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Abstract The stability of convection in a horizontal porous layer which is saturated with
fluid and induced by horizontal temperature gradients subjected to horizontal mass flow is
investigated bymeans of linear and nonlinear stability analysis. The effects of variable gravity
field and vertical throughflow are also considered in this analysis. The nonlinear stability
analysis part has been developed via energy functional. Shooting and Runge–Kutta methods
have been used to solve eigenvalue problem in both cases. Critical vertical thermal Rayleigh
numbers for both linear and nonlinear analyses RL and RE are evaluated for different values
of horizontal Rayleigh number Rx , horizontal Peclet number Pe, vertical Peclet number
Qv and variable gravity parameter η. Comparison is made between linear and nonlinear
stability results. It has been observed that linear stability results are overpredicting the onset
of convection compared with nonlinear theory, and hence subcritical instabilities would arise
before one gets the onset of linear stability threshold.

Keywords Hadley–Prats flow · Linear stability · Nonlinear stability · Energy method ·
Porous medium
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k Wave number in x direction
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km Thermal conductivity
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K Permeability of the medium
P Pressure
Pe Horizontal Peclet number
Qv Vertical Peclet number
T Temperature
t Time
v = (u, v, w) Velocity vector
V Periodicity cell
Rx Horizontal thermal Rayleigh number
Rz Vertical thermal Rayleigh number
(x, y, z) Cartesian coordinates

Greek symbols
α Overall wave number
αm Thermal diffusivity
β Horizontal thermal gradient
η Variable gravity coefficient
γT Thermal expansion coefficient
μ Viscosity
ρ Density
θ Perturbation in temperature
ξ Coupling parameter

Subscripts
m Porous medium
f Fluid medium

Superscripts
∗ Dimensional quantity
′ Perturbation

1 Introduction

The study of buoyancy-driven flows in the porous media is vital since it has numerous
applications in fields like insulation of buildings, geothermal reservoirs, and chemical reactor
engineering. Natural convection in a porous layer by heating from below was first studied
by Horton and Rogers (1945) and Lapwood (1948) which is known as Horton–Rogers–
Lapwood (H–R–L) problem. In this study, they have investigated on a homogeneous and
isotropic porous layer with uniform thickness in which Darcy law, Oberbeck-Boussinesq
approximation, and local thermal equilibrium condition are valid. There are many extensions
to this problem with inclusion of additional effects such as inclined temperature gradients,
inclined porous layer, viscous dissipation, mass flow, local thermal non- equilibrium.

Later, Prats (1966) studied the effect of horizontal fluid flow on convection in a porous
layer. Then after, Weber (1974) investigated the stability of convection induced by inclined
temperature gradients assuming them as small in magnitude. This problem is more compli-
cated than the model considered in the H–R–L problem or pure Darcy–Benard convection. In
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problems of this type, temperature field is assumed to vary linearly in the horizontal direction.
And that non-uniformity in the horizontal temperature induces a flow into basic solution. The
flow generated by these gradients is referred to as Hadley flow. Nield (1991, 1994) got rid of
the limitation on horizontal temperature gradients which were to be small, and the resultant
eigenvalue problem in both cases was solved by using two-term Galerkin approximation.
When Hadley flow is subjected to horizontal mass flow, it leads to Hadley–Prats flow. A
book by Nield and Bejan (2013) mentioned all the improvements in this area of research.

Investigation of effect of vertical throughflow is important since it gives a possibility to
control the convective instability with adjustment of throughflow. This type of study has
applications in packed bed reactors. Effect of throughflow in a porous medium was first
studied by Wooding (1960) where the domain was semi-infinite in the vertical direction, and
this study was followed by Sutton (1970) and Chen (1990). It was further extended by Nield
(1998) with inclined temperature gradients by concluding that the effect of throughflow is
independent of its direction when both the upper and lower boundary conditions are identi-
cal. Nield and Kuznetsov (2013) investigated throughflow on convection in a porous medium
which consisted two horizontal porous layers. All the above studies are based on the Darcy
flowmodel inwhich inertia and viscous dissipation effects are neglected. Barletta et al. (2010)
investigated on thermal convection with effect of viscous dissipation in the energy balance
and also with vertical throughflow. Khalili and Shivakumara (2003) employed Brinkman-
extended Darcy model to study the effect of vertical throughflow. Rees and Bassom (2000)
studied Darcy–Bénard problem where the porous layer was inclined to some angle. Brevdo
and Ruderman (2009) analyzed the destabilization of transverse modes when the flow under-
goes the effect of vertical throughflow. Most of the above works were concentrated only on
the effect of either horizontal mass flow or vertical throughflow. But the present article aims
at studying both the effects simultaneously.

