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Abstract The triple-diffusive flow, heat and mass transfer in a cavity filled with a porous
medium and saturated with a mixture is theoretically studied in a cavity with differential
temperature and concentrations at the side walls. The effect of buoyancy forces due to mass
transfer of phases is also taken into account using the Boussinesq approximation. The govern-
ing equations are transformed into a non-dimensional form and numerically solved using the
finite element method. Five groups of non-dimensional parameters including the Rayleigh
number, the Lewis numbers for phases 1 and 2, and the buoyancy ratio parameters for phases
1 and 2 are obtained. The effect of each group of non-dimensional parameters on the heat
and mass transfer in the cavity is discussed. The results show that for specific values of the
Lewis number of one phase, the heat transfer of the mixture and the mass transfer of the
other phase can be maximum. The presence of one phase could reduce or enhance the mass
transfer of the second phase depending on the Lewis number of phases.
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1 Introduction

The natural convection occurs due to buoyancy difference in a fluid. The well-known buoy-
ancy force in fluids is the thermal expansion of the fluid. This effect has been extensively
studied in the literature (Ingham and Pop 2005). There are also cases in which the natural
convection is due to mass transfer in binary fluids. The migration of heavy molecules in a
fluid could induce a buoyancy force in the fluid and result in a natural convection flow, which
is known as double-diffusive convection. The simultaneous presence of concentration gra-
dients and thermal differences in an enclosure could result in opposing or aided convective
flows that in most case are very complicated in nature. The natural convective heat transfer
of double-diffusive fluids inside porous media has been studied in many of previous publica-
tions, for example the study of Costa (2004), Varol et al. (2008), Chamkha and Al-Mudhaf
(2008), Mahdy et al. (2010), Chamkha et al. (2010, 2011), Subhashini et al. (2011), Abdou
and Chamkha (2012), Ravikumar et al. (2013) andMallikarjuna et al. (2014). However, there
are engineering applications in which the fluid consists of three phases with distinct densi-
ties and mass diffusive coefficients, for example the migration of moisture and natural gas
through the air in soil or grains. The dispersion of chemical contaminants through water in
saturated soil or dispersion of carbon dioxide and carbon monoxide through the air in natural
convection in a fibrous media or filter.

Despite the many practical engineering applications of triple-diffusive natural convection
heat and mass transfer in enclosures, the available studies in the literature are very limited.
Rudraiah and Vortmeyer (1982), Poulikakos (1985), Kantur and Tsibulin (2004), Rionero
(2012, 2013, 2014, 2015), Bulgarkova (2012), Capone and De Luca (2012) and Chand
(2012, 2013) have addressed different aspects of the onset of instability in triple-diffusive
convection in porousmedia. Khan et al. (2013, 2015) andKhan and Pop (2013) have analyzed
the boundary layer heat and mass transfer of a three- component solution over a flat plate
embedded in a porous media.

The present study aims to analyze the aided flow of triple-diffusive natural convective
heat and mass transfer in an enclosure filled with a porous medium.

2 Basic Equations

We consider the steady triple-diffusive convective flow in a square cavity filled with a fluid-
saturated porousmedium. A schematic geometry of the problem under investigation is shown
in Fig. 1,where x̄ and ȳ are theCartesian coordinatesmeasured along the lowerwall and along
the verticalwall of the cavity, respectively, and L is the size of the cavity. The cavity is assumed
to be impermeable, and the left vertical wall is maintained at the constant temperature Th and
concentrationsC1h andC2h , while the right wall is maintained at the constant temperature Tc
and concentrationsC1c andC2c, respectively. The horizontalwalls are adiabatic (∂T /∂ ȳ = 0)
and impermeable (∂C1/∂ ȳ = 0 and ∂C2/∂ ȳ = 0).

