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Abstract In this paper, we investigate the nonlinear deviation of the Darcy law in the domain
of high pressure gradient. Classically, the (linear) Darcy law can be deduced from asymptotic
homogenization approaches and the numerical resolution of the Stokes flow problem on the
unit cell of the porous medium. At high-speed steady flow of a fluid, nonlinear effects on
the macroscopic filtration law arise and are accounted by considering the convection term
in the Navier–Stokes equation. These nonlinear effects has been often studied in asymptotic
homogenization framework by expanding the solution in power series at low Reynolds num-
ber. This has two advantages: (i) The Navier–Stokes problems are replaced by a chain of
linear problems with source terms which depend on the solution at lower order, and (ii) the
macroscopic nonlinear filtration law is derived in the form of a polynom. We develop a Fast
Fourier Transform (FFT)-based numerical algorithm to compute the solution of this elemen-
tary problems and to compute the higher-order permeability tensors in connection with the
morphology of the porous medium. The results are then compared to the solution of the full
Navier–Stokes problem by means of finite element method (FEM) which allows evaluating
the capacity of the expansion method to account for the nonlinear effects. We determine the
convergence radius of the polynomial series, and we give the limit of the series expansion
method in terms of the Reynolds number.

Keywords Darcy · Forchheimer · Inertial effects · Homogenization · Polynomial law

1 Introduction

The determination of permeability in connection with microstructure parameters has been
already addressed in the framework of upscaling approaches. Among the firsts, Auriault
and Sanchez-Palencia (1977), Sanchez-Palencia (1980), Levy (1983), etc., have provided a

B Vincent Monchiet
vincent.monchiet@u-pem.fr

1 Laboratoire Modélisation et Simulation Multi Echelle, LMSME UMR8208 CNRS,
Université Paris-Est, 5 boulevard Descartes, Marne la Vallée Cedex 77454, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-015-0588-4&domain=pdf
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physical justification of the famous Darcy’s law (1856) in framework of periodic homog-
enization based on matched asymptotic series expansion techniques. The Darcy law gives
the flow velocity as a linear function of the applied gradient of pressure and introduces the
permeability tensor that is characteristic of the porous material. Moreover, the asymptotic
approach also provides the elementary cell problems which has to be solved for computing
the permeability. The Darcy law typically reads (for one-dimensional problem):

V = −K

μ
G (1)

where V is the macroscopic velocity, μ the dynamic viscosity characteristic of the fluid,
G is the macroscopic pressure gradient, and K is the permeability that is characteristic of
the morphology of the microstructure. Mentioned must be made of other homogenization
approaches based on energy principle and volume averaging (Whitaker 1986; Allaire 1989,
etc).

Many years after Darcy’s historical experiment, other researchers found that some devia-
tion from the above-mentioned proportionality law occurs when the velocity increases. As the
Reynolds number increases, nonlinearities due to inertia appear. For higher Reynolds num-
bers, the flow becomes turbulent. Some experimental data for geometrically simple media
(see for example Chauveteau and Thirriot 1967; Skjetne et al. 1995) proved the existence
of four regimes: (i) Darcy, (ii) weak inertia, (iii) strong inertia, and (iv) turbulence. In the
domain of weak inertia, the Forchheimer (1901) law is generally used, and it introduces a
quadratic term in the velocity field in order to account for the nonlinear dependence with the
applied gradient of pressure and reads:

V + αV 2 = −K

μ
G (2)

inwhichαV 2 is the corrective term to the linearDarcy law.Note, however, that Forchheimer’s
lawwas originally postulated but not derived in a homogenization approach. TheForchheimer
equation has been found to reproduce adequately various experimental data Lindquist (1933),
Sunada (1965), Ahmad (1967) but fails as regards otherworkChauveteau andThirriot (1967),
Kim (1985) which suggests to use other formula for the nonlinear filtration law. For instance,
a cubic correction to the Darcy law can be used,

V + βV 3 = −K

μ
G (3)

that is more in agreement with the recent experimental data provided by Zermatten et al.
(2014). Note also that numerical simulations with the finite element method (FEM) has been
performed in order to validate or not somemacroscopic models of filtration (see, for instance,
Firdaouss et al. 1997; Lasseux et al. 2011).

Various contributions have been proposed to provide a physical basis for the Forchheimer
law or to derive more general nonlinear equations in order to physically explain the origin
of nonlinear effect in the “weakly non linear” regime. Particularly, still in the framework of
periodic homogenization based on matched asymptotic series, various authors developed a
nonlinear filtration law for porous media starting from the stationary Navier–Stokes equation
amongMei andAuriault (1991),Wodie and Levy (1991), Giorgi (1997), Skjetne andAuriault
(1999),Chen et al. (2001), andBahloff et al. (2010). TheDarcy law is recovered bykeeping the
first-order term in the expansion series, and the nonlinear effects are captured by accounting
for higher-order terms. Particularly, in References Mei and Auriault (1991), Wodie and Levy
(1991), Rasoloarijaona and Auriault (1994), and Skjetne and Auriault (1999), the authors