When the gravity field varies with the height of the porous layer, the buoyancy force
exerted by the fluid also varies. This leads to a situation where some part of the fluid layer will
tendency to become stable and the remaining part unstable. Hence, in large-scale convection
problems, it is essential to take account of variation of gravity with height. Alex et al. (2001)
analyzed variable gravity effects on convection in isotropic porous layer with internal heat
source. Later on, it was extended to anisotropic porous layer in the article by Alex and Patil
(2002). Variable gravity effects was studied by Straughan (1989), Kaloni and Qiao (2001)
and Harfash (2014).

Most of the above contributions are restricted to linear theory. It is a known fact that
the energy method and the linear stability theory complement each other in demarking the
range of parameter space in which the subcritical instabilities would arise. Nonlinear stability
theory using energy functional overcomes the drawbacks in the linear stability analysis. Non-
linear analysis by energy method may be found in Straughan (2004). Homsy and Sherwood
(1976) analyzed the convective instability in a porous medium confined between isothermal
boundaries, using linear instability theory and nonlinear stability theory. Straughan (1989)
added the effect of variable gravity field to the convection problem and examined linear and
nonlinear stability analyses and observed that there is a small bandwidth where possible sub-
critical instabilities arise. Several researchers have studied the nonlinear stability by using
the energy method. Kaloni and Qiao (1997), Qiao and Kaloni (1998), and Kaloni and Qiao
(2000) extended this in various phases by including effect of inclined temperature gradients,
vertical throughflow, and thermosolutal convection with horizontal mass flow, respectively.
Harfash (2014) studied the convection in a fluid-saturated porous media by using linear and
nonlinear analyses with the effects of internal heat source, variable gravity.
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The aim of present article is to study the onset of convectionwith horizontalmass flow, ver-
tical throughflow, and variable gravity effect by using linear and nonlinear stability analyses.
In this discussion, Sect. 2 deals with governing equations and steady-state solution, Sects. 3
and 4 with the linear and nonlinear stability analyses, and Sect. 5 with numerical solution of
the eigenvalue problems and discussion of results.

2 Mathematical Formulation

A horizontal fluid-saturated homogeneous porous layer with thickness H is considered.
Cartesian system has its z∗-axis vertically upwards which opposes the direction of gravity
and x∗-axis is in the direction of imposed horizontal temperature gradient β. The porous layer
extends to infinity in horizontal directions, and bounded by permeable plates z∗ = H/2 and
z∗ = −H/2. The vertical temperature difference between the plates be 	T . The schematic
diagram of the problem is shown in Fig. 1. The flow in the porous medium is governed by
Darcy law. Oberbeck–Boussinesq approximation is valid that means the density variations
are sufficiently small to be neglected everywhere except in the body force term, and density
is given by

ρ f
∗ = ρ0

[
1 − γT (T ∗ − T0)

]
, (1)

where T ∗ is the temperature, ρ f
∗ is the fluid density, ρ0 is the density at temperature T0,

and γT is the volumetric thermal expansion coefficient. It is assumed that the gravity vector
varies linearly with z∗ i.e.,

g = g0h(z∗)k

= −g0

(
1 + η

z∗

H

)
k,

(2)

where g0 is the constant gravitational acceleration, η is the variable gravity coefficient, and
k is the unit vector in vertical direction. The governing equations in dimensional form are

∇∗ · v∗ = 0, (3)
μ

K
v∗ = −∇∗P∗ + ρ f

∗g, (4)

(ρc)m
∂T ∗

∂t∗
+ (ρcp) f (v∗ · ∇∗T ∗) = km∇∗2T ∗, (5)

Fig. 1 Sketch of the porous medium
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where v∗ = (u∗, v∗, w∗), P∗ are the seepage velocity and pressure, respectively. The sub-
scripts m and f indicates to the porous medium and fluid, respectively. In addition, μ, c,
km , and K stand for viscosity, specific heat, thermal conductivity and permeability of the
medium, respectively. It is supposed that there is a throughflow with velocity wv in the
vertical direction, and then the boundary conditions are in the form

z∗ = ±H

2
: w∗ = wv, T ∗ = T0 − (±	T )

2
− βx∗. (6)

Now, the following non-dimensional variables are introduced to non-dimensionalize the
governing equations (3)–(6)