Following Rionero (2013), we also assume that two different chemical components
(“salts”) Sm (m = 1, 2) have dissolved in the fluid-saturated porous medium, which have
concentrations Cm (m = 1, 2), respectively, and that the equation of state is

ρ = ρ0 [1 − βT (T − T0) − β1 (C1 − C1C ) − β2 (C2 − C2C )] , (1)

where ρ0 is a reference density and the constants βT , β1 and β2 denote the coefficient of
thermal expansion and solute Sm expansion coefficients, respectively (m = 1, 2), which are
defined by
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Fig. 1 Schematic diagram of
coordinate system and physical
model
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Combining Darcy’s law

μ

K
v̄ = −∇ p̄ + ρg, (3)

with (thermal) energy and continuity equations together with the Boussinesq approximation
(1), we obtain the following fundamental vectorial equations in dimensional form governing
the isochoric motions

∇ · v̄ = 0, (4)
μ

K
v̄ = −∇ p̄ + ρ0

[
1 − βT (T − T0) − β1 (C1 − CC ) − β2 (C2 − CC )

]
g, (5)

v̄ · ∇T = αm∇2T, (6)
1

ε
v̄ · ∇C1 = D1∇2C1, (7)

1

ε
v̄ · ∇C2 = D2∇2C2, (8)

where v̄ is the velocity vector, p̄ is the pressure field, μ is the dynamic viscosity, K is the
permeability, g is the gravity vector, αm is the thermal diffusivity of the porous medium and
Dm (m = 1, 2) are the mass diffusivity of the salts Sm .

Eliminating the pressure p̄ from Eq. (5), the following governing equations for the pro-
posed model are valid in Cartesian coordinates x̄ and ȳ

∂ ū

∂ x̄
+ ∂v̄

∂ ȳ
= 0, (9)

∂ ū

∂ ȳ
− ∂v̄

∂ x̄
= −gK

μ

(
βT

∂T

∂ x̄
+ β1

∂C1

∂ x̄
+ β2

∂C2

∂ x̄

)
(10)

ū
∂T

∂ x̄
+ v̄

∂T

∂ ȳ
= αm

(
∂2T

∂ x̄2
+ ∂2T

∂ ȳ2

)
, (11)
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1

ε

(
ū

∂C1

∂ x̄
+ v̄

∂C1

∂ ȳ

)
= D1

(
∂2C1

∂ x̄2
+ ∂2C1

∂ ȳ2

)
, (12)

1

ε

(
ū

∂C2

∂ x̄
+ v̄

∂C2

∂ ȳ

)
= D2

(
∂2C2

∂ x̄2
+ ∂2C2

∂ ȳ2

)
, (13)

Further, we introduce the following dimensionless variables

x = x̄/L , y = ȳ/L , u = ūL/αm, v = v̄L/αm, θ = (T − T0)/�T

φ1 = (C1 − C1c)/�C1, φ2 = (C2 − C2c)/�C2,
(14)

where T0 = (Th + Tc)/2 is the mean temperature of heated and cooled vertical walls of the
cavity, �T = Th − Tc, �C1 = C1h − C1c and �C2 = C2h − C2c.

Further, we introduce the dimensionless stream function ψ defined by

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (15)

such that the continuity Eq. (9) is automatically satisfied. We are then left with the following
five equations,

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −Ra

(
∂θ

∂x
+ Nc1

∂φ1

∂x
+ Nc2

∂φ2

∂x

)
, (16)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= ∂2θ

∂x2
+ ∂2θ

∂y2
, (17)

Le1

(
∂ψ

∂y

∂φ1

∂x
− ∂ψ

∂x

∂φ1

∂y

)
= ∂2φ1

∂x2
+ ∂2φ1

∂y2
, (18)

Le2

(
∂ψ

∂y

∂φ2

∂x
− ∂ψ

∂x

∂φ2

∂y

)
= ∂2φ2

∂x2
+ ∂2φ2

∂y2
, (19)

with the boundary conditions

ψ = 0, θ = 0.5, φ1 = 1, φ2 = 1 on x = −0.5

ψ = 0, θ = −0.5, φ1 = 0, φ2 = 0 on x = 0.5 (20)

