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Abstract Several existing models for immiscible two-phase flow identify trapping as the
major cause of nonwetting relative permeability hysteresis. Thesemodels usually assume that
relative permeability is a nonhysteretic function of the connected saturation. However, exist-
ing experimental results indicate that this assumption is not necessarily true. It is observed
that while relative permeability models based on trapping, e.g., Land’s model, may cap-
ture the correct hysteresis behavior in consolidated porous media, they may be qualitatively
inaccurate for the case of unconsolidated porous media, which a have lower pore-body to
pore-throat aspect ratio. In order to bridge this gap, we present a novel framework for immis-
cible two-phase flow in which one can model relative permeability hysteresis patterns for
both consolidated and unconsolidated porous media. An important aspect of this framework
is the subdivision of the nonwetting phase into backbone, dendritic and trapped subphases.
The closure problem now consists in modeling the volume transfer between the subphases
and the relationship between the relative permeability and these subphases. For the purpose
of developing, calibrating and validating our models in this framework, pore-network simu-
lations of drainage and imbibition cycles are conducted for artificial networks as well as for
a network representing Berea sandstone. Confirming results from previous works, we find
a nearly nonhysteretic relationship between the nonwetting phase relative permeability and
its backbone subphase. Additionally, we also observe a nonhysteretic relationship between
the nonwetting backbone and trapped saturations. These observations are used to motivate
constitutive relations for the proposed framework.
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1 Introduction

1.1 Relative Permeability Hysteresis

Two-phase immiscible fluid flow in porous media is important in many applications such as
enhanced oil recovery, groundwater management and CO2 sequestration. In these applica-
tions, an accurate modeling of the relative permeabilities, and hence the relative flow rates
of the different fluid phases, is crucial. The relative permeability is a complicated function of
local and nonlocal properties such as the pore-size distribution, pore-space topology (Arns
et al. 2004) and flow rate (Nguyen et al. 2006). These dependencies make it difficult to
formulate a universal relative permeability model. The relative permeability also depends,
among other factors, on both the saturation path and history (Geffen et al. 1951), i.e., it is a
hysteretic function of saturation.

The hysteretic behavior of relative permeability also depends on the type of porous
medium. Naar et al. (1962) measured the hysteresis curves of nonwetting phase relative
permeability versus saturation in consolidated sandstone and glass beads. In consolidated
sandstone, they found the nonwetting phase relative permeability during primary drainage
(kPDrn ) to be greater than in imbibition (k Irn) at a given saturation. In glass beads, they reported
the opposite trend,with k Irn being greater than k

PD
rn . Similar experimental results were reported

in the literature, e.g., Geffen et al. (1951), Raimondi and Torcaso (1964), Oak et al. (1990)
for consolidated porous media and Hopkins and Ng (1986) for unconsolidated porous media
(see also Jerauld and Salter 1990; Table 1). Interestingly, Colonna et al. (1972) reported a
more complex pattern for hysteresis in Hassi R’Mel sandstone. They found that k Irn is larger
than kPDrn close to the turning point saturation (i.e., the saturation at which imbibition starts
after primary drainage), but lower than kPDrn after a certain cross-over saturation.

Several authors have also investigated relative permeability hysteresis numerically using
pore-networkmodels. Here, the pore space is modeled by a network of pore bodies connected
by pore throats with simplified shapes. Simplified two-phase flow equations in these networks
are then solved. Pore-network models have evolved significantly since the pioneering work
of Fatt et al. (1956) and recent models have predictive capabilities (Blunt et al. 2002). Jer-
auld and Salter (1990) investigated relative permeability hysteresis in networks of different
aspect ratios (i.e., the pore-body to pore-throat radius ratio). High-aspect-ratio networks
represented consolidated porous media, while low-aspect-ratio networks represented uncon-
solidated porous media. They reproduced qualitatively the relative permeability hysteresis
trends observed experimentally in consolidated and unconsolidated porous media. Addi-
tionally, they were able to reproduce the complex trend for relative permeability hysteresis
observed by Colonna et al. (1972) by employing a network representative of an intermediate
aspect-ratio porous medium. In this paper, we aim to show that such complex trends can be
better understood by considering the structure of the nonwetting subphases.

1.2 Fluid Subphases and Their Connection to the Relative Permeability

In two-phase flow in a porous medium, the wetting fluid, under strong wettability conditions,
may be assumed to always be hydraulically connected due to the presence of wetting fluid
films in the crevices of the pore space (Dullien et al. 1986). The nonwetting fluid on the
other hand may be present in connected regions or as ganglia surrounded by the wetting
fluid. Under the assumption of capillary dominated flow, the fluid in the ganglia does not
move and is trapped. The connected nonwetting fluid can be subdivided into two subphases.
One subphase occupies dendritic regions or so-called pseudo-dead ends, which are dead-end
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Fig. 1 a Conceptual illustration of the wetting phase (blue) and the nonwetting phase division into the
backbone (red), dendritic (orange) and trapped (yellow) subphases. The gray regions are the solid matrix. b
Illustration of the connected nonwetting subnetwork consisting of the backbone (red) and dendritic (orange)
subphases. Note that only the backbone subphase contributes to the nonwetting phase flow

regions due to the presence of thewetting fluid and not directly due to the pore-space topology.
In this paper, we refer to this as the nonwetting dendritic subphase. Under steady state flow
conditions, fluid belonging to this subphase is stagnant and hence does not contribute to the
relative permeability. The remaining part of the nonwetting connected fluid belongs to the
flowing or backbone subphase (see Fig. 1).

There are a few experimental works in the literature dealing with the measurement of the
backbone and dendritic nonwetting saturations. Raimondi and Torcaso (1964) calculated the
backbone and dendritic nonwetting saturation by first establishing a steady state oil–water
flow, with oil being the nonwetting phase, in consolidated sandstone cores at several injection
ratios. This oil was then displaced by a solvent, miscible with the oil and having matching
properties. The oil–solvent production history was then analyzed and used to determine
indirectly the backbone, the dendritic and the trapped nonwetting saturations. Stalkup (1970)
used a similar experimental setup to calculate the oil subphases. However, he analyzed the
oil–solvent production history by using a capacitance–dispersion model, which included the
backbone fraction as one of its parameters. The parameters of the model were then tuned to
match the observedproduction history.Using a similarmethod, Salter et al. (1982) inferred the
backbone and dendritic saturations for a wide range of fractional flows in primary drainage,
primary imbibition and secondary drainage cycles. However, the aforementioned studies
did not investigate backbone and dendritic saturations for drainage and imbibition scanning
cycles.