123



On the Inertia Effects on the Darcy Law: Numerical. . . 173

found results which are much different from Forchheimer equation. Indeed, the second-order
termof the expansion series is null, and the third- order term introduces a correction toDarcy’s
law that is cubic. By keeping all the terms of the expansion series, the filtration law is of
polynomial type in which the quadratic term is null. Each tensor of this law can be computed
from numerical calculation of successive Stokes-type problem at the local scale which is
much simpler and faster than solving the full Navier–Stokes equations. Unlike previous
works, Mei and Auriault (1991), Wodie and Levy (1991), Skjetne and Auriault (1999), and
Chen et al. (2001) showed that the first correction to Darcy law is quadratic. They also use
the asymptotic series expansion method but with different scaling assumptions. Note that the
need to obtain a quadratic term in the macroscopic filtration law was motivated by earlier
experimental data (MacDonald et al. 1979). However, a dependence with a quadratic term
at low Reynolds number has not been reported by the recent numerical computations based
on the resolution of the full Navier–Stokes equations at the microscopic scale (Peszynska
et al. 2009; Bahloff et al. 2010; Adler et al. 2013). Particularly, in Reference Adler et al.
(2013), the authors suggest that there is no quadratic term at low Reynolds number, but an
approximation of the macroscopic nonlinear Darcy law at higher Reynolds number could
include a quadratic term. The comparison between the polynomial approximate filtration law
obtained from asymptotic homogenization approach and the solution of full Navier–Stokes
problem has been recently studied by Bahloff et al. (2010) in the case of the flow through
a periodic axisymmetric sinusoidal channel and by Adler et al. (2013) for the problem of
flow between two wavy walls and for which, in each cases, the macroscopic model is one
dimensional.

It can be shown that the homogenization approach used to derive the nonlinear filtration
law involves the resolution of periodic Navier–Stokes fluid flow in the unit cell under an
applied pressure gradient. This equivalence is only valid if we solve and superpose infinitely
the hierarchy of Stokes problems in the unit cell, which is numerically impossible. It is noted
thatwhen the latter approach is employed for afinite number of times, the polynomial filtration
law can be obtained, as done by many previous works (Bahloff et al. 2010; Adler et al. 2013).
In order to assess the accuracy of polynomial law, we exploit the aforementioned equivalence
and compare the homogenization solutions with the exact one issued from finite element
method. We have developed a new fast Fourier transform scheme to deal with the periodic
homogenization problem and use COMSOL to obtain the exact solution. The microstructure
under consideration constituted of 2D aligned cylinders with circular and rectangular cross
sections. The obtained results are surprisingly interesting. It is found that the polynomial
laws only provide small corrections to the linear Darcy law, while they are only valid for a
finite range of the pore Reynolds number Re and still deviate at high values of Re. These
numerical evidences suggest that nonpolynomial filtration law should be used to extend the
validity to high Re range. These results briefly summarize the notable contribution to the
present works. The details of the paper are organized in section as follows. In Sect. 2, we
recall the principle of the expansion series method, and we provide the hierarchy of unit cell
problems which have to be solved for computing the permeability tensors of the polynomial
macroscopic filtration law. In Sect. 3, we provide a FFT-based numerical approach to compute
the solution of the chain of cell problems and the permeability tensors at different orders.
In Sect. 4, numerical applications for 2D microstructures constituted of aligned cylinders.
The polynomial approximate filtration law is compared with a reference solution obtained
by computing the full Navier–Stokes problem with finite elements. In order to evaluate
accurately the limit of the series expansion method, we determine the convergence radius of
the polynomial series and we provide the limite for the pore Reynolds Number.
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2 Approximation with Series Expansion Method

We consider a periodic porous medium saturated by a homogeneous Newtonian viscous fluid
with the dynamic viscosity μ. By V , we denote the total volume of the cell, by Vf and Vs the
volume occupied by the fluid and the solid, respectively. The frontier between the fluid and
the solid is denoted S (Fig. 1).

We consider, within the unit cell, the Navier–Stokes problem under an applied pressure
gradient G:

μ�v − ∇ p − G = ρ(∇v).v in Vf

divv = 0 in Vf (4)

v = 0 in S

with the periodicity conditions for the velocity and the pressure:

v periodic, p periodic (5)

In (4), μ and ρ are, respectively, the dynamic viscosity and density, �, ∇, and div are the
laplacian, gradient, and divergence operator. The first and second relations in (4) are the
momentum equation and incompressibility condition, and the last equation is the nonslip
condition on the interface S between the fluid and the solid.
We seek for the relation giving themacroscopic velocity V as function of the applied pressure
gradient G. In order to obtain results independently of the values of fluid characteristics, ρ
andμ, and on the size of the unit cell h, it is suitable to use the following change in variables:

v = v∗ μ

ρh
, p = p∗ μ2

ρh2
, G = μ2

ρh3
J, ∇ = 1

h
∇∗ (6)

Introducing these nondimensional parameters in (4) yields to:

�∗v∗ − ∇∗ p∗ − J = (∇∗v∗).v∗ in V ∗
f

div∗v∗ = 0 in V ∗
f

v∗ = 0 in S∗
(7)

Fig. 1 Periodic unit cell of the
porous medium h

h

Vs

Vf
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The mean velocity field computed over the volume V of the unit cell can be put into the
following form:

V ∗ =< v∗ >V= F(J) (8)

in which F : J → F(J) is an unknown nonlinear function of the variable J . The macro-
scopic filtration law for physical variables V and G is:

V = μ

ρh
F

(
ρh3

μ2 G
)

(9)

At low-speed steady flow of a fluid in the porous medium, the term at the right side of the
equality in (7) can be neglected and the solution linearly depends on the applied pressure
gradient. In this context, the macroscopic description of the fluid flow through the porous
solid is the Darcy law. As speed increases, the nonlinear inertial terms grow and the flow law
becomes nonlinear.