ψ = 0,
∂θ

∂y
= 0,

∂φ1

∂y
= 0,

∂φ2

∂y
= 0 on y = 0 and y = 1,

where Ra is the Rayleigh number for the porous medium, Nc1 and Nc2 are the buoyancy
parameters for the salts 1 and 2, and Le1 and Le2 are the Lewis numbers for the salts 1 and
2, which are defined

Ra = gKβT�T L

ναm
, Nc1 = β1�C1

βT�T
, Nc2 = β2�C2

βT�T
, Le1 = αm

εD1
, Le2 = αm

εD2
,

(21)

The physical quantities of practical interest are the local Nusselt number Nu and the local
Sherwood numbers Sh1 and Sh2 for salts 1 and 2, respectively, which are defined as

Nu = L

�T

(
−∂T

∂ x̄

)
x̄=−0.5

, Sh1 = L

�C1

(
−∂C1

∂ x̄

)
x̄=−0.5

,

Sh2 = L

�C2

(
−∂C2

∂ x̄

)
x̄=−0.5

. (22)
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Substituting (14) into (22), we obtain

Nu =
(

−∂θ

∂x

)
x=−0.5

, Sh1 =
(

−∂φ1

∂x

)
x=−0.5

, Sh2 =
(

−∂φ2

∂x

)
x=−0.5

. (23)

Also, of interest are the average Nusselt number Nu and average Sherwood numbers Sh1
and Sh2, which are given by

Nu =
1∫

0

Nudy, Sh1 =
1∫

0

Sh1dy, Sh2 =
1∫

0

Sh2dy. (24)

3 Numerical Method

The non-dimensional governing equations, represented by Eqs. (19)–(21), and subject to the
boundary conditions, Eq. (20), were written in weak form and solved numerically utilizing
Galerkin finite element method (Reddy 1993). Invoking basis set {ξk}Nk=1, the stream function
(ψ ), the temperature, the concentration for phase 1, and the concentration for phase 2 were
expanded as,

ψ ≈
N∑

k=1

ψkξk (x, y) , θ ≈
N∑

k=1

θkξk (x, y) , φ1 ≈
N∑

k=1

φ1kξk (x, y) ,

φ2 ≈
N∑

k=1

φ2k ξk (x, y) , (25)

for−0.5 < x < 0.5 and 0 < y < 1. For all four variables, the basis function is the same, and
hence, the total number of nodes for all variables is N . Employing the Galerkin finite element
method on Eqs. (16)–(19) at nodes of internal domain Ω , the nonlinear residual equations
are, respectively, derived as,

R1
i =

N∑
k=1

ψk

∫
�

[
∂ξi

∂x

∂ξk

∂x
+ ∂ξi

∂y

∂ξk

∂y

]
dxdy − Ra

(
N∑
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∫
�
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ξidxdy

)
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(
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∫
�

∂ξk
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)
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(
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)
, (26)
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)
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and

R4
i = Le2

(
N∑

k=1

ψk

∫
�

∂ξk

∂y
ξidxdy

) (
N∑

k=1

φ2k

∫
�

∂ξk

∂x
ξidxdy

)

−Le2

(
N∑

k=1

ψk

∫
�

∂ξk

∂x
ξidxdy

) (
N∑

k=1

φ2k

∫
�

∂ξk

∂y
ξidxdy

)

+
N∑

k=1

φ2k

∫
�

(
∂ξi

∂x

∂ξk

∂x
+ ∂ξi

∂y

∂ξk

∂y

)
. (29)