Several existing relative permeability hysteresis models attribute the hysteresis only
to nonwetting phase trapping during imbibition (Carlson 1981; Killough 1976) (see also
Joekar-Niasar et al. 2013 for a recent review of trapping models). However, such mod-
els are not able to qualitatively capture the hysteretic behavior of relative permeability in
unconsolidated porous media as they predict k Irn < kPDrn . They do not take into account
the dendritic or backbone subphases, even though this is a crucial step in understanding
the hysteretic relation between the relative permeability and phase saturation. Referring to
the state of existing relative permeability models at the time, Larson et al. (1981) stated
that “…isolated and dead-end saturations play important roles in the relative permeability
story. Thus tortuous capillary tube models may yield useful empirical formulas, but it must
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be concluded that they contribute little to real understanding of two-phase flow in porous
media.”

A nonhysteretic relation between the nonwetting backbone saturation and the relative per-
meability obtained from different 3D pore networks has been reported by Jerauld and Salter
(1990). This suggests that a relative permeability hysteresis model based on the evolution of
the backbone saturation can be formulated. Such a model has not been, to the knowledge of
the authors, reported in the literature. It has to be mentioned that Larsen and Skauge (1998),
and Van Kats and Duijn (2001) highlight the significance of the backbone saturation, but
they did not use it for closure of their relative permeability hysteresis models.

1.3 Objectives and Structure

The main objective of this work is to model and gain insight into relative permeability
hysteresis phenomena through a study of nonwetting subphase evolution. A macroscopic
two-phase flow modeling framework is introduced in Sect. 2, which requires constitutive
relations for the volume transfer between the nonwetting subphases. In order to motivate
and derive these constitutive relations, experimental data are required. However, due to the
difficulty in obtaining the required data experimentally, we employ a pore-network model
which is briefly described in Sect. 3. In addition to networks similar to those used by Jerauld
and Salter (1990), we employ a more realistic pore network representing a Berea sandstone
to investigate the evolution of the nonwetting subphases. We emphasize that in this work we
do not consider a comparison between measured and simulated pore-scale data, but we rely
on the pore network simulations as a representative substitute for experiments. The results
of pore-network simulations for imbibition and drainage scanning cycles are presented in
Sect. 4. Next, in Sect. 5, insight gained from these simulations is then used to propose models
for the volume transfer between the nonwetting subphases. The evolution of the nonwetting
subphases can then be computed, making it possible to formulate the nonwetting relative
permeability as a function of backbone saturation. The proposed models are calibrated and
validated in Sect. 6.

2 Two-Phase Flow Framework

We consider incompressible immiscible two-phase flow in a rigid porousmedium. A strongly
wetted system is assumed with a contact angle of 0 for both drainage and imbibition. The
capillary number is assumed to be sufficiently low such that the capillary forces dominate
the viscous forces, and hence we do not consider rate effects. Let Sn = S and Sw = 1 − S
denote the nonwetting and wetting phase saturations, respectively. Neglecting gravity and
assuming that Darcy’s law for two-phase flow holds, the mass conservation equation of the
wetting and nonwetting phases can be written as (Bear 2013)

φ
∂Sα

∂t
− ∂

∂xi

(
K

μα

krα
∂Pα

∂xi

)
= 0, (2.1)

where α = n denotes the nonwetting and α = w the wetting phase. Here, φ is the porosity
of the porous medium, K is the absolute permeability, and Pα , μα and krα are the pressure,
viscosity and relative permeability of phase α, respectively. For the macroscopic capillary
pressure

Pc(S) = Pn − Pw, (2.2)
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Subphase Approach to Model Hysteretic Two-Phase Flow in… 5

a common algebraic relation can be employed; see, for example, (Parker and Lenhard 1987).
In this paper, we will mainly focus on obtaining a model for krn based on the evolution of
the nonwetting subphases.

2.1 Fluid Subphases

In a previous theoretical work by Hilfer (2006), the nonwetting and wetting fluid phases
were each divided into a continuous hydraulically connected subphase and a trapped nonper-
colating subphase. In the framework proposed here, the nonwetting continuous subphase is
further subdivided into a backbone and dendritic subphase (see Fig. 1), and the wetting phase
is assumed to always form a continuous phase. In a given representative elementary volume
(REV) (Bear 2013), the backbone subphase consists of the nonwetting fluid in all pores which
can be connected to both inlet and outlet boundaries of the REV by at least two independent
paths through the nonwetting fluid. The dendritic or “dead-end” subphase consists of all the
stagnant nonwetting fluid which is connected to the rest of the backbone through only one
independent nonwetting flow path and is blocked due to the presence of the wetting phase.
The trapped subphase consists of all nonwetting fluid completely surrounded by the wet-
ting fluid. Note that we do not consider nonwetting ganglion dynamics here although they
may contribute to the net transport of the nonwetting phase even at low capillary numbers.
Rücker et al. (2015) imaged pore-scale displacements of oil and brine during imbibition in a
sandstone rock using X-ray computed microtomography. They showed that snap-off events
can trigger nonwetting filling events due to induced local pressure gradients. However, they
were not able to quantify the contribution of the resultant ganglia mobilization to the net
nonwetting phase flow.

The wetting fluid, under strong wettability conditions, is assumed to always form a con-
tinuous phase at all saturation values. Nevertheless, the wetting fluid may also be divided into
three separate subphases: a backbone subphase which contributes the most to the hydraulic
conductance; a “film flow” subphase which occupies the crevices of pores occupied by the
nonwetting phase; and a dendritic subphase which connects the film and the backbone sub-
phase regions. However, we will not consider this problem any further here.

The total nonwetting phase saturation can be written as

Sn = S = Sb + Sd + St, (2.3)

where Sb, Sd and St are the backbone, dendritic and trapped subphase saturations, respectively.
The connected nonwetting saturation is given by

Sc = Sb + Sd. (2.4)

A few comments on the size of the REV are in order. We have implicitly assumed the
existence of an REV, the size of which satisfies both a lower and an upper bound. The
lower bound is required to ensure that the REV is sufficiently large such that the subphase
saturations are independent of the size of REV. In particular, what might appear to be part
of the connected subphase at a particular REV size may be part of the trapped subphase for
a larger REV. Results from percolation theory (see eg. Stauffer and Aharony 1994) predict
that the error made in computing the residual trapped nonwetting subphase in a finite, as
opposed to an infinite, window scales with L−(1+β)/ν (Wilkinson 1986) where β and ν are
percolation exponents and L is the REV size. Assuming the values β = 0.43 and ν = 0.88
(Sahimi 1988) are universal for three dimensional systems, the trapped saturation error scales
as Sε

t ∼ L−1.625, and the chosen lower bound for the REV should be such that this error
is negligible. On the other hand, an upper bound for the REV size is required such that the
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macroscale capillary pressure Ca and macroscopic gravillary number Gl (Hilfer and Øren
1996) are negligibly small. This ensures that the viscous pressure drop and gravitational
pressure drop across the REV are negligible compared to the capillary pressure, and hence
capillary equilibrium within the REV can be assumed.