(x, y, z) = 1

H
(x∗, y∗, z∗), t = αm

AH2 t
∗, (u, v, w) = v = H

αm
v∗,

P = K (P∗ + ρ0gz∗)
μαm

, T = Rz(T ∗ − T0)

	T
,

αm = km
(ρcp) f

, A = (ρc)m
(ρcp) f

, (7)

The above scaling leads to the following non-dimensional parameters

Qv = wvH

αm
, Pe = u0H

αm
,

Rz = ρ0g0γT K H	T

μαm
, Rx = ρ0g0γT K H2β

μαm
. (8)

Here Qv, Pe are vertical and horizontal Peclet numbers and Rz , Rx are vertical and
horizontal Rayleigh numbers. The flow governing equations representing conservation of
mass, momentum, and energy balance are in the form

∇ · v = 0, (9)

v = −∇P + T (1 + ηz)k, (10)
∂T

∂t
+ v · ∇T = ∇2T . (11)

The corresponding boundary conditions are

z = ±1

2
: w = Qv, T = − (±Rz)

2
− Rx x . (12)

The basic steady-state solution (vs, Ps, Ts) of Eqs. (9)–(12) are in the form

us = Rx

(
z + η

z2

2
− η

24

)
+ Pe, vs = 0, ws = Qv, Ps = P(x, y, z), (13)

Ts = −Rx x + Az3 + Bz2 + Cz + D − (Rz + E)
(exp(Qvz) − cosh(Qv/2))

F
. (14)

A constraint is imposed to be there is a net mass flow in the x direction, in such a way
that

∫ 1/2

−1/2
us = Pe,

∫ 1/2

−1/2
vs = 0. (15)
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The basic state solution is given by Eqs. (13)–(14) which is commonly referred to as
Hadley–Prats flow. Vertical temperature gradient is given by

DTs = dTs
dz

=
{

−4Gηz3 − 12Gz2 + (Gη − Rx Pe)z + (−Rz + G), for Qv = 0,

3Az2 + 2Bz + C − ((Rz + E)/F)Qv exp(Qvz), for Qv �= 0.

where

A = Rx
2η

6Qv
, B = Rx

2

2

(
η

Qv
2 + 1

Qv

)
,

C =
[
Rx

2
(

η

Qv
3 + 1

Qv
2 − η

24Qv

)
+ Rx Pe

Qv

]
, D = − Rx

2

8

(
η

Qv
2 + 1

Qv

)
,

E = Rx
2η

24Qv
+ Rx

2
(

η

Qv
3 + 1

Qv
2 − η

24Qv

)
+ Rx Pe

Qv
,

F = 2 sinh(Qv/2), G = Rx
2

24
.

Now, the following perturbations to the basic solution are imposed as

v = vs + v′, T = Ts + θ, P = Ps + p′. (16)

where the prime denotes a very small perturbation parameter. The perturbation equations are

∇ · v′ = 0, (17)

v′ = −∇ p′ + (1 + ηz)θk, (18)
∂θ

∂t
+ vs · ∇θ + v′ · ∇Ts + v′ · ∇θ = ∇2θ, (19)

and the corresponding boundary conditions are

z = ±1

2
: w′ = θ = 0. (20)

Eq. (20) represents zero perturbations on the velocity, temperature at the lower and upper
plates.

3 Linear Stability Analysis

In order to perform the linear stability analysis, the products of perturbations are neglected in
the system (17)–(19). The resultant linearized perturbation equations are subjected to small
wave-like perturbations in the form

(u′, v′, w′, θ, p′) = (u(z), v(z), w(z), θ(z), p(z)) exp i(kx + ly − σ t). (21)

where i = √−1, k, and l are wave numbers in x and y directions, respectively, and σ is
a complex growth rate parameter. On substituting Eq. (21) and eliminating u(z), v(z), and
p(z), the corresponding eigenvalue problem is derived as follows
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(D2 − α2)w + α2(1 + ηz)θ = 0, (22)

(D2 − α2 + iσ − ikus)θ + i
kRx

α2 Dw − DTsw − QvDθ = 0, (23)

z = ±1

2
: w = θ = 0. (24)

where D = d/dz and α = √
k2 + l2 is the overall wave number. In this study, k = 0

referred to as a longitudinal mode and l = 0 as a transverse mode. The system of Eqs. (22)–
(24) constitutes an eigenvalue problem for vertical thermal Rayleigh number Rz and in this
problem Rz appears through the term DTs.