The approximation of the macroscopic filtration law at low pore Reynolds number has
been investigated by several authors amongMei andAuriault (1991),Wodie and Levy (1991),
Firdaouss et al. (1997), Skjetne and Auriault (1999), Chen et al. (2001), Bahloff et al. (2010),
and Adler et al. (2013). Let us briefly recall the main results obtained by these authors.
Consider the following change in variables:

v = vcv, p = μvc

h
p, G = μvc

h2
G, ∇ = 1

h
∇∗ (10)

in the Navier–Stokes problem (4), where vc = ‖V‖ is the characteristic velocity, chosen as
the norm of the macroscopic velocity field following (Lasseux et al. 2011). Introducing also
the pore Reynolds number:

Re = ρvch

μ
(11)

we obtain the following alternative form for the Navier–Stokes equations (4):

�∗v − ∇∗ p − G = Re(∇∗v).v in V ∗
f

div∗v = 0 in V ∗
f

v = 0 in S∗
(12)

Assuming low values of the pore Reynolds number, the solution is searched as a power series
in Re:

v = v0 + Rev
1 + R2

ev
2 + R3

ev
3...

p = p0 + Re p + R2
e p

2 + R3
e p

3... (13)

Introducing expressions (13) in the system (12) and collecting all the terms having the same
power in Re lead to a hierarchy of cell problems.

The first-order unit cell problem is classic in homogenization of porousmedia and provides
the macroscopic Darcy law. This problem reads:

�∗v0 − ∇∗ p0 − G = 0, div∗(v0) = 0 (14)

This is a linear problem for v0 and p0. The solution reads:

v0i = A0
i j G j , p0 = B0

i Gi (15)

123



176 V.-T. To et al.

where A0
i j and B0

i are two localization tensors which depend on the coordinates x and which
are determined by solving the elementary problem (14) with the periodicity condition on its
boundary and the adherence condition on ∂Vf .

All higher-order problems can be read in the compact form:

�∗vn − ∇∗ pn =
k=n−1∑
k=0

∇∗vn−1−k .vk, (16)

and the solution is
vni = An

i j...pG j ...Gp, pn = Bn
j...pG j ..Gp (17)

Each cell problem and each associated localization tensor (An
i j...p and Bn

j...p) only depends
on the geometry of the unit cell of the porous material. Again, the elementary problems (16)
are solved with the periodicity condition on the boundary of cell and the adherence condition
on ∂Vf .

The total velocity field is obtained from the first relation in (13) together with (15) and
(17). This leads to:

vi = A0
i j G j + Re A

1
i jkG jGk + R2

e A
2
i jkpG jGkG p + · · · (18)

The macroscopic velocity is

V i =< vi >V= −
[
K 0
i j G j + ReK

1
i jkG jGk + R2

e K
2
i jkpG jGkG p + · · ·

]
(19)

where K 0
i j , K

1
i jk , K

2
i jkp , and K 3

i jkpq are the components of the dimensionless permeability
tensors at the different orders, defined by:

Kn
i j..k = − < An

i j..k >V (20)

The inversion of the infinite series filtration law is:

Gi = −
[
H0
i j V j + ReH

1
i jkV j V k + R2

e H
2
i jkpV j V kV p + · · ·

]
(21)

in which H0
i j , H

1
i jk , H

2
i jkp , and H3

i jkpq are the components of dimensionless hydraulic resis-

tivity tensors. They are obtained by replacing, in (19), Gi by (21) and by collecting all the
terms having the same power in Vi :

V i =
[
K 0
i j H

0
j p

]
V p +

[
K 0
i j H

1
j pq + K 1

i jk H
0
j pH

0
kq

]
V pV q + · · · (22)

In the above relation, the first term at the right of the equality must be equal to V ∗
i and all

other terms must be equal to zero. This leads to a set of linear equations for which H0
i j ,

H1
i jk ,…are the unknowns:

K 0
i pH

0
pj = δi j

K 0
i pH

1
pjk + K 1

i pq H
0
pj H

0
qk = 0

. . .

(23)

and which must be solved successively to obtain the hydraulic resistivity tensors. With the
renormalization of the quantities, the polynomial filtration law is:

Vi = −h2

μ

[
K 0
i j G j + ρh3

μ2 K 1
i jkG jGk +

(
ρh3

μ2

)2

K 2
i jkpG jGkG p + · · ·

]
(24)
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The first term is the Darcy law, and the higher-order term appears as corrections to the linear
approximation. By doing the same in Eq. (21), one obtains:

Gi = − μ

h2

[
H0
i j V j + ρh

μ
H1
i jkVj Vk +

(
ρh

μ

)2

K 2
i jkpVj VkVp + · · ·

]
(25)

Let us now introduce the change in variables (6) in relation (24), it gives:

V ∗
i = −

[
K 0
i j J j + K 1

i jk J j Jk + K 2
i jkp J j Jk Jp + · · ·

]
(26)

which, comparing with Eq. (8), leads to a polynomial expression for the function F(J).
In order to investigate the deviation between the polynomial approximation and the exact
solution of Navier–Stokes problem, it is more convenient to use the set of dimensionless
variables (V ∗, J) since the relations (8) and (26) are independent of the size of the unit cell
of the nature of the fluid and the Reynolds number. Also, it must be noted from Eq. (10) that

vc = ‖V‖ = μ

ρh
‖V ∗‖ (27)

which, introduced in (11), gives:
Re = ‖V ∗‖ (28)

which is important for the interpretation of the numerical results in terms of the pore Reynolds
number.