2.2 Nonwetting Subphase Evolution

During drainage, the nonwetting saturation increases and its constituent subphase saturations
evolve with volume being transferred between the subphases. An increase in the nonwetting
saturation can result in a direct increase in both the dendritic (see Fig. 2a, b) and the backbone
(see Fig. 2b, c) subphase saturations. By ’direct’wemean that the volume previously occupied
by the wetting phase is transferred to a particular nonwetting subphase without initially being
transferred to another nonwetting subphase. Additionally, a small increase in the nonwetting
phase volume may cause a transfer of a larger volume from the dendritic to the backbone
subphase (see Fig. 2c, d).Moreover, previously trapped nonwetting ganglia can get untrapped
(see Fig. 2d, e). If we assume that only one pore-scale event may occur instantaneously, a
volume of trapped nonwetting phase is transferred to the dendritic subphase first, and can only
become part of the backbone subphase when another fluid path is established after further
drainage (see Fig. 2e, f).

Fig. 2 Conceptual illustration of the evolution of the wetting phase (blue) and the backbone (red), dendritic
(orange) and trapped (yellow) nonwetting subphases during drainage. The dashed ellipses highlight changes in
the fluid–fluid interface. The flow direction is from bottom to top. a Hypothetical scenario at the beginning of
drainage. bDirect increase in the dendritic subphase saturation due to increase in nonwetting phase saturation.
c Direct increase in the backbone subphase saturation due to increase in nonwetting phase saturation. d
Transfer of dendritic subphase volume to backbone subphase volume. e Transfer of trapped subphase volume
to dendritic subphase volume. f Transfer of dendritic subphase volume to backbone subphase volume. The
previously trapped region shown in d is now part of the backbone subphase
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Fig. 3 Redistribution of mass
among the three subphases.
Qβ1−β2 is the volume transfer
rate from subphase β1 to
subphase β2

Similarly, during imbibition, the nonwetting phase decreases, which can cause a decrease
in the dendritic subphase and backbone subphase saturations, transfer of backbone subphase
volume to the dendritic subphase, and trapping of connected nonwetting phase volume due
to either piston-type displacements or snap-off. The evolution of the nonwetting subphases
may be described by the following equations:

φ
∂Sb
∂t

= λφ
∂S

∂t
+ Qd−b, (2.5)

φ
∂Sd
∂t

= (1 − λ) φ
∂S

∂t
− Qd−t − Qd−b, (2.6)

and φ
∂St
∂t

= Qd−t (2.7)

for the nonwetting subphase saturations. Note that any one of these equations is redundant
due to Eq. (2.3). Here, the function λ is the fraction of the nonwetting saturation change due
to a direct change in backbone subphase saturation, and Qβ1−β2 is the rate of volume transfer
from subphase β1 to subphase β2, e.g., Qd−t is the rate of volume transfer from the dendritic
to the trapped subphase (see Fig. 3). These equations are solved together with Eq. (2.1), from
which we obtain the saturation rate ∂S

∂t . If, in addition to the phase relative permeabilities krα
and the macroscopic capillary pressure Pc, the source terms Qβ1−β2 and the function λ are
provided, one obtains a closed system.

3 Network Modeling

In order to study the evolution of the nonwetting backbone, dendritic and trapped subphases
during imbibition and drainage cycles, a pore-network simulator was implemented. It was
used here as a proxy for experiments, i.e., we assumed that the results are representative for
real porous media. In this section, we briefly describe the pore networks employed in this
work and the algorithm used to simulate drainage and imbibition cycles. We also describe
the methods used to extract the subphase saturations and relative permeabilities.

3.1 Network Geometry and Topology

Pore networks are composed of two types of pore elements, i.e., pore bodies and pore throats.
In this work, the pore elements were assumed to have an angular cross section, which can be
characterized by the shape factor (Mason and Morrow 1991)

G = Atot

P2 , (3.1)
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8 K. Khayrat, P. Jenny

Table 1 Parameters of beta distribution, Eq. (3.2), used to generate the pore elements for the structured pore
networks (Jerauld and Salter 1990)

Network A (consolidated) Network B (unconsolidated)

Pore bodies Pore throats Pore bodies Pore throats

a 1.25 1.5 2.5 1.5

b 2.5 2 1.5 1.5

rmin (µm) 20 1 40 15

rmax (µm) 75 25 64 40

where P and Atot are the effective perimeter and the cross-sectional area, respectively. A
pore element can be completely occupied by either the wetting phase or contain nonwetting
fluid in the center with wetting layers at the corners (see Fig. 5).

Three different pore networks were used. The first two, networks A and B, are structured
pore networks with a coordination number of 6 representing consolidated and unconsolidated
porous media, respectively. Note that consolidated media, as opposed to unconsolidated
media, are characterized by large ratios of average pore-body to pore-throat radii. Following
(Jerauld and Salter 1990), the inscribed pore-body and pore-throat radii of networks A and
B were sampled from a beta distribution

f (x) = xa−1(1 − x)b−1

B(a, b)
, (3.2)

wherea andb are shapeparameters and B is a normalization constant. The inscribed radiiwere
then scaled to have a minimum radius of rmin and maximum radius of rmax. The parameters
used for networks A and B are shown in Table 1. The pore elements of networks A and B
were chosen to be square cross sections, with G = 1/16. A fixed pore-to-pore distance of
160µm was used. Both networks A and B consist of 160 × 80 × 80 pore bodies (160 pore
bodies along the general flow direction).

In addition to networks A and B, we also employed a pore network, which is more
representative of real porous media. A stochastic pore network generator, described in Idowu
and Blunt (2010), was used to generate an unstructured pore network representing a Berea
sandstone, whichwe denote here as networkC (see Fig. 4). Unlike networksA andB, network
C has a distribution of pore-body coordination numbers and pore element shape factors. The
statistics of network C are shown in Table 2.

3.2 Invasion Mechanisms

We simulated drainage–imbibition cycles using a standard invasion percolation algorithm
(Wilkinson and Willemsen 1983), which was modified to include snap-off and cooperative
pore-filling events during imbibition. During simulation of drainage, the capillary pressure
Pc is increased. Pore-filling events occur in the order of their increasing threshold capillary
pressure. Piston displacement in a pore element, with the nonwetting phase displacing the
wetting phase, occurs when the capillary pressure Pc exceeds the entry capillary pressure Pe

c
of a given pore element (Øren et al. 1998):

Pc > Pe
c = γ

1 + 2
√

πG

r
. (3.3)
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Fig. 4 Pore network representative of Berea sandstone produced by the stochastic pore-network generator
described in Idowu and Blunt (2010)

Fig. 5 Cross section of a pore
element

Table 2 Pore-size statistics of network C, generated by the stochastic pore-network generator described in
(Idowu and Blunt 2010)

Maximum Minimum Mean Standard
deviation

Inscribed pore-body radius (µm) 73.5 3.62 19.3 8.44

Inscribed pore-throat radius (µm) 48.7 0.90 10.4 6.37

Coordination number 19 2 4.14 1.43

Number of pore bodies 0.67E6

Number of pore throats 1.41E6

Network size (cm3) 1.8 × 0.9 × 0.9

Here, r is the inscribed radius of a pore element and γ is the interfacial tension between
the nonwetting and wetting phases. Note that once a pore throat is occupied, the nonwetting
phase can immediately enter the neighboring pore body, since it has a lower entry capillary
pressure.

