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Abstract The effect of local thermal non-equilibrium on the onset of double-diffusive con-
vection in a porous medium consisting of two horizontal layers, each internally heated,
is studied analytically. Linear stability theory is applied. Variations of permeability, fluid
thermal conductivity, solid thermal conductivity, heat source strength in the solid and fluid
phases, concentration source strength, interphase heat transfer coefficient and porosity are
considered. In addition to the major effects from heterogeneity of permeability, fluid thermal
conductivity and heat source strength in the fluid phase as with single-diffusive convection,
it is now found that major effects arise from heterogeneity of solutal source strength and
porosity. We used two different methods to obtain our results. Analytical results that read-
ily show the effects of parameter variations were obtained by using a low-term Galerkin
approximation, which was validated by using a highly accurate numerical solver. Since for a
problem with large number of parameters simple analytical results are highly desirable, the
quantification of the accuracy of a low-term Galerkin approximation presented in our paper
is quite important.
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List of symbols

a Dimensionless horizontal wavenumber
C Dimensionless concentration, (ρc)fρ0gβCK1H

μkf1
(C∗ − C0)

C∗ Solute concentration
C0 Solute concentration at each of the upper and lower boundaries
D d/dz
DC Solutal diffusivity
h Interface heat transfer coefficient (incorporating the specific surface area)

between the fluid and solid particles
ĥ Parameter defined in Eq. (18)
hr Interface heat transfer coefficient ratio, h2/h1
g Gravitational acceleration
g Gravitational acceleration vector
H Dimensional layer depth
k Thermal conductivity
kf Thermal conductivity of the fluid phase
k̂f Parameter defined in Eq. (18)
kfr Fluid thermal conductivity ratio, kf2/kf1
ks Thermal conductivity of the solid phase
k̂s Parameter defined in Eq. (18)
ksr Solid thermal conductivity ratio, ks2/ks1
K Permeability of the porous medium
Kr Permeability ratio, K2/K1

K̂ Parameter defined in Eq. (18)
Le Lewis number, kf1

(ρc)fDC

N Interface heat transfer parameter, h1H2

φ1kf1

P Dimensionless pressure, (ρc)fK1
μkf1

P∗
P∗ Pressure, excess over hydrostatic
Q Volumetric heat source strength
QC Volumetric solute source strength
Q̂C Parameter defined in Eq. (18)
QCr Solute source ratio, QC2/QC1

Q̂f Parameter defined in Eq. (18)
Qfr Heat source ratio in the fluid phase, Qf2/Qf1

Q̂s Parameter defined in Eq. (18)
Qsr Heat source ratio in the solid phase, Qs2/Qs1

Ra Internal thermal Rayleigh number, (ρc)fρ0gβK1H3Qf1

2μk2f1

RaC Internal solutal Rayleigh number, (ρc)fρ0gβCK1H3QC1
2μkf1DC

Raeff Effective combined Rayleigh number defined in Eq. (63)
t Dimensionless time, kf1

(ρc)fH2 t
∗

t∗ Time
T Dimensionless temperature, (ρc)fρ0gβK1H

μkf1
(T ∗ − T0)
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T ∗ Temperature
T0 Temperature at each of the upper and lower boundaries
(u, v, w) Dimensionless velocity components, (ρc)fH

kf1
(u∗, v∗, w∗)

u∗ Darcy velocity, (u∗, v∗, w∗)
(x, y, z) DimensionlessCartesian coordinates, (x∗, y∗, z∗)/H ; z is the vertically upward

coordinate
(x∗, y∗, z∗) Cartesian coordinates; z∗ is the vertically upward coordinate

Greek symbols

α Modified thermal diffusivity ratio, (ρc)s1
(ρc)f1

kf1
ks1

β Thermal expansion coefficient of the fluid
βC Solutal expansion coefficient of the fluid
γ Modified thermal conductivity ratio, φ1kf1

(1−φ1)ks1
δ Dimensionless layer depth ratio (interface position)
δ̂ Parameter defined in Eq. (18)
δr Inverse solid fraction ratio, 1−φ1

1−φ2

ε̂ Parameter defined in Eq. (18)
εr Solid heat capacity ratio, (ρc)s2

(ρc)s1
μ Viscosity of the fluid
ρ0 Fluid density at temperature T0
ρf Fluid density
(ρc)f Heat capacity of the fluid
(ρc)s Heat capacity of the solid
φ Porosity
φ̂ Parameter defined in Eq. (18)
φr Porosity ratio, φ2/φ1