All the permeability tensors are computed by solving the elementary problems which are
described in Eqs. (15) and (17). The comparison between the polynomial approximation
and the full solution obtained by the resolution of the Navier–Stokes equation has been
provided in two cases: The fluid flow between two wavy walls has been studied by Adler
et al. (2013), and the solution for the flow in a periodic axisymmetric sinusoidal channel has
been numerically computed by Bahloff et al. (2010). Alternatively, the implementation of
Navier–Stokes problem (7) for various porous microstructures can be found, for example,
in Firdaouss et al. (1997), but the results have not been compared with the polynomial
approximation derived from the resolution of the chain of elementary cell problems (15) and
(17). The computation of the higher-order permeability tensor has never been computed in
the case of an array of periodic array of cylinders, which is of great importance to evaluate the
capacity if the expansion series method to reproduce the nonlinear effects and to determine
the limit of the approach.

The first correction to Darcy law has been proved inMei andAuriault (1991) to cancel out.
This is obviously trivial when considering a unit cell having plane symmetries, since all the
tensors of odd number vanish. However, this result has been demonstrated in Firdaouss et al.
(1997), Skjetne and Auriault (1999) for arbitrary anisotropic porous media. The correction
in the Darcy law can then be found in the cubic term. This suggests that the Forchheimer
law, which introduces a quadratic corrective term, is not in agreement with the results of
the homogenization approach. This result was also supported by various numerical results
(Barrère 1990; Firdaouss et al. 1997; Skjetne et al. 1995). The accuracy and range of validity
of the correction terms of Darcy law must be evaluated by (i) computing higher-order terms
of the series and (ii) by making the comparison with the full resolution of Navier–Stokes
problem. In the next section,wepropose a suitable FFT-basednumerical algorithm to compute
the solution of cell problems at any order and the computation of the associated permeability
tensors. The comparisonswith the FEMsolutions of theNavier–Stokes problem are presented
for various applications in Sect. 4.
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3 Resolution of Cell Problems with FFT

The FFT method, which has been introduced for linear elastic composite, has been adapted
in Monchiet et al. (2009), Nguyen et al. (2013) to handle the problem of Stokes flow through
a rigid skeleton due to a prescribed pressure gradient. This method has computational advan-
tages since its is very fast and the memory requirement is strongly reduced compared to
FEM that is obvious of great interest for applications to complex 3D microstructures (Bang
et al. 2016). In this section, we extend this iterative scheme to deal with higher-order cell
problems.

Each one can be formally written as a Stokes problem in the presence of a source term
denoted f :

�∗v∗ − ∇∗ p∗ − f = 0 in V ∗
f

div∗v∗ = 0 in V ∗
f

v∗ = 0 in V ∗
s

(29)

in which f is given by:

f = J (30)

in the fluid phase and for the first-order problem. For higher-order cell problems, the source
term is given by:

f =
k=n−1∑
k=0

∇∗vn−1−k .vk (31)

in the fluid phase. Expression of f in the solid phase will be specified in the next of this
section. In the system of Eqs. (29), we make a continuation by continuity of the fields within
the solid phase that is required when using the FFT method. Classically, when using FEM,
only the fluid phase is meshed and a null velocity at the interface with the solid is considered
as boundary conditions. However, the method of resolution based on FFT techniques uses
Fourier series discretizationwhich are defined at any points within the unit cell. The condition
v = 0 ∈ Vs is recovered by introducing, in the solid phase, a fictitious dynamic viscosity
that is very large and which can be interpreted as a penalty coefficient.

Since all the cell problems are formally equivalent when introducing f , the iterative
scheme used in Monchiet et al. (2009) can be also considered for solving higher-order cell
problems. This iterative scheme reads:

σ̂ i+1 = σ̂ i − �̂
0 : d̂i (32)

where σ̂ is the stress tensor (and σ̂ denotes its Fourier transform) defined by

σ = 2μ(x)d − p I, d = 1

2

(
∇v∗ + ∇T v∗) (33)

in which μ(x) defined by :

μ(x) =
{
1 in V ∗

f
q in V ∗

s
(34)

where q is the penalty coefficient chosen sufficient large to retrieve the condition v = 0 with
the solid phase. By inversion, the Fourier transform of the strain rate tensor, computed at
iteration i , reads:

d̂
i =

[
1

2
Î f + 1

2q
Îs

]
∗

[
σ i − pi I

]
(35)

123



On the Inertia Effects on the Darcy Law: Numerical. . . 179

where Î f and Îs are the Fourier transform of the characteristic function of the fluid and the
solid phases:

I f =
{
0 in Vs
1 in Vf

I f = 1 − Is (36)

In our computation, the value 1/q = 0 can be considered with a good convergence of the
iterative scheme.

