averaged pressure
propagation and did not approximate the spread of results found in the continuous spatial
variability model. Both homogeneous models fail to represent the potentially maximum
pressure behavior either at thewell or further away from thewell. Because of the considerable
loss of accuracy, the homogeneous model does not constitute a valid representation for
studying pressure response to CO2 injection.

Since pressure results from the model by classes and the continuous model are similar, the
fine resolution of the spatial variability of permeability and capillary pressure (here, lower
than one order of magnitude) can be neglected for the pressure response. However, major
connectivity modeling (vertical and lateral connectivities, here, in one direction), even in the
single-phase area, is required to obtain relevant predictions for the feasibility of storage (sig-
nificant differences between the continuous, homogeneous, semi-homogeneous, and layered
models).

3.2 CO2 Migration and Dissolution

The results from the homogeneous models mainly present the influence of permeability on
the gravity forces and thus on CO2 migration. With a high permeability, the plume quickly
reaches the top of the reservoir where itmigrates laterally, whereas a lower permeability slows

1 Differences between minimum and maximum pressure perturbations.
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Fig. 11 Comparison of the extent of pressure perturbations propagating from the well (1MPa, on the left;
and 0.05MPa, on the right) from permeability field models compared to the continuous spatial variability
model. Two hundred realizations for each model (except for the homogeneous models). Differences of the
minimum extent (top), mean extent, and maximum extent (bottom). The stochastic dispersion is defined as
the differences between minimum and maximum pressure perturbations of the continuous spatial variability
model

down the vertical migration and so the lateral migration at the top. Nevertheless, the lateral
sweep efficiency throughout the thickness of the reservoir is improved (Fig. 12, differences
between Kef−A and Kef−G).

The lateral extent at the top of the reservoir given by the homogeneous model of higher
permeability (Kef−A) is similar to the mean lateral extent of the continuous model. For the
continuous model, the maximal extent is not at the top of the reservoir but at the same level
as the injection point. Because of preferential migration pathways and local permeability
barriers, the CO2 plume of the continuous model has an irregular shape and, mostly, a larger
lateral extent.

Moreover, the homogeneous models tend to underestimate the dissolution rate (Table 4)
comparedwith the continuousmodel. This underestimation is associatedwithCO2 migration.
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Fig. 12 Maximum and mean gas saturation profiles (Sg = 0.01) from the 200 realizations of the continuous
model and semi-homogeneous models, and gas saturation profiles from the homogeneous models. Results
after an injection period of 1year. The blue cross represents the injection point

Table 4 Dissolution rate differences (minimum, mean, and maximum) between permeability field models

Dissolution rate
differences [%]

δ(KClasses) δ(KLayers) δ(Ksemief−A and
Ksemief−G)

δ(Kef−A and Kef−G)

Min. dissolution rate 0.47 2.44 <0.001 [−0.7; −4.1]

Mean dissolution rate −0.9 −0.08 <0.01 [4.45; 1]

Max. dissolution rate 2.13 1.11 <0.001 [8.8; 5.4]

The label δ(type_Model) refers to the difference between continuous model results and type_Model results.
N.B: The stochastic dispersion of the continuous models is equal to 9.5%

The drainage areas are more widely distributed for the continuous model, thus increasing the
brine-CO2 interface area and consequently the dissolution rate.

CO2 plumes and dissolution rates from the semi-homogeneous and continuous models
are identical (Fig. 12; Table 4). The homogenization, beginning at 8km from the well, does
not affect the transport process close to the well, for an injection period of 1year.

Profiles of the CO2 plume from themodel by classes are close to those from the continuous
model (Fig. 13). The modeling by classes will be sufficient to assess the connectivities
between permeable areas and to capture the preferential migration pathways.

Themodel by layers overestimates themaximum andmean lateral migrations compared to
the continuous model and exacerbates particular cases. For example, if the injection layer has
a high permeability but the layer above has a low one, then CO2 will migrate only laterally,
while, for the same realization but for the continuous model or the model by classes, other
connectivities will allow vertical CO2 migration. The assessment of CO2 migration, and so
the risk assessment of CO2 leakage could be dramatically different depending on the type of
model used.