Subscripts

B Basic state
f Fluid phase
r Relative quantity
s Solid phase
1 The region 0 ≤ z∗ < δH
2 The region δH ≤ z∗ ≤ H

Superscripts
′ Perturbation variable
* Dimensional variable

1 Introduction

Recently the present authors have been sorting out the important interactions between the
effects of various agencies that remove the symmetry (about the mid-plane) in the onset of
convection in a horizontal layer occupied by a porousmediumwith symmetric boundary con-
ditions. These agencies include vertical heterogeneity and vertical throughflow. The situation
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396 A. V. Kuznetsov et al.

is complicated when there is local thermal non-equilibrium (LTNE, see Patil and Rees 2013)
because thenheterogeneity of the interphase heat transfer is involved, throughflowoccurs only
in the fluid phase, and the heterogeneity of each of fluid conductivity and solid conductivity
are pertinent. A further complication occurs in the double-diffusive situation because convec-
tion of a solute can occur only in the fluid phase. The effects of heterogeneity (with a layered
medium) and LTNE diffusion (but not throughflow) were studied by Nield and Kuznetsov
(2013) for the double-diffusive case. In each case, the medium was heated from below.

In the present paper, the study in Nield and Kuznetsov (2014) is repeated, but now for the
case of internal heating rather than bottom heating. With internal heating, the basic vertical
temperature gradient changes sign, from positive in the lower part of the domain to negative in
the upper part, and as a result most of the convection, when it occurs, takes place in the upper
part. Thus vertical heterogeneity now plays a greater role. The present paper is an extension,
to the case of double diffusion, of the work by Kuznetsov and Nield (2014). Besides having
a uniform volumetric heat source, we now have a uniform volumetric solute source. As far
as we are aware, this combination has not been studied previously, even in the case of a
homogeneous medium with LTE. A new internal solutal Rayleigh number is introduced.

Possible applications include a situation where the fluid and/or the solid is radioactive,
and one in which there is solute deposition.

The authors have written a companion paper for the case of bottom heating (Nield et al.
2015). For completeness we cite twomore of our papers on closely connected topics. In these
only single diffusion is involved and bottom heating rather than internal heating is discussed,
but other extensions are made. In Kuznetsov and Nield (2015) and Nield and Kuznetsov
(2014), the effect of vertical throughflow is included. In the latter, the effect of heterogeneity
is added to the mix.

The following analysis is closely similar to that in our previous papers, and so, the pre-
sentation has been shortened where that is possible.

2 Analysis

2.1 General Equations

Asterisks are used to denote dimensional variables. The z∗-axis is taken in the upward vertical
direction, and the porous medium is unbounded in the x∗ and y∗ directions. Subscripts 1 and
2 are used to denote the two layers, of depths δH and (1−δ)H , where δ is less than unity. The
first occupies the region 0 ≤ z∗ < δH , and the second occupies the region δH ≤ z∗ ≤ H .
A uniform temperature T0 and a uniform concentration C0 are imposed at each of the upper
and lower boundaries.

The Oberbeck–Boussinesq approximation is invoked. The equations representing the con-
servation of mass, Darcy’s law, and the conservation of thermal energy for each phase, and
the conservation of solute, take the form

∇∗ · u∗ = 0, (1)

0 = −∇∗P∗ − μ

K
u∗ − ρ0

[
β(T ∗

f − T0) + βC(C∗
f − C0)

]
g, (2)

φ(ρc)f

[
∂T ∗

f

∂t∗
+ u∗ · ∇∗T ∗

f

]
= φkf∇∗2T ∗

f + h(T ∗
s − T ∗

f ) + φQf , (3)

(1 − φ)(ρc)s
∂T ∗

s

∂t∗
= (1 − φ)ks∇2T ∗

s + h(T ∗
f − T ∗

s ) + (1 − φ)Qs, (4)
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φ
∂C∗

∂t∗
+ u∗ · ∇∗C∗ = φDC∇∗2C∗ + φQC, (5)

where

φ = φ1, K = K1, kf = kf1, ks = ks1, h = h1,

Qf = Qf1, Qs = Qs1, QC = QC1 in 0 ≤ z∗ < δH,

φ = φ2, K = K2, kf = kf2, ks = ks2, h = h2,

Qf = Qf2, Qs = Qs2, QC = QC2 in δH < z∗ ≤ H. (6)