During simulation of imbibition, the capillary pressure decreases. The pore-level events
occur in order of decreasing threshold capillary pressure. The criterion for the wetting phase
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10 K. Khayrat, P. Jenny

to displace the nonwetting phase in a pore throat is

Pc < Pe
c . (3.4)

The criterion for snap-off, i.e., the collapse of the interface in a pore throat, for zero contact
angle is given by Øren et al. (1998)

Pc < Psnapoff
c = γ

rt
, (3.5)

where rt is the inscribed radius of pore throat. Note that snap-off in a pore throat only occurs
if piston displacement is not possible as Psnapoff

c < Pe
c for a pore throat. The threshold

capillary pressure, at which the wetting phase can enter a given pore body through several
pore throats (cooperative pore filling) depends on the number of neighboring throats filled
with nonwetting fluid (Lenormand et al. 1983). A cooperative pore-filling mechanism of type
Iz occurs when z neighboring throats are filled with the nonwetting phase. Following Jerauld
and Salter (1990), a simple capillary pressure threshold for the Iz displacement mechanism
in a pore body of radius rb is used:

Pc < γ
1 + 2

√
πG

zrb
. (3.6)

3.3 Conductances

In order to compute the relative permeability of a fluid phase, a phase conductance has to be
assigned to each pore element. This is calculated following (Bakke and Øren 1997) and the
relations are summarized here.

3.3.1 Single-Phase Flow in a Pore Element

When a pore element is completely filled with wetting fluid (single-phase condition), the
conductance can be computed as

gw = r2H Atot

8μwl
, (3.7)

where l the length of the pore element and

rH = 1

2

(
r +

√
Atot

π

)
(3.8)

the mean hydraulic radius.

3.3.2 Two-Phase Flow in a Pore Element

When a pore element is filled with both nonwetting and wetting fluid, the wetting and non-
wetting cross-sectional areas are

Aw = r2w

(
1

4G
− π

)
, (3.9)

and

An = Atot − Aw, (3.10)
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respectively. Here, the radius rw quantifies the curvature of the phase interface in the corners,
which is given by the Young–Laplace equation

rw = γ

Pc
. (3.11)

Similar as for the wetting phase, the hydraulic conductance of nonwetting fluid in a pore
element is given by

gn = r2H An

8μnl
. (3.12)

The hydraulic conductance of the wetting fluid through the corners of the cross section is

gw = r2wAw

8Bμwl
, (3.13)

where B = 5.3 is a dimensionless resistance factor [see Ransohoff and Radke (1988) for
details]. The effective conductance gα,i j of phase α between the centers of pore i and pore j
can be computed by the harmonic average

1

gα,i j
= 1

gα,k
+ 1

2

(
1

gα,i
+ 1

gα, j

)
, (3.14)

where gα,k is the conductance of the throat connecting pore i and pore j .

3.4 Computing Relative Permeabilities

To compute the relative permeability in a pore network, we first compute its absolute per-
meability. A unit pressure difference between inlet and outlet boundaries of a pore network,
filled with the wetting phase, is imposed and the resulting mass flux

Qtot =
∑

i∈Pinlet

∑
j∈Pnghs(i)

gw,i j (pw,i − pw, j ) (3.15)

at the inlet is computed. Here, Pinlet is the set of all pore indices at the inlet and Pnghs(i) are
the neighboring pore indices of pore i . To obtain the pressure values pw,i , a linear set of
equations for the mass conservation at each pore body, i.e.,∑

j∈P
gw,i j (pw,i − pw, j ) = 0 ∀ i, (3.16)

whereP is the set of all pore indices, is solvedwith appropriateDirichlet boundary conditions.
The absolute permeability is then given by (assuming unit pressure difference)

K = QtotμwLnet

Anet
, (3.17)

where Anet is the cross-sectional area of the pore network and Lnet is its length.
Next, we compute the effective and relative permeability of each phase. From drainage

or imbibition simulations, we obtain two-phase configurations in a pore network at several
saturation intervals. In order to compute the effective permeabilities for a given two-phase
configuration, it is assumed that the interface between the two fluids in the network is frozen.
This is justified here as we are considering capillary dominated flow, where the pressure
drop in a pore network within each of the two phases can be assumed to be negligible
compared to the capillary pressure (Blunt et al. 2002). Each phase α then forms a separate
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12 K. Khayrat, P. Jenny

fixed subnetwork in which the corresponding mass flux Qα
tot is computed similarly to the

case of single-phase flow. The effective permeability K α
eff for phase α can be obtained from

an expression analogous to Eq. (3.17), and relative permeability is then simply

krα = K α
eff

K
. (3.18)

3.5 Extracting the Subphase Saturations

The pore network can be represented by a graph G = (V, E) with vertices V and edges
E representing pore bodies and throats, respectively. This allows us to use standard graph-
theory algorithms to compute Sb, Sd and St . For this purpose, we have employed the igraph
library (Csardi and Nepusz 2006). In the following, we describe how to obtain the subphase
saturations.

First, we construct a graph Gn = (Vn, En) consisting of vertices Vn and edges En,
which are occupied by the nonwetting phase. This graph may contain several components.
A subgraph of Gn consisting only of those components which contain inlet vertices, Gc =
(Vc, Ec), is then obtained by using a cluster algorithm. As a result, we obtain Pc and Tc, the
corresponding set of indices of the pore bodies and throats, respectively. The set of trapped
pore-body and pore-throat indices is then given by Pt = P\Pc and Tt = T\Tc, respectively.

Secondly, we obtain Pb and Tb, the set of indices of the pore bodies and throats occupied
by the nonwetting backbone subphase. For this purpose, an additional dummy vertex is added
to Gc. Next, edges connecting this dummy vertex to all inlet and outlet boundary vertices
contained in Gc are added. The backbone can then be obtained by finding the largest bi-
connected component of the resulting graph (Kirpatrick 1978). Finally, the set of dendritic
pore body and throat indices can be easily obtained by the relations Pd = Pc\Pb and Td =
Tc\Tb, respectively.