In the above residual equations, Ri , the bi-quadratic functions with three-point Gaussian
quadrature were utilized to evaluate the integrals. Moreover, the Newton–Raphson method
is employed to solve the nonlinear residual equations, Eqs. (26)–(29), for the coefficients of
the expansions in Eq. (25). The details of the solution procedure have been discussed in the
literature (Reddy 1993; Basak et al. 2006a, b) and have not been repeated here for the sake of
brevity. It should be noted that the model incorporates Darcy’s law and the Lewis numbers
which could be large about order of 10. Therefore, the flow behavior next to the walls is very
important. Hence, the discretized equations were implemented on the non-uniform grid. In
the non-uniform grid, the grid points are symmetrically clustered near the walls in both x
and y directions with the aspect ratio of 1.05. The obtained system of equations was solved
iteratively. The iteration process commenced from the initial guess of zero for stream function
and 0.5 for the temperature and concentrations and repeated until the residuals for the stream
functions, temperature and concentrations become lower than 10−7. For parametric analysis
of the problem, the parameter of study was smoothly increased and the obtained steady state
solution in each step was utilized as an initial guess for the next solution in order to reduce
the time of calculations. For example, for analysis of the effect of the increase in Rayleigh
number on the solution, the problemwas solved forRa=25 and converged. Then, the obtained
solution was utilized as an initial guess forRa = 50 and the iteration process commenced until
the equations converge. The solution procedure, in the form of an in-house computational
fluid dynamics (CFD) code, has been validated successfully against the results available in
the literature.

3.1 Code Validation

In the case of a pure fluid when Nc1 = Nc2 = 0, a comparison between the results of the
present study and the previous studies is performed in Table 1. Table 1 shows very good
agreement between the results of the present study and those reported in the literature.

In addition,Costa (2004) has analyzed the double-diffusive natural convection in parallelo-
grammic enclosures filled with fluid-saturated porous media. Considering parallelogrammic
enclosures with the inclination angle of zero, the geometry of the study of Costa (2004)
reduces to the geometry of the present study, and assuming Nc2 = Le2 = 0 the present
study reduces to the problem of double-diffusive natural convection. Hence, in this case the
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Table 1 Comparison of the
average Nusselt number of the
hot wall

Authors Ra

10 100 1000

Walker and Homsy (1978) 3.097 12.96

Beckermann et al. (1986) 3.113

Gross et al. (1986) 3.141 13.448

Manole and Lage (1992) 3.118 13.637

Bejan (1979) 4.2 15.8

Baytas and Pop (1999) 1.079 3.16 14.06

Moya et al. (1987) 1.065 2.801

Present results 1.08 3.11 13.64

Table 2 Comparison of the average Nusselt number for the case of double-diffusive natural convection in a
square cavity when Le1 = 0.8 and Nc1 = 2

Ref. Ra = 25 Ra = 50 Ra = 50

Nu Sh1/Le1 Nu Sh1/Le1 Nu Sh1/Le1

Costa (2004) 2.59 2.72 4.13 4.31 6.31 6.66

Present 2.61 2.74 4.18 4.35 6.62 6.93

results of the present study are validated against the results of Costa (2004) in Table 2. As
seen, the results are in very good agreement.

3.2 Grid Check

A non-uniform structured 100 × 100 mesh, expanding with a symmetric distribution from
the walls toward the center of the cavity with the element ratio of 1.05, is selected after some
experimental execution of the results. Table 2 shows the evaluated values of the Nusselt
numbers for mixture and the Sherwood numbers for phases 1 and 2. The results are reported
for different grid sizes and two values of Rayleigh numbers (Ra = 50 and Ra = 100) and
three values of Lewis number phase 1 (Le1 = 0.1, 1.0 and 10) when Le2 = 0.8, Nc1 = 2.0
and Nc2 = 2.0. Table 3 shows that the grid size of 100×100 provides sufficient accuracy for
the calculations. The results were also repeated for higher grid sizes, and consistence results
were found. Hence, the grid size of 100 × 100 was utilized for the calculations.