Here the Darcy velocity is denoted by u∗ = (u∗, v∗, w∗), where t∗ is the time, P∗ is the
pressure (excess over hydrostatic), T ∗ is the temperature and C∗ is the solute concentration,
while K is the permeability, φ is the porosity, kf and ks are the thermal conductivities in
the fluid and solid phases, respectively, (ρc)f and (ρc)s are the heat capacities of the fluid
and the solid, respectively, DC is the diffusivity of the solute, μ is the fluid viscosity, ρ0 is
the fluid density at temperature T0, β is the thermal expansion coefficient of the fluid, βC

is the corresponding solutal coefficient, and g is the gravitational acceleration vector. The
standard formulation of Darcy’s law, in which time derivatives are assumed to be negligible,
has been adopted in Eq. (2). Since we consider a situation in which the thermal conductivity
in each phase is piecewise constant, spatial derivatives of kf and ks do not appear in Eqs. (3)
and (4), where the interface heat transfer coefficient (incorporating the specific surface area)
between the fluid and solid particles is denoted by h. The flow is assumed to be slow so that
an advective term and a Forchheimer quadratic drag term do not appear in the momentum
equation. It has been assumed that there are uniform volumetric heat sources (with averages
taken over representative elementary volumes) Q1 and Q2 in the respective layers, and
uniform volumetric solute sources (resulting, for example, from the process of dissolution)
of QC1 and QC2 (assumed to be in the fluid phase in the subsequent analysis) in the respective
layers.

We suppose that the upper and lower boundaries are both impermeable. At the interface
between the two regions, the normal velocity and the pressure are continuous. Thus the
hydrodynamic boundary conditions are

w∗
1 = 0 at z∗ = 0, w∗

2 = 0 at z∗ = H, (7a,b)

w∗
1 = w∗

2 and
1

K1

∂w∗
1

∂z∗
= 1

K2

∂w∗
2

∂z∗
at z∗ = δH. (8a,b)

Equation (8b) expresses the continuity of pressure at the interface, and the momentum equa-
tion has been used to get this form.

We also suppose that the upper and lower boundaries are both perfectly conducting, and
hence, one has local thermal equilibrium there, and also that the concentration is held constant
there. At the interface between the two regions, we assume that the temperature and heat flux
in each phase are continuous (see Nield 2012), and likewise the concentration and solute flux
are continuous. Thus for the thermal boundary conditions we take

T ∗
f = T ∗

s = T0,C
∗ = C0 at z

∗ = 0 and at z∗ = H, (9a,b,c,d,e,f)

T ∗
f1 = T ∗

f2, T
∗
s1 = T ∗

s2,C
∗
1 = C∗

2 ,

kf1
∂T ∗

f1

∂z
= kf2

∂T ∗
f2

∂z∗
, ks1

∂T ∗
s1

∂z∗
= ks2

∂T ∗
s2

∂z∗
, φ1

∂C∗
1

∂z∗
= φ2

∂C∗
2

∂z∗
at z∗ = δH.

(10a,b,c,d,e,f)
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The heat flux solid–fluid interface conditions given by Eq. (10d,e) are not the only ones that
one could impose. Two conditions need to be specified, and the heat flux could be divided
between the two phases in various ways. Alternatives are discussed by Nield (2012). In the
absence of any further information, we believe that the choice which makes the best physical
sense is the one made here.

We introduce dimensionless variables as follows. For simplicity, we chose to scale in
terms of quantities pertaining to region 1. If any adjustments for weighted algebraic mean
quantities are desirable, then these can be made later.

We define

(x, y, z) = 1

H
(x∗, y∗, z∗), t = kf1

(ρc)fH2 t
∗,

(u, v, w) = (ρc)fH

kf1
(u∗, v∗, w∗), P = (ρc)fK1

μkf1
P∗, (11)

Tf1 = (ρc)fρ0gβK1H

μkf1
(T ∗

f1 − T0), Ts1 = (ρc)fρ0gβK1H

μkf1
(T ∗

s1 − T0),

Tf2 = (ρc)fρ0gβK1H

μkf1
(T ∗

f2 − T0), Ts2 = (ρc)fρ0gβK1H

μkf1
(T ∗

s2 − T0),

C1 = (ρc)fρ0gβCK1H

μkf1
(C∗

1 − C0),C2 = (ρc)fρ0gβCK1H

μkf1
(C∗

2 − C0). (12)