At this point, the nonwetting subphase saturations Sβ , β ∈ {b, d, t} can be easily obtained.
The local nonwetting saturation of each pore body and pore throat is computed by

Sloci = An,i

Atot,i
, (3.19)

where the subscript i denotes the index of a pore body or pore throat and An,i is given by
Eq. (3.10). The saturation of subphase β is then given by

Sβ = 1

vtot

⎛
⎝∑

i∈Pβ

Sloci vi +
∑
i∈Tβ

Sloci vi

⎞
⎠ , (3.20)

where vi is the volume of a pore element and vtot is the total volume of the pore elements in
the pore network. In order to reduce boundary effects, a post-processing window extending
over 50% in flow direction around the domain center was considered when computing the
relative permeabilities and subphase saturations.

4 Pore-Network Results and Discussion

In this section, pore-network simulation results of several drainage and imbibition scanning
cycles are presented. The evolution of the backbone and dendritic nonwetting subphase
saturations is first discussed. Next, the evolution of the trapped subphase and its relation with
the backbone subphase is considered. A visualization of the subphase evolution is shown in
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Fig. 6 Snapshots of the backbone (left column), dendritic (middle column) and trapped (right column) non-
wetting subphases during pore-network simulation of a primary drainage–imbibition cycle for network C at
three different saturations: a S = 0.4 during drainage. b S = 0.7 during imbibition. c S = 0.25 during
imbibition

Fig. 6. The nonwetting relative permeability and its hysteretic behavior when plotted against
the nonwetting connected and the backbone subphase saturations is then discussed.

4.1 Connected Subphases

The primary drainage and imbibition curves of the subphase saturations Sb and Sd for net-
works A, B and C are shown in Fig. 7. Also shown, in Fig. 8, are the drainage and imbibition
scanning curves for Sb and Sd in network C. As can be observed, the nonwetting dendritic
saturation is greater during primary drainage (Smax

d ) than during primary imbibition (Smin
d )

for a given value of Sc. This behavior can be explained in terms of the pore-scale invasion
mechanisms under the assumptions of capillary dominated flows and fully connected wetting
fluid.

During drainage, piston displacements by nonwetting fluid may result in an increase in
Sd, either via reconnection of previously trapped nonwetting fluid or via the direct transfer of
volume previously occupied by the wetting phase. On the other hand, piston displacements
by nonwetting fluid may also cause the formation of nonwetting connections between two
dendritic nonwetting fingers, leading to an increase in Sb and decrease in Sd. The latter event
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(a) (b) (c)

Fig. 7 Pore-network simulation results: primary drainage and primary imbibition curves of the backbone
(solid lines) and dendritic (dashed lines) nonwetting saturations for network A (left), network B (center) and
network C (right) versus the nonwetting connected saturation. Smax

d and Smin
d denote the primary drainage

and primary imbibition curves, respectively, for the dendritic nonwetting saturation

(a) (b)

(c) (d)

Fig. 8 Pore-network simulation results: drainage (left column) and imbibition (right column) scanning curves
of backbone (top row) and dendritic (bottom row) nonwetting subphases for network C. Labels (1–2) and (3–4)
denote segments of drainage scanning cycles on saturation reversal

is more likely as Sc increases. During imbibition, the wetting fluid can invade nonwetting
occupied pore space by three mechanisms: snap-off and piston displacement in pore throats,
and cooperative pore displacement in pore bodies (Lenormand et al. 1983). The cooperative
pore-filling mechanism of type I1 is the most favorable invasion mechanism in pore bodies
(having the highest threshold capillary pressure), while piston displacement is the most
favorable invasion mechanism in pore throats. These two mechanisms can only result in a
decrease in Sd. The other less favorable invasion mechanisms which can cause an increase in
Sd, i.e., mechanism Iz with z > 1 or snap-off, occur only when the previously twomentioned
mechanisms are not topologically possible. This behavior, which is discussed in more detail
in Wardlaw and Yu (1988), explains the observed hysteresis of Sd.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Pore-network simulation results: imbibition scanning curves showing the dependence of trapped non-
wetting saturation on the total (top row) and backbone (bottom row) nonwetting saturations for network A
(left column), network B (center column) and network C (right column)

(a) (b) (c)

Fig. 10 Pore-network simulation results: normalized trapped nonwetting saturation Ŝt = St
S∗
t

versus the

normalized backbone nonwetting saturation Ŝb = Sb
S∗
b
for network A (left column), network B (center column)

and network C (right column). The symbols correspond to scanning cycles starting from S∗ = 0.4 (inverted
triangle), S∗ = 0.5 (circle), S∗ = 0.6 (triangle), S∗ = 0.7 (open square), S∗ = 0.8 (cross), and S∗ = 0.9
(right pointing triangle)

4.2 Trapped Subphase

Figure 9a–c shows imbibition scanning S − St curves for networks A, B and C. Each scan-
ning cycle starts at a different turning point saturation S∗. The maximum trapped saturation
increases with S∗. Note that a hysteretic S − St cycle exists for each S∗. On the other hand,
for any given turning point backbone saturation S∗

b , only very weak hysteretic effects can be
observed in the Sb − St curves of Fig. 9d–f. Furthermore, when the points on the Sb − St
curves are normalized by their turning point backbone saturation S∗

b and their corresponding
maximum trapped saturation S∗

t , they appear to collapse on a single curve as shown in Fig. 10.

4.3 Relative Permeability

Shown in Fig. 11 are imbibition scanning curves of krn versus S, Sc and Sb. The relation
between krn and S for different drainage–imbibition cycles in networks A, B and C is shown
in Fig. 11a, d and g, respectively. Significant hysteretic behavior can be observed, and thus it
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11 Pore-network simulation results: imbibition scanning curves showing the dependence of nonwetting
relative permeability on total, connected andbackbone nonwetting saturations for networkA (top row), network
B (middle row) and network C (bottom row)

is difficult to find a general constitutive relation for krn in terms of S. The complexity of the
hysteretic behavior is reduced when krn is plotted against Sc. As observed in Fig. 11b, krn can
be considered a nonhysteretic function of Sc for network A. This is not the case for network
B and network C as shown in Figs. 11e and 11h. However, for both of these networks the
value of krn is bounded by the primary drainage and primary imbibition curves.

Figure 11f shows that, for network B, krn can be approximated as a nonhysteretic function
of Sb. This is in agreement with results by Jerauld and Salter (1990). For network C, krn(Sb)
is hysteretic as can be seen in Fig. 11i. However, according to the presented results, the error
that would be made in assuming that krn(Sb) is a nonhysteretic function is less than the one
made in assuming that krn(Sc) is a nonhysteretic function, particularly for lower saturations.