The iterative scheme also uses the complementary Green operator �0 for an incompress-
ible homogeneous medium of dynamic viscosity μ0 defined by:

�̂
0 = 2μ0

[
k⊥ ⊗ k⊥ + k⊥⊗k⊥]

(37)

for ξ 	= 0 and �̂
0 = 0 for ξ = 0 and where k and k⊥ are given by:

k = 1

|ξ |2 ξ ⊗ ξ , k⊥ = I − k (38)

and I is the two-order identity tensor.
The iterative scheme (32) is initialized with :

σ̂ i=1 = −Ω. f̂ (39)

where the components of Ω are also explicit in the Fourier space:

Ωi jk(ξ) = i

‖ξ‖ [δi j ξ k + δikξ j + δ jkξ i − 2ξ iξ jξ k], ξ = ξ/‖ξ‖ (40)

Once the convergence is achieved, one can compute the velocity field from the strain rate
tensor d̂:

v̂ = − 2i

‖ξ‖2 d̂.ξ ; ∀ξ 	= 0 (41)

The velocity field is defined by its Fourier coefficients for any values of ξ except for ξ = 0. It
means that the velocity field is defined up to an added constant that represents its mean value
of the unit cell. This constant is identified by the condition that v = 0 in the solid phase.

Since the stress tensor is antiperiodic on the opposite side of the unit cell, the average of
the first equation in (29) leads to:

< f>V = 0 (42)

that is the equilibrium of the unit cell. For the first-order cell problem, f is equal to J in the
fluid phase. In order to comply with the above condition, a constant term is introduced in the
solid phase. In order to avoid any misunderstanding, we denote by f f and f s the value of
f taken in the fluid and the solid phases, respectively. Their expressions are

f f = J, f s = −cf
cs

J (43)

where cf and cs denote the volume fraction of the fluid and solid phase. The term f s physically
represents the drag force due to the flow around the solid phase. Considering now the second-
order problem, one has:

cs< f>Vs + cf<∇v0.v0>Vf = 0 (44)

Using the divergence theorem, the second integral in the above relation can be split into two
surface integrals over the boundary of the cell and the interface with the solid phase:∫

V
v0i, jv

0
jdx =

∫
∂Vf

v0i v
0
j n jdx +

∫
S
v0i v

0
j n jdx (45)
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where ∂Vf is the boundary of the cell crossed by the fluid and S the interface between the
solid and the fluid. The integral over ∂Vf is null since v0 is periodic (the term v0j n j is then

antiperiodic) and the integral over S is also null due to the adherence condition (v0 = 0
at the solid-fluid interface). It follows that, for the second-order problem, the equilibrium
condition (42) reduces to < f>Vs = 0, which suggests to put f = 0 in the solid phase. This
result has the following physical interpretation: There are no drag forces in the solid phase
for higher-order homogenization problems.

This choice is also applicable to all higher-order cell problems since in (16) the velocities
vk and vn−1−k are periodic and null on the surface S.

The numerical integration of the iterative scheme is made using a representation of Fourier
transform with a finite number of wave vectors along each space direction. The convolution
product in (35) is made by using the FFT algorithm which makes the method very fast. More
details about the discretization of the FFT-based iterative can be found in Monchiet et al.
(2009), Nguyen et al. (2013).

4 Application and Comparison with FEM Solutions

4.1 Presentation of the Problem

In this section, we applied themethod based on FFT to compute the higher-order permeability
tensor for two particularmicrostructuresmade up of aligned rigid cylinder having circular and
squared crossed sections (see Fig. 2). The computations are performed on a dimensionless
squared domain (whose size is 1 along each space direction), and the solution is carried out by
taking a grid 128 × 128 wave vectors. Both problems are two dimensional, and considering
the symmetries of the unit cell, the permeability tensors are cubic in the plane Ox1x2. As
a consequence, all tensors of odd number vanish. An approximation at the fifth order then
introduces the classic two-order permeability tensor K 0, also the fourth-order, sixth-order,. . .
tensors.

This involves the identification of a large number of coefficients whose number must be
reduced by considering the symmetries. The representations in complete forms for tensor
functions in two- dimensional space has been provided by Zheng (1993) and are used to
provide the irreducible representation of the filtration law. With dimensionless variables, the
macroscopic law provides a relation between the normalized macroscopic velocity V ∗ as
function of the applied pressure gradient J . For the problem considered in this section, the
unit cell is invariant by any rotation of an angle θ = π/2 and by the reflection, respectively,
with axes Ox1 and Ox2 that corresponding to the class of symmetry C4v with the notation
used in Zheng (1993). In such case, any nonlinear vector-valued function can be written into
the general form:

Fig. 2 Periodic unit cell for the
arrays of cylinders with crossed
and squared sections

h

h

h

h

a

aR
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V (J) = F(I1, I2)J + G(I1, I2)Π (46)

in which I1 and I2 are the two scalar invariants:

I1 = J 21 + J 22 , I2 = J 21 J
2
2 (47)

while Π is a vector whose components are

Πi =
(
J 31
J 32

)
(48)