Equations (1–5), now written explicitly for the case of two regions, take the form:

∇ · u = 0, (13)

0 = −∇ p − 1

K̂
u + (Tf + C)êz, (14)

∂Tf
∂t

+ u · ∇Tf = k̂f∇2Tf + ĥ

φ̂
N (Ts − Tf ) + 2Q̂f Ra, (15)

ε̂α
∂Ts
∂t

= k̂s∇2Ts + δ̂ĥγ N (Tf − Ts) + 2Q̂sRa, (16)

Le
∂C

∂t
+ Le

φ̂
u · ∇C = ∇2C + 2Q̂CRaC, (17)

where, for 0 ≤ z < δ,

K̂ = 1, k̂f = 1, k̂s = 1, φ̂ = 1, ĥ = 1, δ̂ = 1, ε̂ = 1, Q̂f = 1, Q̂s = 1, Q̂C = 1, (18a)

and, for δ < z ≤ 1,

K̂ = Kr, k̂f = kfr, k̂s = ksr, φ̂ = φr, ĥ = hr,

δ̂ = δr, ε̂ = εr, Q̂f = Qfr, Q̂s = Qsr, Q̂C = QCr, (18b)

where

Kr = K2

K1
, kfr = kf2

kf1
, ksr = ks2

ks1
, φr = φ2

φ1
, hr = h2

h1
,

δr = 1 − φ1

1 − φ2
, εr = (ρc)s2

(ρc)s1
, Qfr = Qf2

Qf1
, Qsr = Qs2

Qs1
, QCr = QC2

QC1
. (19)

We have also defined

Ra = (ρc)fρ0gβK1H3Qf1

2μk2f1
, RaC = (ρc)fρ0gβCK1H3QC1

2μkf1DC
, (20a,b)
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α = (ρc)s1
(ρc)f1

kf1
ks1

, N = h1H2

φ1kf1
, γ = φ1kf1

(1 − φ1)ks1
, Le = kf1

(ρc)fDC
. (21a,b,c,d)

Here N is an interface heat transfer parameter. Vadász (2006) called this type of parameter the
Nield number, citing Nield (1998). The parameters α and γ are modified thermal diffusivity
and thermal conductivity ratios, respectively, and Le is a Lewis number.

The boundary and matching conditions become

w1 = 0, Tf1 = 0, Ts1 = 0,C1 = 0 at z = 0, (22a,b,c)

w2 = 0, Tf2 = 0, Ts2 = 0,C2 = 0 at z = 1, (23a,b,c)

W1 = W2,
∂W1

∂z
= 1

Kr

∂W2

∂z
, Tf1 = Tf2, Ts1 = Ts2,C1 = C2,

∂Tf1
∂z

= kfr
∂Tf2
∂z

,
∂Ts1
∂z

= ksr
∂Ts2
∂z

,
∂C1

∂z
= φr

∂C2

∂z
at z = δ.

(24a,b,c,d,e,f,g,h)

2.2 Basic Solution

We seek a time-independent quiescent solution of Eqs. (13–17) with temperatures and con-
centration varying in the z-direction only, that is a solution of the form

u = 0, P = PB(z), Tf = TfB(z), Ts = TsB(z),C = CB(z), (25)

subject to the boundary and initial conditions (22–24). Equations (14–17) reduce to

0 = −dPB
dz

+ TfB + CB, (26)

k̂f
d2TfB
dz2

+ ĥ

φ̂
N (TsB − TfB) + 2Q̂f Ra = 0, (27)

k̂s
d2TsB
dz2

+ δ̂ĥγ N (TfB − TsB) + 2Q̂sRa = 0, (28)

d2C

dz2
+ 2Q̂CRaC = 0. (29)

We now write these equations explicitly for the two regions.
Equations (27–29) in explicit form are

d2TfB1
dz2

+ N (TsB1 − TfB1) + 2Ra = 0, (30a)

d2TsB1
dz2

+ γ N (TfB1 − TsB1) + 2Ra = 0, (30b)

d2C1

dz2
+ 2RaC = 0, (30c)

kfr
d2TfB2
dz2

+ hr
φr

N (TsB2 − TfB2) + 2QfrRa = 0, (30d)

ksr
d2TsB2
dz2

+ δrhrγ N (TfB2 − TsB2) + 2QsrRa = 0, (30e)

d2C2

dz2
+ 2QCrRaC = 0. (30f)
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400 A. V. Kuznetsov et al.