It can be seen that, for network C, krn(Sb) is larger during drainage than during imbibi-
tion. Although there is no significant hysteresis, the same trend for krn(Sb) is observed in
Fig. 11c for network A. This may be explained to be due to the higher capillary pressure
during drainage than during imbibition. The capillary pressure, according to the network
model employed, determines the cross-section area of the wetting and nonwetting fluid in
a pore element [see Eqs. (3.9) and (3.10)] and hence the phase conductance. Due to their
smaller cross sections, the nonwetting phase conductance and saturation in pore throats are
more sensitive to a change in capillary pressure than they are in pore bodies. Furthermore,
pore throats in a network have a larger effect on the relative permeability than pore bodies,
but contribute less to the total pore volume. Hence increasing the capillary pressure (while
maintaining the same phase occupancy in the pore elements) can result in an increase in rela-
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tive permeability without an appreciable increase in saturation.While we have not considered
contact angle hysteresis in this work, it is expected by the same reasoning to contribute to
relative permeability hysteresis. As a check, simulations were performed in which the wet-
ting cross-sectional area Aw of all nonwetting occupied pore elements was kept constant,
resulting in a nonhysteretic krn(Sb) for network C (results not shown here).

5 Modeling of Volumetric Transfer Rates

In this section, we will propose models for the volume transfer rates between the subphases
Qα−β and function λ which were introduced in Sect. 2. Results of pore-network simulations
presented in Sect. 4 will be used to motivate these models.

5.1 Volume Transfer Rate Qd−t Between Dendritic and Trapped Subphases

Here, a model for the volume transfer rate Qd−t is proposed. The basic idea relies on a
strong correlation between φ ∂St

∂t = Qd−t and φ ∂Sb
∂t , which is supported by the fact that the

mechanisms responsible for transition between dendritic and trapped subphases, and those
which cause a change in the backbone subphase are of similar nature. This can be understood
as follows: During imbibition, both trapping and creation of dendritic fingers occur due to
either cooperative pore-filling mechanisms of type Iz , z > 1 or snap-off. Similarly, during
drainage, the reconnection of trapped fluid as well as increase in backbone fluid (either
directly or by transfer of dendritic fingers to the backbone) occurs due to piston displacement
mechanisms where wetting fluid between two pore regions occupied by nonwetting fluid
gets displaced. Note that this correlation between Qd−t and

∂Sb
∂t may not hold for pore

systems ofmixedwettability, where both phasesmay be present as films and the displacement
mechanisms are more complex than those which are assumed here (see eg. Ryazanov et al.
2014).

Based on the arguments given above, it is hypothesized that

Qd−t = − fd−t(Sb)φ
∂Sb
∂t

. (5.1)

This is supported by pore-network simulations (see Fig. 9 in Sect. 4.2). For a functional
form of fd−t , we assume self-similarity of the different St − Sb curves for a given maximum
turning point backbone saturation S∗

b and the corresponding maximum trapped saturation
S∗
t = S∗

t (S
∗
b ) as suggested by pore-network results (see Fig. 10). A functional relation

St
S∗
t

= 1 −
(
Sb
S∗
b

)δ1

(5.2)

is assumed for the similarity solutions. Differentiating both sides of this relation with respect
to t and noting that Qd−t = φ ∂St

∂t , we arrive at

fd−t(Sb) = δ1S∗
t(

S∗
b

)δ1
Sδ1−1
b , (5.3)

with δ1 being a fitting parameter. A relation between S∗
b and S∗

t is now required. For this, we
employ the following relation

S∗
t (S

∗
b ) = Str S

∗δ2
b , (5.4)
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where Str is the maximum residual saturation corresponding to S∗
b = 1 and δ2 is a constant.

Using Eq. (5.1), we can now rewrite the subphase evolution equations (2.5)–(2.7) along
with the nonwetting saturation equation as

φ
∂Sb
∂t

= λφ
∂S

∂t
+ Qd−b, (5.5)

φ
∂Sd
∂t

= (1 − λ)φ
∂S

∂t
+ fd−t(Sb)φ

∂Sb
∂t

− Qd−b, (5.6)

φ
∂St
∂t

= − fd−t(Sb)φ
∂Sb
∂t

, (5.7)

and φ
∂S

∂t
= ∂

∂xi

(
K

μn
krn

∂Pn
∂xi

)
. (5.8)

Note that by adding Eqs. 5.5 and 5.6, one gets φ ∂Sc
∂t = φ ∂S

∂t + fd−t(Sb)φ
∂Sb
∂t , and Eq. (5.6)

can be rewritten as

φ
∂Sd
∂t

= φ
∂Sc
∂t

− λφ
∂S

∂t
− Qd−b. (5.9)

For a given nonwetting pressure field (flow problem), the remaining unclosed terms are
λ, Qd−b and krn. The latter can be expressed as a unique function of Sb, which has been
mentioned earlier and will further be discussed in Sect. 5.3. Note that in order to compute
the nonwetting pressure field, closures for the wetting phase relative permeability krw and
macroscopic capillary pressure Pc are also required [see Eqs. (2.1) and (2.2)].

5.2 Backbone Saturation Rate ∂Sb
∂ t

The backbone saturation rate ∂Sb
∂t , Eq. (5.5), is now considered, the value of which consists

of two contributions: one from the exchange of volume between the backbone and dendritic
subphases, and another from the direct change in Sb due to a change in S.

During drainage, regions of the pore space occupiedwith the dendritic phase coalesce. This
coalescence causes a subset of the dendritic subphase to transfer to the backbone subphase.On
the other hand, during imbibition there is volume transfer from the backbone subphase to the
dendritic subphase due to nonwetting paths being broken by the invading wetting phase. The
volume transfer rate Qd−b is a function of both Sb and Sd. As stated earlier, here only quasi-
static flow is considered, i.e., dSb/dSc is independent of the magnitude of the saturation
dSc/dt . As a direct consequence, one can state that Qd−b ∝ dSc/dt . In general, volume
transfer between the backbone and dendritic subphases is not reversible due to differences
in pore-scale invasion mechanisms and sequences between drainage and imbibition, i.e., the

volume transfer depends on sgn
(
dSc
dt

)
. We thus have

Qd−b = fd−b

(
Sb, Sd, sgn

(
∂Sc
∂t

))
φ

∂Sc
∂t

, (5.10)

where fd−b is a function which needs to be modeled.
In order to model the fraction λ, we introduce an additional requirement here that the

backbone subphase saturation rate ∂Sb
∂t depends directly only on Sb and Sd, and not on St . In

order to satisfy this requirement for the first rhs. term in Eq. (5.5), the fraction λ is has the
form

λ = fλ

(
Sb, Sd, sgn

(
∂Sc
∂t

))
dSc
dS

. (5.11)
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Substituting Eqs. (5.10) and (5.11) into Eq. (2.5), we obtain

φ
∂Sb
∂t

= φ fλ

(
Sb, Sd, sgn

(
∂Sc
∂t

))
∂Sc
∂t

+ φ fd−b

(
Sb, Sd, sgn

(
∂Sc
∂t

))
∂Sc
∂t

, (5.12)