The solution of the unit cell problem (4), without any approximation, is nonlinear with
respect to the applied macroscopic pressure gradient, and the associated filtration law can
be put into the general form given by (46). However, in the latter, functions F(I1, I2) and
G(I1, I2) are undetermined. In order to derive the polynomial expression of the macroscopic
law, a polynomial expression must then be considered for the two functions F(I1, I2) and
G(I1, I2):

F(I1, I2) = k0 + k2 I1 + k4 I
2
1 + k′

4 I2 + k6 I
4
1 + k′′

6 I1 I2 + . . . (49)

G(I1, I2) = k′
2 + k′′

4 I1 + k′′′
6 I 21 + k′′′′

6 I2 . . . (50)

Introducing these expressions in (46) and collecting all the term with the same power in G
give:

V 0(J) = k0 J

V 1(J) = 0

V 2(J) = k2 I1 J + k′
2�

V 3(J) = 0
(51)

V 4(J) = k4 I 21 J + k′
4 I2 J + k′′

4 I1�

V 5(J) = 0

V 6(J) = k6 I 41 J + k′′
6 I1 I2 J + k′′′

6 I 21� + k′′′′
6 I2�

. . .

When J is oriented along the axis of symmetry (Ox1 or Ox2) and the velocity field is
colinear to J . Indeed, consider the particular case corresponding to J1 = 1 and J2 = 0, on
observing that the second component of vector �, that is given by J 32 , is null. Consequently,
the component V2 is also null. This result is also truewhen the J is oriented along the direction
Ox2. Consider now the case of a pressure gradient applied along an arbitrary direction θ , the
components of J can then be put in the form:

J1 = ‖J‖ cos(θ), J2 = ‖J‖ sin(θ) (52)

where ‖J‖ represents the norm of the pressure gradient. Denoting n = J/‖J‖ and t the
vector orthogonal to n, their components are, respectively, n1 = cos(θ), n2 = sin(θ),
t1 = − sin(θ), t2 = cos(θ), and using the nonlinear relation

V(J) = F(I1, I2)J + G(I1, I2)Π (53)

we found after some elementary mathematical manipulations:

V .n = F(I1, I2)‖J‖ + G(I1, I2)‖J‖3 (
cos4(θ) + sin4(θ)

)
(54)

V .t = 1

4
G(I1, I2)‖J‖3 sin(4θ) (55)
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It appears that the fluids flow along the same direction that J if θ = 0, θ = π/2, or θ = π/4.
For all other values of θ , the direction of fluid flow is not colinear to the direction of the
applied pressure gradient, which is in agreement with the recent results of Lasseux et al.
(2011).

4.2 Computation of Permeability Tensors

In the numerical applications provided in this section, the solution is expanded at the
fifth order, leading to the identification of coefficients k0, k2, k′

2, k4, k
′
4, and k′′

4 using
the FFT algorithm. For instance, the values of these coefficients are provided in Table 1
for the case of an array of cylinder with circular crossed section with radius R = 0.05,
R = 0.25 and R = 0.45. The variations in the macroscopic (dimensionless) velocity
with the normalized pressure gradient J1 are provided in Fig. 3 for the array of cylin-
ders with circular cross section with the radius R = 0.05. On this figure are compared
the first-order approximation (the linear Darcy law), the polynomial approximation at the
third and fifth orders, and the finite element solution of the full Navier–Stokes problem.
Figures 4, 5, and 6 display the same results but for the radii R = 0.25, R = 0.45,
and R = 0.49. Figure 7 provides the results for a cylinder with rectangular cross section
with a = 0.25. The FEM data, which are considered as the reference solution since there

Table 1 Effective permeability coefficients of the polynomial nonlinear Darcy law for an array of cylinders
with circular crossed section with radius R

R k0
(
10−3

)
k2

(
10−8

)
k′
2

(
10−8

)
k4

(
10−14

)
k′
4

(
10−13

)
k′′
4

(
10−14

)

0.05 133.356 −1.51103 1.33103 2.05105 8.19104 −1.84105

0.25 19.9045 −3.3531 2.7617 3.3948 1.2469 −2.2710

0.45 0.31852 −9.0510−7 −2.1610−6 4.9010−10 −3.5010−10 8.7910−10

Fig. 3 Variations in the
normalized macroscopic velocity
V ∗
1 as function of the normalized

macroscopic pressure gradient J1
for the array of cylinder with
circular cross section with radius
R = 0.05. Comparison between
the first-order, third-order,
fifth-order approximations and
the (FEM-based) full solution
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Fig. 4 Variations in the
normalized macroscopic velocity
V ∗
1 as function of the normalized

macroscopic pressure gradient J1
for the array of cylinder with
circular cross section with radius
R = 0.25. Comparison between
the first-order, third-order,
fifth-order approximations and
the (FEM-based) full solution
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Fig. 5 Variations in the
normalized macroscopic velocity
V ∗
1 as function of the normalized

macroscopic pressure gradient J1
for the array of cylinder with
circular cross section with radius
R = 0.45. Comparison between
the first-order, third-order,
fifth-order approximations and
the (FEM-based) full solution
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obtained without any approximations, are used to evaluate the accuracy of the approach
based on series expansion. Clearly, the improvement obtained with the third-order and the
fifth-order solutions upon the linear approximation is difficult to distinguish on these fig-
ures. Indeed, in the range for which the FEM solution differs from the Darcy law, the
polynomial approximation fails to reproduce the nonlinear effects at larger values of J
(Fig. 8).