These equations must be solved subject to the boundary and interface conditions

TfB1(0) = 0, TsB1(0) = 0,CB1(0) = 0, (31a,b,c)

TfB2(1) = 0, TsB2(1) = 0,CB2(1) = 0, (31d,e,f)

TfB1(δ) = TfB2(δ), TsB1(δ) = TsB2 (δ) ,CB1(δ) = CB2(δ), (31g,h,i)

dTfB1
dz

(δ) = kfr
dTfB2
dz

(δ),
dTsB1
dz

(δ) = ksr
dTsB2
dz

(δ),
dCB1

dz
(δ) = φr

dCB2

dz
(δ).

(31j,k,l)

The solutal equations are decoupled from the thermal equations and have the solution

CB1 = RaC

{[
φrQCr

[
1 + (2φr − 1)δ2

] − φrδ
2

1 + (φr − 1)δ
+ 2δ(1 − φrQCr)

]

z − z2
}

, (32a)

CB2 = RaC

{[
QCr

[
1 + (2φr − 1)δ2

] − δ2

1 + (φr − 1)δ

]

(z − 1) + QCr
(
1 − z2

)
}

. (32b)

The solution to the differential thermal equation system in the general case is too complicated
to present here. This system has been studied by Nield and Kuznetsov (2014), who showed
that weak LTNE did not change the basic solution significantly from the LTE solution,

TfB1 = Ra

{[
Qfr

[
1 + (2kfr − 1)δ2

] − kfrδ2

1 + (kfr − 1)δ
+ 2δ(1 − Qfr)

]

z − z2
}

, (33a)

TsB1 = Ra

{[
Qsr

[
1 + (2ksr − 1)δ2

] − ksrδ2

1 + (ksr − 1)δ
+ 2δ(1 − Qsr)

]

z − z2
}

, (33b)

TfB2 = Ra

{[
Qfr

[
1 + (2kfr − 1)δ2

] − kfrδ2

kfr [1 + (kfr − 1)δ]

]

(z − 1) + Qfr

kfr

(
1 − z2

)
}

, (33c)

TsB2 = Ra

{[
Qsr

[
1 + (2ksr − 1)δ2

] − ksrδ2

ksr [1 + (ksr − 1)δ]

]

(z − 1) + Qsr

ksr

(
1 − z2

)
}

. (33d)

Of particular interest for the stability problem is the distribution of the negative basic temper-
ature gradient in the fluid phase, which we denote by F(z) and which is given by the linear
expression Ra(2z − 1) in a homogeneous medium with uniform heating. From Eqs. (33a,c)
we have

F1(z) ≡ Ra f1(z) = Ra

{

2z − Qfr
[
1 + (2kfr − 1)δ2

] − kfrδ2

1 + (kfr − 1)δ
− 2δ(1 − Qfr)

}

, (34a)

F2(z) ≡ Ra f2(z) = Ra

{
2Qfr

kfr
z − Qfr

[
1 + (2kfr − 1)δ2

] − kfrδ2

kfr [1 + (kfr − 1)δ]

}

. (34b)

123



Local Thermal Non-equilibrium and Heterogeneity Effects... 401

Likewise the negative basic solutal gradient is G(z) where

G1(z) ≡ RaCg1(z) = RaC

{

2z − φrQCr
[
1 + (2φr − 1)δ2

] − φrδ
2

1 + (φr − 1)δ
− 2δ(1 − φrQCr)

}

,

(35a)

G2(z) ≡ RaCg2(z) = RaC

{

2QCrz − QCr
[
1 + (2φr − 1)δ2

] − δ2

1 + (φr − 1)δ

}

. (35b)

2.3 Perturbation Equations

We now superimpose perturbations on the basic solution. We write

u = u′, p = pB + p′, Tf = TfB + T ′
f , Ts = TsB + T ′

s ,C = CB + C ′, (36)

substitute in Eqs. (13–17), and linearize by neglecting products of primed quantities. The
following equations are obtained:

∇ · u′ = 0, (37)

0 = −∇ p′ − 1
K̂
u′ + (T ′

f + C ′)êz, (38)

∂T ′
f

∂t + dTBf
dz w′ = k̂f∇2T ′

f + ĥ
φ̂
N (T ′

s − T ′
f ), (39)

ε̂α
∂T ′

s
∂t = k̂s∇2T ′

s + δ̂ĥγ N (T ′
f − T ′

s ), (40)

Le ∂C ′
∂t + Le

φ̂

dCB
dz w′ = ∇2C ′, (41)

w′ = 0, T ′
f = 0, T ′

s = 0,C ′ = 0 at z = 0 and at z = 1. (42)

The reader will note that, since there is no convection in the solid phase, the basic temperature
gradient in the solid phase is not involved in the instability problem.