3.3 Discussion on Permeability Field Models

The following discussion is drawn from this study based on 2D models (lateral connectivity
refers to connectivity in only one lateral direction) with various spatial variability modeling
and based on a short-time injection period.

123



Large-Scale CO2 Storage in a Deep Saline Aquifer… 231

−1000 −500 0 500 1000
−160

−140

−120

−100

−80

−60

−40

−20 Mean KHE
Max KHE

Mean KClasses
Max KClasses
Mean KLayers
Max KLayers

X [m]

Z 
[m

]

Fig. 13 Maximum and mean gas saturation profiles (Sg = 0.01) from the 200 realizations of the continuous
model, the model by classes, and model by layers. Results after an injection period of 1year. The blue cross
represents the injection point

Based on the bootstrapping of the results from the differentmodelingmethods (continuous,
classes, and layers) and compared to results from homogeneous and semi-homogeneous
models, one can say that method errors remain below the differences between the results
from permeability field models (Figs. 17, 18 in appendix).

These differences between the results from permeability field models underline the uncer-
tainties introduced by the modeling, either on interference predictions or on the definition of
the area of review: differences in pressure propagations at the scale of a kilometer or dozens
of kilometers, differences in CO2 migration extent, that could lead to unexpected leakage, or
on injectivity predictions (differences of several MPa). The misestimation of well pressure
could lead to economic consequences or risks of fracturing and microseismicity. Other para-
meters, such as brine production wells (e.g., Buscheck et al. 2012; Li et al. 2011), may reduce
in some extent these uncertainties on system response (decrease in the stochastic dispersion).

Even when only one model of spatial variability (i.e. 200 realizations) is considered, pres-
sure and CO2 migration results are also highly scattered. Spatial variability of permeability
has a predominant impact on the predicted results for both. The uncertainty on variance and
correlation length of permeability could also increase the spread of results (e.g., De Lucia
2008; Lengler et al. 2010; Diedro 2009). Well and model setting could also contribute to the
variability of the results. For example, the spatial variability of properties mostly increases
the efficiency of dissolution as observed by Farajzadeh et al. (2011) and Flett et al. (2007),
but here some dissolution rates of the heterogeneous model are lower than results from the
homogeneous models. This particularity is due to a permeability barrier above the horizontal
well: CO2 migrates mainly laterally, and a low dissolution rate is obtained for the injection
period.

The lack of lateral and vertical connectivities modeling causes a marked loss of informa-
tion and a poor degree of confidence in models’ predictions either for CO2 migration and
pressure response. The spatial variability of the pressure response shows the poor predictive
quality of the homogeneous model for pressure propagation and injectivity which varies by
several orders of magnitude, as shown by Lengler et al. (2010) and Heath et al. (2012). Mod-
eling both lateral and vertical variabilities of rock properties is critical to characterize the
system perturbation by CO2 injection since the differences between the model by layers and
the continuous model can be greater than those between the continuous and homogeneous
models.
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In contrast, the model by classes preserves the quality of predictions of pressure and CO2

migration, evenwith the discretization of permeability variability. But, the discretization leads
to a deviation of gas saturation values and consequently to a low accuracy of the minimum
and maximum dissolution rates.

These conclusions agree with those of Li et al. (2011) except for the validity of the homo-
geneous model for the pressure response [mean pressure, one realization of heterogeneous
model for Li et al. (2011)] and of the model by classes for the dissolution estimates, and are
extended, here, for the multiple realizations of the heterogeneous model and for the spatial
variability of the pressure response.

Additionally, we observe that the homogenization in the single-phase area, far from the
well, also leads to a significant bias in the pressure response propagating in this area (semi-
homogeneous model). In contrast, CO2 migration and pressure results closer to the well are
not influenced by the homogeneous area of the semi-homogeneous model and the model
gives reliable predictions close to the well.