Furthermore, the use of the third-order and the fifth-order approximations improves the
Darcy at small pressure gradient; however, in this domain, the differences between the FEM
solution and the linear approximation are very slight. The results show that the polynomial
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Fig. 6 Variations in the
normalized macroscopic velocity
V ∗
1 as function of the normalized

macroscopic pressure gradient J1
for the array of cylinder with
circular cross section with radius
R = 0.49. Comparison between
the first-order, third-order,
fifth-order approximation and the
(FEM-based) full solution
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Fig. 7 Variations in the
normalized macroscopic velocity
V ∗
1 as function of the normalized

macroscopic pressure gradient J1
for the array of cylinder with
rectangular cross section with
a = h/2. Comparison between
the first-order, third-order,
fifth-order approximations and
the (FEM-based) full solution
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approximation is only applicable for low values of J1 (or equivalently for low Reynolds
number); however, in this range, the correction to Darcy law is not really significant. It
must be mentioned that these results are qualitatively similar to that already obtained by
Bahloff et al. (2010) in the case of the flow through a periodic axisymmetric sinusoidal
channel.

4.3 Determination of the Radius of Convergence

The computation of the solution of Navier–Stokes problems by means of a polynomial is
only valid at low values of the Reynolds number. At higher values, the polynomial series
diverges from the FEM data and thus whatever the degree of the polynom considered. The
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Fig. 8 Relative error (in
percents) between polynomial
approximation and the solution of
full Navier–Stokes equation
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radius of convergence radius of a power series is determined by the behavior of its coeffi-
cients at infinity. Since the values of the permeability coefficients depend on R the radius
of the cylinder, the radius of convergence then also depends of R. When the higher- order
permeability coefficients are very small compared to the first- order permeability K 0 (that
appears in the linear Darcy law), the nonlinear effects only appear for very large values of
the pressure gradient. This is observed particularly for R = 0.45 or R = 0.49 in Figs. 5 and
6. Conversely, these nonlinear effects are observed for lower values of the pressure gradient
(see the cases R = 0.05 and R = 0.25 on Figs. 3 and 4).

There is various possibilities to evaluate numerically the convergence radius of the poly-
nomial series. When only the component J1 is applied to the system (we put J2 = 0), the
series can be put into the form:

V ∗
1 = J1(c0 + c1 J

2
1 + c2 J

4
1 + . . .) (56)

where c0 = k0, c1 = k2 + k′
2, c2 = k4 + k′

4 + k′′
4 , etc. We propose to use the Domb and Sykes

(1961) formula to evaluate the convergence radius of the polynomial series. The convergence
radius of the series c0 + c1x + c2x2 + c3x3 + . . . could be evaluated by the formula

r = lim
n→+∞

cn−1

cn
(57)

Since the sign of the coefficients cn alternates between 1 and −1, the last formula is then
negative. In that case, the value of r must be interpreted as the opposite of the radius of
convergence.

Moreover, since the series in (56) is in power of J 21 , the convergence radius for J1 is given
by:

RJ = lim
n→+∞

√
−cn−1

cn
(58)

where RJ is the convergence radius of the series (56). Also, the convergence of the series
could be expressed in terms of the dimensionless macroscopic velocity V ∗

1 and is denoted
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RV . By computingRJ andRV numerically, and considering that V ∗
1 = Re, the limit of the

expansion series method can be also expressed in terms of the pore Reynolds numbers as
follows:

Re ≤ RV (59)

Practically, the estimation of the convergence radius can be performed by computing the
variations in (−cn−1/cn)1/2 as function of n. This is done of Fig. 9. It must be recalled
that we do not analyze the radius of convergence of an analytical function but a numerical
function that is determined by solving a hierarchy of elementary problems. The radius of
convergence is determined by computing the first 13 coefficients of the series in (58). This
requires the resolution of the first 26 elementary problems since the problems of odd order
provide zero coefficients in the expansion series and only the elementary problems of even
number provide the coefficients c0, c1, c2, etc., in relation to (56). The values (−cn−1/cn)1/2

as function of n are represented for various values of the radius R of the cylinder in Fig. 9. In
each case, a good convergence of the series (−cn−1/cn)1/2 is observed and an accurate value
of the limit in (58) can be determined after a few number of iterations. We have evaluated
the radius of convergence by taking the value of (−cn−1/cn)1/2 for n = 13.

OnceRJ andRV are determined, the results are also interpreted in terms of the limit for
the pore Reynolds number Re. For instance, in Fig. 10, we first represent the limit RJ as
function of the radius R of the cylindric solid. It is observed that the dependence with R is
almost linear in the log frame. This proves that the radius of convergence is the largest for
almost touching cylinders. Conversely, for small cylinders, the radius of convergence is also
small and the nonlinear effect is expected to be important.

From Fig. 10, it is possible to determine the limit of the expansion series approach for
the applied pressure gradient. As for example, considering water, the values of the dynamic
viscosity and mass density areμ = 10−3 Pa.s and ρ = 1 kg/m3 at room temperature. We also
assume that the distance between two neighboring cylinders is 1 millimeter (that corresponds
to the size of the unit cell, h = 1). Consequently, we have G1 = J1. The Fig. 10 then
provides the limit of the applied pressure gradient G1 in Pa/m for which the expansion into
polynomial series of the Navier–Stokes problem is possible. Considering the flow of air, the
dynamic viscosity is 1.8 × 10−5 Pa.s and the mass density is ρ = 1.3 kg/m3, and it follows
that G1 = 0.27J1. The application of results in Fig. 10 for air must be applied after the
multiplication by the factor 0.27.