The seven unknowns u′, v′, w′, p′, T ′
f , T

′
s ,C

′ can be reduced to four by operating on
Eq. (38) with êz · curl curl and using the operator identity curl curl ≡ grad div − ∇2 and
Eq. (37). The result is

∇2w′ = K̂∇2
H (T ′

f + C ′). (43)

Here ∇2
H is the two-dimensional Laplacian operator on the horizontal plane.

The boundary and interface conditions are

w′
1 = 0, T ′

f1 = 0, T ′
s1 = 0,C ′

1 = 0 at z = 0, (44a,b,c,d)

w′
2 = 0, T ′

f2 = 0, T ′
s2 = 0,C ′

2 = 0 at z = 1, (45a,b,c,d)

W ′
1 = W ′

2,
∂W ′

1

∂z
= 1

Kr

∂W ′
2

∂z
, T ′

f1 = T ′
f2, T

′
s1 = T ′

s2,C
′
1 = C ′

2,

∂T ′
f1

∂z
= kfr

∂T ′
f2

∂z
,
∂T ′

s1

∂z
= ksr

∂T ′
s2

∂z
,
∂C ′

1

∂z
= φr

∂C ′
2

∂z
at z = δ.

(46a,b,c,d,e,f,g,h)

The differential equations (43), (39–41) and the boundary and interface conditions (44–46)
constitute a linear boundary-value problem that can be solved using the method of normal
modes. We write

(w′, T ′
f , T

′
s ,C

′) = [W (z),
f (z),
s(z), �(z)] exp(st + ilx + imy), (47)
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402 A. V. Kuznetsov et al.

and substitute into the differential equations to obtain

(D2 − a2)W + K̂ a2
f + K̂ a2� = 0, (48)

−dT fB

dz
W +

(

k̂f (D
2 − a2) − s − ĥ

φ̂
N

)


f + ĥ

φ̂
N
s = 0, (49)

δ̂ĥγ N
f +
[
k̂s(D2 − a2) − ε̂αs − δ̂ĥγ N

]

s = 0, (50)

−dCB

dz
W +

[
φ̂

Le

(
D2 − a2

) − φ̂s

]

� = 0, (51)

where

D ≡ d

dz
and a = (l2 + m2)1/2. (52)

Thus a is a dimensionless horizontal wavenumber.
The boundary and interface conditions are

W1 = 0,
f1 = 0,
s1 = 0, �1 = 0 at z = 0, (53a,b,c,d)

W2 = 0,
f2 = 0,
s2 = 0, �2 = 0 at z = 1, (54a,b,c,d)

W1 = W2, (1/K1)DW1 = (1/K2)DW2,
f1 = 
f2,
s1 = 
s2, �1 = �2,

kf1D
f1 = kf2D
f2, ks1D
s1 = ks2D
s2, φ1D�1 = φ2D�2 at z = δ.

(55a,b,c,d,e,f,g,h)

For neutral stability the real part of s is zero. Hence we write s = iω, where ω is real and is a
dimensionless frequency. Our main objective is to investigate the relative importance of the
various heterogeneity effects, and we would expect that these effects would be maximized
for the case when the thermal and solutal buoyancy forces aid (rather than oppose) each other,
that is for the non-oscillatory case. For this reason, and also because of the large number of
parameters that are involved,we confine our attention to the case of non-oscillatory instability.
The oscillatory case can be left for future investigation.

Accordingly, we put ω = 0. As a result of this, the parameters ε̂ and α that appear in
Eq. (50) now drop out of the system of differential equations.

We employed a Galerkin-type weighted residuals method to obtain an approximate solu-
tion to the system of Eqs. (48–51), (53–55). This method has been employed extensively
in our previous papers (e.g. Kuznetsov and Nield 2013, 2014, 2015; Nield and Kuznetsov
2014, 2015), and so for brevity the details are omitted here. The idea is to choose trial
functions that satisfy the boundary and interface conditions exactly (in our case low-order
polynomials) and solve the differential equations exactly in an averaged sense, by imposing
the condition that the residuals are orthogonal to the trial functions. The result is a set of
homogeneous equations whose non-trivial solution leads to an eigenvalue equation with Ra
as the eigenvalue. Thus Ra is found in terms of the other parameters.