4 Results and Discussion

The non-dimensional parameters in the present study are the Le1, Le2, Nc1, Nc2 and Ra.
The Rayleigh number for the natural convection in the porous medium is considered in the
practical range of Ra < 100. The Lewis number for gasmixtures is less than unity (i.e., Lewis
number of the moisture air is about 0.8) and for some liquid mixtures is higher than unity.
Hence, the Lewis number is considered in the range of 0.1–10. In the study of Costa (2004),
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Fig. 2 The isotherms, isoconcentrations and the streamlines for Le1 = Le2 = 0.8, Nc1 = Nc2 = 2.0 and
Ra = 25. a Isotherms (θ ). b Isoconcentrations (φ1). c Streamlines (ψ)

the buoyancy ratio parameters are adopted in range of 0–5. Here, the range of buoyancy ratio
parameters, Nc1 and Nc2, is adopted between 0 and 10.

Figures 2 and 3 show the contours of the isotherms, concentration of phase 1 and the
streamlines for Ra = 25 and Ra = 100, respectively. The results of these figures are reported
for fixed value of Le1 = Le2 = 0.8, Nc1 = Nc2 = 2.0. As the values of Lewis number and
the buoyancy ratio parameters for two phases are equal, the contours of concentration for
both phases of 1 and 2 are identical in this case. Comparison between the results of Figs. 2
and 3 shows that the increase in the Rayleigh number increases the velocity of the flow in the
vicinity of the walls, and hence, the isotherms and isoconcentrations are closer to the walls
for the case of Ra = 100. In the case of Ra = 100, the heat and mass transfer in the core of
the cavity is almost vertical due to diffusion.

Figure 4 shows the isotherms, streamlines and isoconcentrations for phases of 1 and 2 for
the case of Le1 = 0.8, Le2 = 10.0, Nc1 = 2.0, Nc2 = 10.0 and Ra = 100. Indeed, the
increase in Le2 tends to decrease the thickness of the concentration boundary layer, formed
near the walls. The increase in Nc2 also tends to increase the induced buoyancy effects due
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Fig. 3 The isotherms, isoconcentration and the streamlines for Le1 = Le2 = 0.8, Nc1 = Nc2 = 2.0 and
Ra = 100. a Isotherms (θ ). b Isoconcentrations (φ1). c Streamlines (ψ)

to mass transfer. The Nc2 higher than unity indicates that the buoyancy effects due to mass
transfer of phase 2 are strong and comparable with the thermal buoyancy effects. Hence, the
migration of phase 2 in the vicinity of the vertical walls strongly influences the streamlines
and the effect of mass transfer of phase 2 is the dominant effect in the cavity. In contrast with
streamlines of Fig. 2c, which almost follow the isotherm patterns, the streamlines of Fig. 3b
are under the influence of the concentration of phase 2. The mass transfer of phase 2 in the
middle of the cavity is diffusive dominant and in vertical direction.

Comparison between the results of this figure and Fig. 2 indicates that the isotherms and
isoconcentrations of phase 1 are compacted in the bottom left and top right corners of the
cavity. This is because of the increase in the velocity of the fluid near the vertical walls
because of the induced strong buoyancy forces of phase 2. Almost entire of the top of the
cavity is hot and high concentration of phase 1, and entire of the bottom of the cavity is cold
and low concentration of phase 1. Hence, the temperature and concentration boundary layers
next to the vertical walls almost follow the patterns of the streamlines, induced by the phase
1.
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Fig. 4 The isotherms, streamlines and isoconcentrations for Le1 = 0.8, Le2 = 10.0, Nc1 = 2.0, Nc2 = 10.0
and Ra = 100. a Isotherms (θ ). b Streamlines (ψ). c Isoconcentrations (φ1). d Isoconcentrations (φ2)