The validity and accuracy of the semi-homogeneous model rely on the distance between
the injection well and the homogeneous area and on the perturbation to be estimated. The
use of this model is justified if the response to be assessed is in the heterogeneous area, as
it avoids the characterization of heterogeneities at larger scales and the bias due to boundary
conditions. However, the semi-homogeneous model cannot be used for accurate predictions
of pressure perturbations at regional scale: Even in the single-phase area, the heterogeneities
affect significantly the propagation of pressure perturbations of the continuous models.

4 Sensitivity to Spatial Variability of Porosity and Pore Compressibility

To study the spatial variability of porosity and pore compressibility associated with the
variability of permeability, the model by classes is used since this model gives reasonable
results.

Each of the eight permeability classes has its associated porosity value. Generally, for a
high effective porosity, rocks also present a high permeability value. Two cases are considered
(cases a and b in Table 5).

A new model is also built with the spatial variability of pore compressibility (with the
porosity values of case b, cf. Table 5). The pore compressibility value of each class is cal-

Table 5 Porosity and pore compressibility values for each class of permeability and related labels

Classes −4 −3 −2 −1 0 1 2 3

Porosity case a
[KΦaClasses]
(mean: 12.02%)

4% 6% 9% 11.5% 12.5% 15% 18% 20%

Porosity case b
[KΦbClasses]
(mean: 12.03%)

4% 6% 8% 10% 14% 16% 18% 20%

Pore compressibility
[KΦbC PClasses]
(unit: 10−10 Pa−1,
mean: 10.26)

34.7 23.9 17.0 12.6 7.66 6.29 5.36 4.73

The mean porosity value is close to the uniform porosity value of previous models
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Fig. 14 Mean, minimum, and maximum pressure perturbation profiles (200 realizations) after 1year of
injection,model by permeability classes (KClasses) or by permeability and porosity classes (cases a KΦaClasses
and b KΦbClasses, Table 5). Similar pressure results were obtained for the model by permeability, porosity,
and pore compressibility classes (KΦbC PClasses)
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Fig. 15 Standard deviation of pressure perturbation profiles (200 realizations) after 1year of injection, model
by permeability classes (KClasses) or by permeability and porosity classes (cases KΦaClasses and KΦbClasses,
table 5) or by permeability, porosity, and pore compressibility classes (KΦbC PClasses)

culated on the basis of Horne’s correlation (Horne 1995) for carbonate rocks (the same
correlation was used for the previous models with spatial variability of permeability only).

4.1 Influence on Pressure Response

Taking into account the spatial variability of porosity and/or pore compressibility does not
significantly affect the pressure perturbation profiles (Fig. 14).

Slight differences are observed in the profiles of the standard deviation of pressure com-
pared to the model with only the spatial variability of permeability (Fig. 15). The standard
deviation values for case b, with the highest porosity variance and a uniform value of pore
compressibility, are higher in the injection area. For the same spatial variability of porosity
and with the spatial variability of pore compressibility, the differences decrease.

Pore compressibility values are inversely correlated to porosity values. Consequently, the
increase in available pore volume brought by an increase in the porosity value is attenuated
by the lower pore compressibility value. Thus, with an increase in pressure, low-porosity
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Fig. 16 Maximum and mean gas saturation profiles (200 realizations, Sg = 0.01) after 1year of injection,
model by permeability classes (KClasses) or by permeability and porosity classes (cases KΦaClasses and
KΦbClasses, Table 5). Results from the model by permeability, porosity, and pore compressibility classes
(KΦbC PClasses) are superimposed with those from the KΦbClasses model. The blue cross represents the
injection point

areas may accumulate a fluid volume equal to the volume in a higher porosity area with a
lower pore compressibility.

4.2 Influence on CO2 Migration and Dissolution

Spatial variability of porosity tends to decrease the extent of the CO2 plume (Fig. 16). In
case b, the decrease in maximum lateral extent reaches 70 m (i.e., about one-tenth of the
maximum lateral extent from the well). With the spatial variability of porosity, the injected
CO2 invades an equivalent pore volume but to a lower lateral extent than for the case with
only the spatial variability of permeability.