3 Results and Discussion

Because of the large parameter space, we simplified the analysis. In order to have a tractable
analysis, we employed a second-order Galerkin approximation.We believe that this relatively
severe approximation is acceptable in this work because we are concerned just with sorting
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out the major effects of heterogeneity and LTNE, and hence it is relative changes to, rather
than absolute values of, the critical Rayleigh number that are of interest. The eigenvalue
equation then takes the form of the vanishing of a determinant of order 8. We solved this
numerically to obtain values of Ra.

We recover the homogeneous results whenwe set the heterogeneity ratios [those quantities
defined in Eq. (19)] equal to unity and take one of the limits, either δ tends to zero or δ tends
to 1, N tends to zero, or both N and γ tend to infinity. Also, for our investigation of the
interaction between LTNE and heterogeneity, we may take as typical values δ = 0.5, N = 1,
γ = 1. We also fix Le = 1. This value is taken for illustrative purposes. In practical cases
the value of Le will be greater than unity.

We now confine our attention to some special cases.

3.1 Homogeneity and Local Thermal Equilibrium

In this case we have

TB = Ra(z − z2),CB = RaC(z − z2). (56)

We write


̃ = 


Ra
, �̃ = Le�

RaC
. (57)

Then Eqs. (48–51) become

(
D2 − a2

)
W + a2

(
Ra
̃ + RaC

Le
�̃

)
= 0, (58)

(2z − 1)W + (
D2 − a2

)

̃ = 0, (59)

(2z − 1)W + 1

Le

(
D2 − a2

)
�̃ = 0. (60)

Eliminating 
̃ and �̃ between these equations we get
(
D2 − a2

)2
W + a2 (Ra + RaC) (1 − 2z)W = 0. (61)

Using Eq. (58) we see that the boundary conditions on W are now

W = 0, D2W = 0 at z = 0 and at z = 1. (62)

We observe that we have the same differential equation system as for the single-diffusive
problem, but now the thermal Rayleigh number Ra is replaced by an effective combined
Rayleigh number Raeff defined by

Raeff = Ra + RaC. (63)

The critical Rayleigh number for the thermal problem was found by Kulacki and Ramchan-
dani (1975) to be235.67, obtained at a criticalwavenumber 4.67.Thus for the double-diffusive
case, the critical combined Rayleigh number is 235.67. In other words, the non-oscillatory
stability boundary is

Ra + RaC = 235.67. (64)

In the same way, one can readily show that the oscillatory instability boundary is given by

Le

Le + 1
Ra + 1

Le + 1
RaC = 235.67 (65)
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provided that

Ra + RaC < 235.67. (66)

These results mirror those for the bottom-heated/top-soluted problem given by Eqs. (9.20)
and (9.21) of Nield and Bejan (2013).

3.2 Weak Heterogeneity and Weak Local Thermal Non-equilibrium

For the case

kfr = 1 + εfk, ksr = 1 + εsk, Kr = 1 + εK , Qfr = 1 + εfQ, QCr = 1 + εCQ,

hr = 1 + εh, φr = 1 + εφ, δr = 1 + εδ, (67)

where εfk, εsk, εK , εfQ, εCQ, εh, εφ, εδ , are all small compared with unity and with a fixed at
the value 4.67, we obtained the following approximate expressions for the critical combined
Rayleigh number.

For RaC = 0, δ = 0.1,

Ra + RaC = 251.9 + 422.0εfk + 0.1εsk − 252.4εK − 243.6εfQ
+ 5.5εh − 5.6εφ − 0.1εδ. (68a)

For RaC = 0, δ = 0.5,

Ra + RaC = 251.9 + 275.1εfk + 0.1εsk − 213.5εK − 67.7εfQ
+ 5.0εh − 5.1εφ − 0.1εδ. (68b)

For RaC = 0, δ = 0.9,

Ra + RaC = 251.9 + 18.5εfk + 0.0εsk − 62.5εK + 6.9εfQ
+ 0.2εh − 0.2εφ − 0.0εδ. (68c)

These results are consistent with those obtained by Kuznetsov and Nield (2014) for the
single-diffusive problem.