4 Nonlinear Stability Analysis

While carrying out the nonlinear energy stability analysis with considering all perturbations,
an energy functional is defined as

E(t) = ξ

2
‖θ‖2 , (25)

where ξ is a coupling parameter. On multiplying Eq. (18) by v′, Eq. (19) by θ and integrating
over V by using boundary conditions and Gauss divergence theorem, the following equations
are yielded

∥∥v′∥∥2 = <(1 + ηz)θw′>, (26)

1

2

d

dt
‖θ‖2 = −‖∇θ‖2 − < (v′ · ∇Ts)θ>. (27)

where V indicates periodicity cell,<.> denotes integration overV, and ‖.‖ denotes the L2(V )

norm. The Eqs. (26)–(27) along with Eq. (25) can be written as

dE

dt
= I − D, (28)

where

I = < (1 + ηz)θw′ > −ξ<(v′ · ∇Ts)θ>, (29)

D = ξ ‖∇θ‖2 + ∥∥v′∥∥2 . (30)

Therefore,

dE

dt
= D

(
I

D
− 1

)

≤ −D

(
1 − max

H

I

D

)
. (31)

where H is a set of all admissible solutions over which it is looked for maximum, further
H= (v′, θ) ∈ L2(V ): ∇.v′ = 0, v′ = θ = 0 at z = ± 1

2 . Eq. (28) becomes the following
maximization problem

m = max
H

I

D
, (32)
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Eq. (31) becomes

dE

dt
≤ −D(1 − m),

By using Poincare inequality π2 ‖θ‖2 ≤ ‖∇θ‖2, from Eq. (31), the following inequality is
arrived.

dE

dt
≤ −2π2(1 − m)E, (33)

By integrating above equation, and 0 < m < 1,

E(t) ≤ e−2π2(1−m)t E(0). (34)

Inequality (34) shows E(t) → 0 exponentially as t → ∞ for 0 < m < 1. In Eq. (32),
assuming the critical argument m = 1. Then the maximization problem becomes

δ I − mδD = 0. (35)

The associated Euler–Lagrange equations are

(1 + ηz)θk − ξ∇Tsθ − 2v′ = ∇λ, (36)

(1 + ηz)w′ − ξ(v′ · ∇Ts) + 2ξ∇2θ = 0, (37)

where λ is a Lagrange multiplier which is introduced because v′ is solenoidal. By applying
curlcurl to Eq. (36) and taking third component of resulting equation, the following equation
is obtained.

ξDTs∇1
2θ − (1 + ηz)∇1

2θ + 2∇1
2w′ − 2

∂

∂z

(
∂u′

∂x
+ ∂v′

∂y

)
+ ξ Rx

∂2θ

∂x∂z
= 0, (38)

where

∇1
2 = ∂2

∂x2
+ ∂2

∂y2
.

Now employing the normal modes (21) to Eqs. (37) and (38) and eliminating the variables
u, v and λ, we arrived at the following equations.

(
D2 − α2) w + 1

2
(1 + ηz)α2θ + ikξ

2
Rx Dθ − ξα2

2
DTsθ = 0, (39)

(
D2 − α2) θ + 1

2ξ
(1 + ηz)w + ξ

4
Rx

2θ − 1

2
DTsw = 0, (40)

z = ±1

2
: w = θ = 0. (41)

Eqautions (39)–(41) forms an eigenvalue problem for Rz .

5 Results and Discussion

We look for numerical solution of eigenvalue problems (22)–(24) and (39)–(41) for linear
and nonlinear cases, respectively, and Rz treated as eigenvalue. Eigenvalue Rz is found for
given a set of input parameters α, Pe, Qv, Rx , η. In order to solve the eigenvalue problems,
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Table 1 Comparison between Nield (1998), present linear theories; Kaloni and Qiao (1997) and present
nonlinear theories

Rx = 0 Rx = 10 Rx = 20 Rx = 30 Rx = 40

Qv = 0

Nield 39.48 42.01 49.56 62.01 79.02

Present 39.4784 42.0076 49.5486 61.9567 78.9662

Kaloni 39.4784 40.7235 44.2151 49.3234 55.2825

Present 39.4783 40.7234 44.2092 49.1855 53.6194

Qv = 1

Nield 40.88 43.40 50.94 63.34 80.31

Present 40.87501 43.40333 50.9402 63.3359 80.3161

Qv = 2

Nield 45.08 47.60 55.13 67.49 84.38

Present 45.0775 47.6031 55.1272 67.4862 84.3799

Qv = 3

Nield 52.07 54.58 62.08 74.38 91.12

Present 52.0684 54.5881 62.0877 74.3813 91.1274

Qv = 4

Nield 61.67 64.16 71.61 83.78 100.3

Present 61.66631 64.1709 71.6160 83.7856 100.278

shooting and Runge–Kutta methods are employed as given in Barletta et al. (2010). Critical
Rayleigh number for both linear and nonlinear theories is as follows