Figures 5, 6 and 7 show the average Nusselt number for mixture (fluid), the average
Sherwood number for phase 1 and the average Nusselt number for phase 2, respectively. The
parameters of interest, i.e., Nu, Sh1 and Sh2, are plotted as a function of Lewis number for
phase 1 (Le1) and for various values of the Lewis number for phase 2 (Le2). Figure 5 shows
that for very small values of Le1, the Nusselt number increases and then starts to decrease
monotonically. Hence, for small values of Le1 (about 0.1) there are maximum values for
Nusselt number. The increase in Le1 tends to reduce the thickness of the concentration
boundary layer next to the wall. Figure 7 also shows a peak for the mass transfer of phase 2 at
the surface (Sh2) about Le1 = 0.1 for small value of Le2 (Le2 = 1, Le2 = 2.0). However,
for large value of Le2, i.e., Le2 = 10.0, the observed peak is very smooth and shifts to values
of Le1 ≈ 2. These figures also depict that the increase in Le1 or Le2 reduces the Nusselt
number. As shown in Fig. 4, for large values of Lewis number, the thickness of the formed
boundary layer of concentration over the vertical walls decreases.

For very large values of Lewis numbers, the concentration gradient over the vertical walls
is a very narrow region next to the walls, in which the induced buoyancy effect due to
concentration gradient is very strong. In the mentioned narrow regions, the flow would move
fast toward the top (for hot and high concentration) and toward bottom (for cold and low
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Fig. 5 The variation of average Nusselt number as a function of Le1 for various values of Le2

Fig. 6 The variation of average Sherwood number for phase 1 as a function of Le1 for various values of Le2

concentration) walls. The strong flow near the vertical walls will carry a significant amount
of the volume fraction of the corresponding phase and a lower amount of the other phase
from the area adjacent to vertical walls and move it toward the horizontal top and bottom
walls.

It should be noticed that in the regions next to walls, where the flow is fast, Darcy’s forces
are also very large and tend to reduce the velocities at the edge of the boundary layers instantly.
Hence, the rest of the cavity is almost stratified. In the stratified regions, the mass transfer
is mostly limited to the diffusive mechanism. Indeed, as the Lewis numbers increases, the
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Fig. 7 The variation of average Sherwood number for phase 2 as a function of Le1 for various values of Le2

induced buoyancy forces, due to mass transfer effects, are strong, but the effective regions
are very limited. When the Lewis number decreases, the thickness of the boundary layer
increases, and hence, the buoyancy force due to mass transfer could be distributed in a larger
area; as a result, the induced velocities in the cavity are smooth. When the Lewis number
significantly decreases, the affective region of the buoyancy induced force due tomass transfer
reaches the core of the cavity. Increasing the Lewis number beyond this point would reduce
the induced mass transfer buoyancy force in the entire cavity, and consequently, it would
reduce the flow velocities, the Sherwood and Nusselt numbers, which this is the reason for
the observed maximum Sherwood and Nusselt peaks in Figs. 5 and 7.

Figures 6 and 7 show that the increase in the Lewis number for phase 1 would increase the
Sherwood for phase 1 (Sh1), and similarly the increase in Le2 increases Sh2. As mentioned,
the increase inLe decreases the thickness of the concentration boundary layer over the vertical
walls for the corresponding phase, which results in the augmentation of the concentration
slope (Sherwood number) of the corresponding phase at the vertical walls. The effect of
variation of Lewis number for a phase is complicated on the other phase. Figure 7 shows
some peaks for Sh2 by the variation of the Le1. The reason for these peaks is similar to those
for Nusselt number in Fig. 5.

Figures 8, 9 and 10 show the average Nusselt number for the mixture, the average Sher-
wood number for phase 1 and the average Sherwood number for phase 2, respectively. These
figures depict the effect of the buoyancy ratio parameters (Nc1 and Nc2) as a function of the
Lewis number for phase 1 (Le1) on the heat andmass transfer in the cavity. These figures also
in agreement with the previous figures depict the maximum peaks for the average Nusselt
number and the average Sherwood number for phase 2.