In order to devise models for fd−b and fλ, two constraints can be stated. First, if one
assumes that the pore space itself has no dead ends, one arrives at limSc→1Sd = 0. In
addition, limSc→1St = 0. This implies

∫ 1
0 dSb = 1. By integrating Eq. 5.12, we obtain the

first constraint for fd−b and fλ:

∫ 1

0
dSb =

∫ 1

0
f ∗
d−bdSc = 1, (5.13)

where we have introduced f ∗
d−b = fλ + fd−b. Second, one can assume that limSc→1

dSb
dSc

= 1,
since for an almost fully drained porous medium, all the nonwetting phase is connected and
no dendritic fingers exist. Hence, we have

f ∗
d−b

(
Sb = 1, Sd = 0, sgn

(
dSc
dt

))
= 1. (5.14)

Functions for fλ and fd−b are now proposed, which satisfy these constraints. For drainage,

i.e., for sgn
(
dSc
dt

)
= 1, we have

f drd−b = (Sd)
αdr
1 (Sb)

αdr
2 Adr , (5.15)

f drλ = (Sc)
αdr
3 , (5.16)

where Adr , αdr
1 , αdr

2 and αdr
3 are coefficients which have to be fitted to the primary drainage

Sb − Sc curve from, e.g., pore-network simulations. Note that only 3 of the 4 coefficients are
independent due to constraint (5.13), while the constraint (5.14) is trivially satisfied, since
limSc→1 f drd−b = 0 and limSc→1 fλ = 1. A similar expression is used for imbibition, i.e.,

f imb
d−b = (Sd)

αimb
1 (Sb)

αimb
2 Aimb, (5.17)

f imb
λ = (Sc)

αimb
3 . (5.18)

Equations (5.15–5.16) and (5.17–5.18) are valid only for primary drainage (along the
saturation path starting at Sc = 0) and primary imbibition (along the saturation path starting
at Sc = 1), respectively. Hysteretic effects during saturation path reversals for 0 < Sc < 1
have yet to be taken into account.

As shown in Sect. 4.1, pore-network simulation results suggest that, for any particular
Sc, the dendritic saturation Sd is always larger during drainage than during imbibition. We
denote Sdmax(Sc) and S

d
min(Sc) as the maximum and minimum dendritic saturations attainable

for a given Sc (see Fig. 7b). Based on our pore-network simulation results, we make the
approximation that on transition fromdrainage to imbibition andon transition from imbibition
to drainage, initially dSb = 0 while dSd = dSc, until Sd(Sc) = Sdmin(Sc) or Sd(Sc) =
Sdmax(Sc), respectively; (see, e.g., segments 1–2 and 3–4 in Fig. 8a, c). A more accurate
closure can certainly be made for these interior scanning curves, but this simple play-type
model (see Visintin 1994) is sufficient for our purposes. Hence the final model for ∂Sb

∂t can
be written as
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φ
∂Sb
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 − H

(
Sd − Smax

d

)]
φ ∂Sc

∂t + H
(
Sd − Smax

d

)
f ∗dr
d−bφ

∂Sc
∂t , ∂Sc

∂t > 0[
1 − H

(
Smin
d − Sd

)]
φ ∂Sc

∂t + H
(
Smin
d − Sd

)
f ∗imb
d−b φ ∂Sc

∂t , ∂Sc
∂t < 0

0, ∂Sc
∂t = 0

, (5.19)

where

H(x) =
{
0, x < 0

1, x ≥ 0

is the Heaviside step function, f ∗dr
d−b = f drλ + f drd−b, and f ∗imb

d−b = f imb
λ + f imb

d−b .

5.3 Relative Permeability

As shown in Sect. 4.3, it is justified to consider the nonwetting relative permeability krn to
be a one-to-one function of the backbone saturation Sb. Here, for the functional form of krn,
a van Genuchten-type equation (Van Genuchten 1980),

krn = (Sb)
0.5

[
1 − (

1 − (Sb)
1/m)m]2

, (5.20)

is assumed with m being a fitting parameter.

6 Model Calibration and Validation

The models proposed in Sect. 5 for use in the subphase framework require the calibration
of ten independent parameters: one for fd−t [Eq. (5.3)], two for S∗

t (S
∗
b ) [Eq. (5.4)], six for

f ∗
d−b = fλ + fd−b [Eqs. (5.15)–(5.18)] and one for krn (Sb) [Eq. (5.20)]. Note that in this

paper we have not considered wetting relative permeability and the macroscopic capillary
pressure, models of which would add additional parameters.

The model parameters of the functions f ∗dr
d−b and f ∗imb

d−b were calibrated by least square
fitting to the pore-network simulation results of primary drainage and primary imbibition.
As shown in Fig. 12, the assumed form of f ∗dr

d−b and f ∗imb
d−b is flexible enough to fit the

pore-network simulation data for networks A, B and C.
After the functions f ∗dr

d−b and f ∗imb
d−b were calibrated, Eq. (5.9) was used to numerically

compute the Sb versus Sc and the Sd versus Sc scanning curves for a 0-d (homogeneous)
case. Figure 13 shows Sb and Sd imbibition scanning curves generated by pore-network
simulations and by the calibrated model for networks B and C. As can be observed, the
model results for the bounding primary curves are in good agreement with the pore-network
simulation data. However, there is a discrepancy for the values between the bounding primary
curves for network C. This is due to the play-type model for the interior scanning curves [see
Eq. (5.19)]. A more elaborate model with more parameters can readily be used to rectify this
discrepancy. However, the current model is sufficient for the purpose of demonstrating the
subphase framework.

In order to compute the evolution of the trapped nonwetting saturation, the parameters in
the model for the volume transfer term Qd−t [Eqs. (5.1)–(5.4)] were calibrated. Figure 14
shows the S∗

t versus S∗
b relation as obtained from pore-network simulation data and by the

calibrated model Eq. (5.4) for networks A, B and C. With the calibrated S∗
t (S

∗
b ) model, the

imbibition scanning curves for St versus Sb and St versus S in network C can be computed
by Eq. (5.7), and are shown in Fig. 15. As can be observed in Fig. 15b, there is a reasonable
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(a) (b) (c)

Fig. 12 The function f ∗dr
d−b obtained from pore-network simulations (circles) and from the calibrated model

Eqs. (5.15) and (5.16) (solid lines) is shown together with f ∗imb
d−b obtained from pore-network simulations

(crosses) and from the calibrated model Eqs. (5.17) and (5.18) (dashed lines). The values of Sb and Sd used
here are obtained from three pore-network simulations. a For an artificial consolidated porous medium. The
calibrated parameters used in Eqs. (5.15) and (5.17) are Adr = 5.3, αdr1 = 0.243, αdr2 = 1.84, αdr3 = 0.929,