RL = min
k

min
l

Rz(k, l, Rx , η, Qv, Pe),

RE = max
ξ

min
k

min
l

Rz(k, l, Rx , η, Qv, Pe, ξ).

Here ξ is chosen optimally as given in Kaloni and Qiao (2000). In this discussion, the
response of critical vertical thermal Rayleigh numbers RL and RE is examined for various
parameters in the case of stationary longitudinal modes (σ = 0, k = 0) because these are the
only preferredmodes observed byNield (1991). In the absence of variable gravity (η = 0), the
linear theory in the present problem reduces to the problem solved by Nield (1998). Table 1
a shows good agreement between Nield (1998) and the present linear theories. And also,
in the absence of variable gravity, vertical throughflow (η = 0, Qv = 0), present nonlinear
theory, leads to the problem in Kaloni and Qiao (1997), and this comparison is shown in
Table 1. Throughout discussion, dashed lines represent the linear stability theory and solid
lines represent nonlinear stability theory.

Figure 2 shows the plot of critical vertical thermal Rayleigh numbers RL and RE versus
vertical Peclet number Qv for Pe = 0 and Rx = 0. The effect of variable- gravity parameter
is displayed by comparison between η = 0, 1. When Qv > 0 (upwardflow), the porous layer
experiences hot fluid input, and hence global temperature increases. When Qv < 0 (down-
wardflow), cold fluid enters which results in the decrease in global temperature. RL and RE

are minimum at Qv = 0, and increases in the right and left of Qv = 0. Increasing through-
flow in both directions results in stabilizing the flow. Vertical throughflow gives a temperature
distribution in which gradients are significant only in the sublayer of thickness ε. Effective

123



464 N. Deepika, P. A. L. Narayana

Fig. 2 Plot of RL and RE versus Qv for Pe = 0, Rx = 0. Dashed lines are for linear theory and solid lines
are for nonlinear theory

Rayleigh number is based on thickness of sublayer instead of the height of the porous layer H .
So the bulk convection is confined to this sublayer only. Critical Rayleigh number depends
on the order H/ε. As vertical throughflow increases, critical Rayleigh number increases.
Hence, stabilization takes place. The plot for η = 0 is symmetric about Qv = 0, and this
symmetry breaks down when variable gravity is considered. For Qv < 0 (downwardflow),
flow with η = 1 is more stable than with η = 0, and for Qv > 0 (upwardflow) flow with
η = 0 is more stable than with η = 1. It is observed that linear and energy theories give
very good agreement on critical Rayleigh numbers in absence of Qv. But as Qv changes in
both directions, the difference between the two thresholds is widened. The linear threshold
is always higher than the energy threshold. This gap is referred to as subcritical region.

Figure 3 depicts the behavior of RL and RE versus horizontal Peclet number Pe for
Rx = 0, Qv = 0 and η = 0, 1. In the absence of variable gravity (η = 0), direction of
horizontal mass flow (the sign of Pe) has no effect on the critical Rayleigh numbers RL and
RE, which means that graphs of RL and RE are symmetric about Pe = 0. But this symmetry
breaks down as soon as η is introduced. Critical values RL and RE are increasing as Pe
increasing from−20 to 0, but these critical values are decreasing as Pe increases from 0–20.
For fixed η, it is noted that RL in linear theory is higher than the RE in energy theory. For
Pe < 0, flow with η = 0 is more unstable than that with η = 1. For Pe > 0, flow with
η = 1 is more unstable than that with η = 0.

Figure 4a, b shows the plots of RL and RE versus horizontal thermal Rayleigh number
Rx for Pe = 0 and Qv = 1,−1. The effect of variable gravity parameter is shown by the
comparison between η = 0, 1. Increasing horizontal thermal Rayleigh number stabilizes the
convection pattern in the medium. The behavior of critical Rayleigh numbers is same for
Qv = 1 and Qv = −1. In Fig. 4a, flow with η = 0 is more stable than that with η = 1,
whereas in Fig. 4b, reverse situation is observed.