Figure 8 shows that the increase in buoyancy ratio parameters increases the averageNusselt
number. Indeed, the induced buoyancy force due to mass transfer is a function of the Lewis
number and the corresponding buoyancy ratio parameter. The Lewis number dictates the
affecting area of the buoyancy force and the corresponding buoyancy ratio parameter dictates
the strength of the induced buoyancy force. For each phase, the variation of these sets of
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Fig. 8 The variation of average Nusselt number as a function of Le1 for different values of the buoyancy
ratio parameters of Nc1 and Nc2

Fig. 9 The variation of average Sherwood number for phase 1 as a function of Le1 for different values of the
buoyancy ratio parameters of Nc1 and Nc2

parameters (i.e., Le and Nc) would directly affect the flow and then the heat transfer rate
from the surface. However, the variation of these parameters (Le and its corresponding Nc)
would indirectly affect the other phase through the effect on the streamlines. Hence, the green
dash line indicates that the raise of Nc2 increases the average Nusselt number; however, this
increase is almost independent of the Lewis number for phase 1 (Le1). The blue dash-dot
line indicates that the raise of Nc1 also increases average Nusselt number, but the observed
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Fig. 10 The variation of average Sherwood number for phase 2 as a function of Le1 for different values of
the buoyancy ratio parameters of Nc1 and Nc2

increase is a decreasing function of the Le1. Comparison between the dashed line (green line
for Nc1 = 0.1 and Nc2 = 1.0) and the dash-dot line (blue line for Nc1 = 1.0 and Nc2 = 0.1)
in Fig. 8 indicates that the effective region of phase 1 is wide when the Le1 is very small, and
hence, the increase in Nc1 from 0.1 to 1.0 induces high and smoother buoyancy forces, and
consequently, it results in higher values of average Nusselt number compared to the same
increase in the amount of Nc2. The same conclusion as Fig. 8 is also true for Fig. 10 as the
second phase would also follow the induced flow patterns as the temperature distribution in
the cavity. Figures 8, 9 and 10 show that the increase in Le1 raises the average mass transfer
for its corresponding phase (average Sherwood number for phase 1). The raise of Nc1 or
Nc2 would boost the heat and mass transfer from the surface due to the enhancement in the
buoyancy forces.

Figures 11 and 12 show the effect of buoyancy ratios (Nc1) and (Nc2) on the average
Nusselt number and the average Sherwood number of phase 1, when Le1 = Le2 = 0.8.
Figures 11 and 12 in agreement with Figs. 8, 9 and 10 show that the increase in the buoyancy
ratio parameters increases the heat and mass transfer from the surface. These figures indicate
that the increase in the average Nusselt and Sherwood numbers is almost a linear function
of the buoyancy ratios. As the Lewis number for both phases is considered equal (Le1 =
Le2 = 0.8), the obtained Sherwood numbers for both phases would be the same, and hence,
the figure of Sh2 is not depicted here for the sake of brevity.

Figures 13, 14 and 15 show the average Nusselt number for the mixture, the average Sher-
wood number for phase 1 and the average Sherwood number for phase 2, respectively. These
figures depict the effect of the Rayleigh number as a function of the Le1 on the heat and mass
transfer in the cavity. These figures illustrate that the increase in the Rayleigh number boosts
the heat andmass transfer from the surfaces. The increase in Rayleigh number almost linearly
shifts the Nusselt number curves upwards. When Lewis number is about unity, the thickness
of the concentration boundary layer is about the thickness of the temperature boundary layer
over the vertical and horizontal walls, and hence, the behaviors of the temperature distrib-
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Fig. 11 The variation of average Nusselt number as a function of Le1 for different values of the buoyancy
ratio parameters of Nc1 and Nc2

Fig. 12 The variation of average Sherwood number for phase 1 as a function of Le1 for different values of
the buoyancy ratio parameters of Nc1 and Nc2

ution in the cavity are very similar to the concentration distribution for this phase. Thus, in
Fig. 15, in which Le2 = 0.8 (about unity) the pattern and the order of magnitude of Nusselt
and Sherwood numbers (Nu and Sh2) are very similar. This is because of the fact that the
variation of Le1 indirectly and through the streamlines affects Nu and Sh2.
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Fig. 13 The variation of average Nusselt number as a function of Le1 for different values of the Rayleigh
number