Aimb = 5.73, αimb
1 = 0.332, αimb

2 = 1.82 and αimb
3 = 0.854. b For an artificial unconsolidated porous

medium. The calibrated parameters used in Eqs. (5.15) and (5.17) are Adr = 8.74, αdr1 = 0.48, αdr2 = 1.90,

αdr3 = 0.842, Aimb = 2.68, αimb
1 = 0.308, αimb

2 = 1.67 and αimb
3 = 0.364. c For a network representative

of Berea sandstone. The calibrated parameters used in Eqs. (5.15) and (5.17) are Adr = 1.89, αdr1 = 0.231,

αdr2 = 0.962, αdr3 = 0.662, Aimb = 3.66, αimb
1 = 0.518, αimb

2 = 1.73 and αimb
3 = 0.313

(a) (b)

(c) (d)

Fig. 13 Comparison of imbibition scanning curves for backbone (left) and dendritic (right) nonwetting sub-
phases, as computed by Eqs. (5.5)–(5.8) (solid lines) and by pore-network simulations (circles) for network
B (top) and network C (bottom). Model parameters are the same as in Fig. 12

quantitative agreement between the model results and the pore-network simulation data. The
differences observed can be mainly attributed to the employment of a play-type model in
Eq. (5.19) for the interior scanning curves of the backbone saturation Sb.
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(a) (b) (c)

Fig. 14 The function S∗
t (S∗

b ) obtained from pore-network simulations (crosses) and from the calibrated
model Eq. (5.4) (solid lines). a For an artificial consolidated porous medium. The calibrated parameters used
in Eq. (5.4) are Str = 0.85, δ2 = 0.3. b For an artificial unconsolidated porous medium. The calibrated
parameters used in Eq. (5.4) are Str = 0.45, δ2 = 0.3. c For a network representative of Berea sandstone. The
calibrated parameters used in Eq. (5.4) are Str = 0.47, δ2 = 0.38

(a) (b)

Fig. 15 Comparison of imbibition scanning curves for the trapped saturation plotted against the backbone
saturation (left) and the nonwetting saturation (right) as computed by Eq. (5.7) (solid lines) and by pore-
network simulations (dashed lines) for network C. The calibrated parameters used are δ1 = 0.41, δ2 = 0.38
and Str = 0.47

(a) (b) (c)

Fig. 16 Nonwetting relative permeability krn obtained from pore-network simulations (crosses) and from the
calibrated van Genuchten-type Eq. (5.20) (solid line) for network A (left), network B (center) and network C
(right). The calibrated parameter used in Eq. (5.20) is m = 1.04 for network A, m = 0.89 for network B and
m = 2.02 for network C

The relative permeability relation (5.20) was then calibrated by least square fitting using
pore-network simulation data. As can be observed in Fig. 16, the vanGenuchten-type relation
in Eq. (5.20) is adequate in matching the pore-network simulation results.

Having calibrated the model equations, the capability of the proposed framework in cap-
turing complex hysteresis trends in kr can now be demonstrated. Shown in Fig. 17 are the
kr versus S imbibition scanning curves obtained by pore-network simulations in network C
and by our proposed subphase framework with the calibrated models described in Sect. 5.
Additionally, shown in Fig. 17c is a kr versus S curve computed using a hysteresis model
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(a) (b) (c)

Fig. 17 Model results: imbibition scanning curves for the backbone saturation plotted against the nonwetting
saturation for network C. a Pore-network simulation results. b 0-d simulations using the subphase modeling
framework. c 0-d simulations using Land’s relative permeability hysteresis model (best case scenario)

based on Land’s formulation (Land 1968) . The basis of this formulation is that the imbibition
relative permeability at a given saturation k Irn(S) can be computed from the primary drainage
relative permeability curve kDrn(S) by replacing S with Sc, i.e.,

k Irn(S) = kDrn(Sc).

It is trivial to show that under this assumption the inequality k Irn(S) ≤ kDrn(S) holds for any
saturation. On the other hand, using the proposed framework to model relative permeability
hysteresis, we are able to capture the complex relative permeability hysteresis trends.

We conclude this section with a few remarks regarding the possibility of calibrating the
model from experiments as opposed to from pore-network simulations, as has been done
here. Different experiments have been previously conducted in order to measure nonwetting
relative permeability and nonwetting residual saturation (seeKrevor et al. 2012 and references
within). This information is not sufficient to calibrate the parameters of the devised subphase-
based model. In particular, the difficulty lies in determining the parameter m for the krn − Sb
relation [Eq. (5.20)] and the parameters δ1 and δ2 for the St − Sb relation [Eqs. (5.2) and
(5.4)]. If these three parameters are known, along with the relative permeability and residual
saturation data, the remaining parameters may be obtained through standard curve-fitting
procedures. However, the experimental measurement of the backbone and trapped subphase
saturations required for these parameters is not straight forward. These quantities have been
inferred, but not directly measured, in the works of Raimondi and Torcaso (1964), Stalkup
(1970) and Salter et al. (1982).

More recently, X-ray computed microtomography has been used to study the nonwetting
fluid topology in rock samples (eg. Herring et al. 2013; Rücker et al. 2015) as well as in bead
packs (eg. Krummel et al. 2013). Existing data from these and similar experiments can be
used to extract the nonwetting subphase saturations and study the relation of the backbone
subphase with both the trapped subphase and the nonwetting relative permeability. To the
knowledge of the authors, such a study has not been conducted yet.

7 Concluding Remarks

We have presented a framework for immiscible two-phase flow in porous media, which can
account for nonwetting relative permeability hysteresis in both consolidated and unconsoli-
dated porous media. The central idea of the framework is the subdivision of the nonwetting
phase into three subphases: backbone, dendritic and trapped subphases. The formulation of
the models for the rate of volume transfer between the subphases, required in this framework,
was based on observations from pore-network simulation results. Using these models, it is
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possible to capture complex relative permeability hysteresis behavior where the nonwetting
phase relative permeability is greater during imbibition than during drainage. This is not
possible using the widely employed Land’s model.

The closure models presented in this paper only deal with low capillary number flows.
Further pore-network studies of flow-rate effects on the nonwetting subphase saturations are
needed inorder to extend themodels formoregeneral flowscenarios. In order to devisemodels
applicable to a range of capillary numbers, additional parameters describing the topology of
the fluid subphases may be crucial. The topology of a fluid subphase can be described by
the Euler characteristic, which has been used previously by Herring et al. (2015) to study
the 3D topology of the nonwetting fluid phase and its effect on nonwetting phase trapping.
They found that for high capillary numbers, the nonwetting phase Euler number plays an
important role on the residual nonwetting saturation.

The pore-network results in this work were limited to two lattice networks and a network
representing Berea sandstone. Further investigations are required in order to test whether a
nonhysteretic krn − Sb and Sb − St relations hold for other more complex porous media, e.g.,
for those with bimodal pore-size distributions.
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