Figure 5a, b represents variation of RL and RE against horizontal thermal Rayleigh number
Rx for Qv = 0, η = 0, 1, Pe = 5, and Pe = −5 . When Rx > 0 and Pe > 0, basic
temperature of fluid decreases in the average basic flow direction and when Rx > 0 and
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Fig. 3 Graph of RL and RE versus Pe for Rx = 0, Qv = 0.Dashed lines are for linear theory and solid lines
are for nonlinear theory

Fig. 4 Variation of RL and RE versus Rx for Pe = 0. Dashed lines are for linear theory and solid lines are
for nonlinear theory. (a) Qv = 1 (b) Qv = −1

Pe < 0, reverse situation takes place. The behavior of critical vertical thermal Rayleigh
numbers is same in both cases Pe = 5 and Pe = −5. In Fig. 5a, flow with η = 0 more
stable than with η = 1, where as in Fig. 5b, the flow with η = 1 more stable than that with
η = 0. The critical value RL tends to increase with increasing Rx , while RE increases up to
certain values of Rx and then decreases.

From Figs. 4a, b, 5a, b, it is observed that for small values of Rx , both the linear and
nonlinear thresholds have small variation in RL and RE. But this difference between the
linear and nonlinear thresholds is increased with increasing values of Rx . It shows that for
small Rx linear theory results predicts the onset of convection very well but for higher values
of Rx , subcritical instabilities arise before having linear threshold.

Figure 6a, b shows the plots of RL and RE against Rx for Pe = 5, Qv = 1 and Qv = −1.
In the presence of both vertical and horizontal Peclet numbers Qv and Pe, the behavior of
critical Rayleigh numbers is different with respect to Rx . In Fig. 6a when Qv = 1, the flow
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Fig. 5 Plot of RL and RE versus Rx for Qv = 0. Dashed lines are for linear theory and solid lines are for
nonlinear theory. a Pe = 5. b Pe = −5

Fig. 6 Graph of RL and RE versus Rx . Dashed lines are for linear theory and solid lines are for nonlinear
theory. a Pe=5, Qv =1. b Pe=5, Qv =−1

with η = 0 is more stable than that with η = 1. In Fig. 6b when Qv = −1, a different
response for RL is observed with η. RL in the presence of η is higher than the RL in the
absence of η, for small values of Rx , and this trend is reversed after certain values of Rx .
Similar kind of observation is made for energy threshold. In the energy case, after certain
values of Rx , the RE decreases with Rx .

Figure 7 shows the response of RL and RE versus the variable gravity parameter η for
Qv = 0, 1, Pe = −10, 10. RL and RE are decreases as η increases. The value of critical
vertical thermal Rayleigh numbers RL and RE is same when Pe = 10, Pe = −10 for a
particular value of Qv. In both the linear and nonlinear cases, for small values of η, the flow
with Qv = 0 is more unstable than the flow with Qv = 1, but for sufficiently large values of
η, the situation is reversed.

For both linear and energy stability results, it is commonly observed that linear stability
results overshoot the nonlinear stability results. This is due to the reason that the nonlinear
perturbations are neglected in the linear theory, and hence linear theory alone cannot define
the complete picture of the stability. The linear stability theory gives instability boundary,
whereas the nonlinear stability theory gives stability boundary. The subcritical instabilities
arise in between both the boundaries. There is a great chance of having subcritical instabilities
in the parameter space where linear stability results and energy stability results differ.
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Fig. 7 Variation of RL and RE versus η for Rx = 0, Pe = −10, 10, Qv = 0, 1. Dashed lines are for linear
theory and solid lines are for nonlinear theory

6 Conclusion

The linear and nonlinear stability analyses of Hadley–Prats flow in a porous layer induced
by horizontal temperature gradients are carried out by taking variable gravity and vertical
throughflow into account. The eigenvalue problems are numerically integrated using shooting
and Runge–Kutta methods by treating Rz as an eigenvalue. Critical thermal Rayleigh number
is defined as the minimum of all Rz as wave number α varies.

In the absence of variable gravity effect, both the vertical Peclet number Qv and horizontal
Peclet number Pe have symmetric nature. For some values of Peclet numbers and variable
gravity parameter η, the gap between the linear and nonlinear stability boundaries increases
as Rx increases. The pattern of stability curves with respect to Rx is same irrespective of
sign of Peclet number when the other Peclet number is absent. If both the Peclet numbers
are present, the pattern of the stability curve differs.
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