Changes in CO2 migration affect the dissolution rate. If the vertical migration is con-
strained by permeability barriers (mainly lateral migration), then the dissolution rate is lower
with the spatial variability of porosity. The opposite is true if the CO2 can drain vertically
and laterally into the entire thickness of the reservoir. The spatial variability of porosity exac-
erbates the minimum and maximum CO2 behaviors obtained with the spatial variability of
permeability because of the change in brine volume at the interface between CO2 and brine.

The spatial variability of pore compressibility does not influence CO2 migration and
dissolution.

4.3 Discussion on Porosity and Pore Compressibility Spatial Variability

The influence of the spatial variability of porosity becomes relevant for CO2 migration and
dissolution if the variance of porosity values is sufficiently high. But, the spatial variability
of permeability has greater influence on pressure results and CO2 behavior than the spatial
variability of porosity and pore compressibility.

As in the sensitivity study on uniform porosity value (Chadwick et al. 2009; Buscheck
et al. 2012), its spatial variability has a negligible influence on pressure results. On the
contrary, previous studies on uniform pore compressibility values show its significant effects
on pressure response (e.g., Birkholzer et al. 2009; Zhou et al. 2010; Person et al. 2010). But
its spatial variability, related to those of permeability and porosity, has a low influence. We
could possibly approximate the spatial variability of porosity and pore compressibility by an
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equivalent, uniform value over the entire domain without a significant loss of information on
the pressure response.

The spatial variability of other rock properties, such as relative permeability, could be
considered. Spatial variability of relative permeability may influence CO2 migration and
dissolution and injection pressure according to its influence as a uniform value (Mathias
et al. 2013; Flett et al. 2007).

5 Conclusion

Studies on CO2 storage feasibility rely on the knowledge and quality of geological models. In
case data on geological formations are scarce, averaged properties are often used to represent
the storage formations. Here, we compared pressure response and CO2 behavior in different
averaged permeability field 2D models.

The significant differences of predictions among permeability field models show how
critical the choice of spatial variability modeling and its related uncertainties may be for
storage and risk assessments.

At the injection well, the singular behaviors and differences show that connectivities and
migration pathways (i.e., lateral, here in one direction, and vertical variability of permeabil-
ity) have to be described to ensure reliability of both pressure results and CO2 migration
predictions. According to our results, whereas the dissolution rate can only be derived from a
fine description of the heterogeneities at the injection well, the main contrasts of permeability
(here, one order of magnitude) are sufficient to characterize pressure perturbations and CO2

migration.
At large scale, farther away from the well, the description of major connectivities is still

required to describe the critical pressure perturbations. It appeared models averaging the
lateral and/or the vertical variability of rock properties at large scale are not appropriate for
CO2 storage feasibility studies.

The model by classes and semi-homogeneous model are recommended as the most con-
venient models combining both simplified heterogeneities and reliable results. They provide
sufficiently accurate results for the plume migration, injectivity, and pressure perturbations
in the injection area. As the dissolution is only happening at the smaller plume, the semi-
homogeneous model gives more accurate dissolution rate predictions than the model by
classes. On the other hand, as the predominant influence of the large contrasts of rock
properties was observed on pressure results, the model by classes is preferred for pressure
perturbation estimates at large scale.

The spatial variability of porosity and the related pore compressibility were also consid-
ered. Results indicate a negligible influence of their spatial variability compared to the effects
of the spatial variability of permeability. Their spatial variability could be approximated by
a uniform value of porosity and pore compressibility.

Appendix

See Figs. 17 and 18.
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Fig. 17 Mean (left) and Maximum (right) pressure perturbation profiles after the bootstrapping of 200 real-
izations of the continuous model, model by classes, and model by layers (200 resampling for each model, i.e.,
200 mean and maximum profiles). Results after an injection period of 1year

Fig. 18 Maximum and mean gas saturation profiles (Sg = 0.01) after the bootstrapping of 200 realizations
of the continuous model, model by classes, and model by layers (200 resampling for each model, i.e., 200
mean and maximum profiles). Results after an injection period of 1year
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