In Fig. 10, we represent the limit of the expansion series for the Reynolds number Re

as function of the radius R of the cylinders. It is observed that the limit for Re is quasi
independent of R and is approximatively equal to 9.5. Similar results are displayed in Fig.
12 for the regular array of cylinders with squared cross sections. Again, it is observed that
the limit for the Reynolds number is almost independent of the size of the squares (denoted
by a), and the expansion series is valid for, approximatively, Re ≤ 7.5 (Fig. 11).

4.4 Polynomial Approximation of FEM Results

By plugging the finite element data, it is obviously possible to approximate the solution by a
polymonial into the form given by (51). For instance, such an approximation is performed in
Fig. 13 using a third-order or a fifth- order polynomial and the least-squares method for the
data fitting. It is observed that the polynomial approximation reproduces the FEM data but
fails out of the interval of interpolation that is inherent with the use of polynomials. Addition-
ally, note that the coefficients obtained by fitting the FEM data are quite different that ones
computed by the homogenization approach based on asymptotic expansions. The nonlinear
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Fig. 9 Domb-Sykes plots giving the value of (cn−1/cn)−1/2 as function of n for various values of the radius
of the cylinder R = 0.05, R = 0.1, R = 0.15, R = 0.2, R = 0.25, and R = 0.3

filtration law shown in Fig. 13 has been approximated with a polynomial containing terms
of odd degree. The representation of the nonlinear Darcy law with polynomial functions of
odd degree is exact at low Reynolds number, but they are just considered as an approxima-
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Fig. 10 Convergence radius of
the polynomial series for J1 as
function of the radius R of the
rigid cylinders with circular
crossed sections
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Fig. 11 Convergence radius of
the polynomial series for
V ∗
1 ≡ Re as function of the

radius R of the rigid cylinders
with circular crossed sections
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tion when these are used in the range of higher values of pressure gradient. There are, in
fact, no arguments for not using polynomial functions of even degree. More generally, the
use of vector-valued polynomial functions for the approximation of the nonlinear filtration
law reproduce correctly the dependence between the velocity and the pressure gradient. The
expansion method is really attractive because it consists in solving linear problems for the
unit cell, and furthermore, the use of the FFT algorithm is numerically interesting for their
computation. However, the results show that this approach is not able to reproduce adequately
the nonlinear effects in the range of pressure gradient for which it becomes significant. In
other hand, the full Navier–Stokes problem cannot be solved by the FFTmethod presented in
this paper due to the nonlinearity. The technique based on FFT is interesting for computing
the problems with high dimensions, which is the case, for example, when the microstructure
is defined by digital images which come from microtomography. The development of such
type of algorithms for computing the solution to Navier–Stokes equations is obviously of
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Fig. 12 Convergence radius of
the polynomial series for
V ∗
1 ≡ Re as function of the

dimension size a of the rigid
cylinders with squared crossed
sections
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Fig. 13 Approximation of the
FEM solution using polynomials

0 0.5 1 1.5 2 x 10
40

50

100

150

200

250

300

FEM

3
5

polynom order 
polynom order 

linear darcy law

Normalized gradient of pressure J1

Normalized macroscopic velocity V1*

great interest in the field of homogenization. Note that nonlinear homogenization problems
have been tackled with the FFT technique for various application to composite materials (see,
e.g., Moulinec and Suquet (1998), Michel et al. (2001), and Monchiet and Bonnet (2013)).
However, in these studies, the nonlinearity comes from the strain–stress relation that is quite
different. It follows that the computation of the Navier–Stokes problem with FFT must be
handled with the development of new algorithms.

5 Conclusion

In this work, we have provided a numerical analysis of nonlinear correction to Darcy law.
These nonlinearities are accounted in the framework of periodic homogenization of porous
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media in which the flow is described by the Navier–Stokes equations with periodicity condi-
tions on the boundary of the unit cell. On the basis of earlier theoretical studies, the solution
is approximated by a Taylor expansion series that leads to solving a chain of elementary
Stokes-type problems which are must easier than solving the full Navier Stokes equation.
A fast numerical algorithm based on FFT has been formulated to compute the solution of
each Stokes auxiliary problems and the higher-order permeability tensors. The capacity of
this approach to reproduce the nonlinear effects has been thereafter investigated numerically
in the case of the flow through an array of aligned cylinders with circular and squared cross
sections and compared to direct FEM resolution of Navier Stokes equation. The results show
that the range polynomial filtration law is only applicable within a limited range of velocity
for which the correction to Darcy law is in fact very small. In a larger range, the poly-
nomial approximation fails to reproduce the nonlinear correction to Darcy law. Moreover,
while the FEM solution can be approximated by a polynomial equation, the identification
of the constitutive parameters significantly differs from that delivered by the resolution of
the successive elementary Stokes problems. Future work will focus on the development on
FFT-based numerical approach for the resolution of full Navier–Stokes problem.
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