Fig. 14 The variation of average Sherwood number for phase 1 as a function of Le1 for different values of
the Rayleigh number

For very small values of Rayleigh number, the induced buoyancy forces due to heat and
mass transfer are small, and hence, the variation of Lewis or buoyancy ratio only shows
smooth effects on the heat and mass transfer parameters (i.e., Nu and Sh). The raise of the
Rayleigh number boosts the effect of Nc and Le and induces large buoyancy forces. As a
result, the increase in Rayleigh number increases the effect of the variation of Lewis number
on the mass transfer from the walls (see Fig. 14).
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Fig. 15 The variation of average Sherwood number for phase 2 as a function of Le1 for different values of
the Rayleigh number

Fig. 16 The variation of average Nusselt number as a function of Rayleigh number for different values of
Lewis number of phase 2

Figures 16, 17 and 18 show the average Nusselt number for the mixture, the average
Sherwood number for phase 1 and the average Sherwood number for phase 2, respectively,
as a function of Rayleigh number and various values of Le2. These figures also depict that the
average Nusselt number and average Sherwood number for phase 1 are a raising function of
the Rayleigh number but a decreasing function of Le2. The variation of Rayleigh number and
Lewis number (Le2) in Fig. 18 interestingly shows when the Le2 is very small (Le2 = 0.1),
and the raise of Rayleigh number does not affect the mass transfer from the wall. For large

123



Triple-Diffusive Natural Convection in a Square Porous Cavity 77

Fig. 17 The variation of average Sherwood number for phase 1 as a function of Rayleigh number for different
values of Lewis number of phase 2

Fig. 18 The variation of average Sherwood number for phase 2 as a function of Rayleigh number for different
values of Lewis number of phase 2

values of Rayleigh number, the increase in Rayleigh number significantly increases the mass
transfer from thewall (Sh2). The large values of Le2 result in a very narrow boundary layer of
concentration for phase 2 and large gradients of the concentration for phase 2. The buoyancy
forces are also strong in the mentioned narrow region. Hence, in this case, any increase in
the Rayleigh number significantly boosts the mass transfer for phase 2. In contrast, when the
Le2 is very small, the concentration gradients, and the corresponding buoyancy forces are
very low and the increase in Rayleigh number could only show very smooth effects on Sh2.
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5 Conclusion

Triple-diffusive natural convection flow, heat and mass transfer of a mixture in a square
porous cavity is theoretically analyzed. The governing partial differential equations were
transformed into a non-dimensional form. The non-dimensional governing equations are a
function of Rayleigh number, Lewis numbers for phases 1 and 2, and the buoyancy ratios for
phases 1 and 2. The governing equations were solved using a finite element code. The effect
of the non-dimensional parameters on the flow, temperature and concentrations was studied.
The main outcomes of the present study can be summarized as follows:

(1) When the Lewis number of a phase is about 0.1, there is a maximum value for the
heat transfer and mass transfer of the other phase due to strong mass transfer buoyancy
forces.

(2) The increase in Lewis number increases the mass transfer of the corresponding phase
from the wall, but it could reduce or raise the mass transfer of the other phase, depending
on the Lewis number of the second phase.

(3) The increase in the buoyancy ratio parameters and the Rayleigh number boosts the mass
transfer buoyancy forces and increases the heat and mass transfer.

(4) When the Lewis number for a phase is small, the augmentation of Rayleigh number
cannot induce a significant boost on the mass transfer of the corresponding phase.

In the present study, as a first study, we focused on the aided mass transfer of the phases.
The future studies can focus on the opposing mass transfer on the triple-convective heat
transfer. In addition, it was found that the mass transfer of a phase could significantly affect
the heat transfer of the mixture as well as the mass transfer of the other phase; hence, one of
the phases could be employed as a controlling phase for control of heat and mass transfer in
the system.
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