We also obtained the following results:
For RaC = 100, δ = 0.1,

Ra + RaC = 249.6 + 250.0εfk + 0.1εsk − 252.4εK − 144.7εfQ
+ 3.3εh + 71.3εφ − 0.1εδ − 98.9εCQ. (69a)

For RaC = 100, δ = 0.5,

Ra + RaC = 249.6 + 163.4εfk + 0.1εsk − 213.6εK − 40.2εfQ
+ 3.0εh + 83.0εφ − 0.1εδ − 27.3εCQ. (69b)

For RaC = 100, δ = 0.9,

Ra + RaC = 249.6 + 11.0εfk + 0.0εsk − 62.5εK + 4.1εfQ
+ 0.1εh + 10.5εφ − 0.0εδ + 2.8εCQ. (69c)

We see immediately that weak heterogeneity of the interphase heat transfer coefficient h, the
solid thermal conductivity ks and the volume fraction δ each have little effect on stability.
Accordinglywe can nowconcentrate on the heterogeneity of the remaining quantities, namely
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Table 1 Critical values of the combined Rayleigh number for δ = 0.5, N = 10, γ = 10, Kr = 1, kfr = 1,
ksr = 1, hr = 1, δr = 1, Le = 1, RaC = 100: comparison between the analytical and the numerical solution

Qfr QCr φr Ra + RaC analytical Ra + RaC numerical % Error

1.1 1.1 1.1 251.15 229.24 9.6

1.1 1.1 0.9 234.55 227.71 3.0

1.1 0.9 1.1 256.61 243.44 5.4

1.1 0.9 0.9 240.01 241.30 0.5

0.9 1.1 1.1 259.19 248.48 4.3

0.9 1.1 0.9 242.59 246.74 1.7

0.9 0.9 1.1 264.65 264.48 0.0

0.9 0.9 0.9 248.05 262.02 5.3

the fluid thermal conductivity, the permeability, the source strength in the fluid phase, the
porosity and the concentration source strength.

Comparison of Eqs. (69a–c) with (68a–c) shows that the constant and the permeabil-
ity coefficient are little altered, as one would expect. When the solutal Rayleigh number
is increased, the fluid conductivity and the fluid-phase heat-source-strength coefficients are
reduced in magnitude and the porosity coefficient is increased. Also, of course, the hetero-
geneity of concentration source strength becomes effective.

Further, from the signs of the coefficients in Eqs. (68a–c) and (69a–c), we make the
following conclusions. An increase in permeability in the upwards direction is destabilizing,
while an increase in fluid thermal conductivity in the upwards direction is stabilizing. An
increase in the upward direction of the heat source strength in the fluid phase is generally
destabilizing. These trends, noted by Kuznetsov and Nield (2014), are in agreement with our
expectation. With internal heating, the basic temperature gradient is positive in the upper
portion of the domain, and so anything that aids the onset of convection in the upper portion
is expected to be destabilizing. We also see that an increase in the upward direction of the
concentration source strength is generally destabilizing.

A validation of the correlations expressed by Eqs. (68a–c) and (69a–c) is provided by a
comparison with the results obtained by using a fully numerical solution of Eqs. (48–55).
Numerical results with a high accuracy have been obtained by means of a Runge–Kutta
solver coupled with the shooting method. This numerical procedure has been performed
by employing the software package Mathematica 10 (© Wolfram Research, Champaign,
IL). More details on this method can be found in the literature as, for example, Straughan
(2008), Rees and Bassom (2000) and Barletta and Storesletten (2011). Table 1 reveals that
the discrepancy is smaller than 10%. Higher discrepancies are found when the heterogeneity
parameters become higher. For this reason, the analysis for strong heterogeneity performed
in the next section was carried out numerically by employing the highly accurate numerical
solver. The initial guess for the shooting method was generated by the second-order weighted
residuals solution described at the beginning of this section.

3.3 Strong Heterogeneity

We consider the case of layers of equal thickness (δ = 0.5), where the variation of each
heterogeneity parameter is doubled or halved, and with the LTNE values set at N = 1, γ = 1
and with Le = 1. Since our weak heterogeneity results have shown that variation in ks, h or δ
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Table 2 Critical values of the
combined Rayleigh number and
the corresponding wavenumber
for various ratios of the heat
source strength in the fluid phase,
concentration source strength and
porosity. Case δ = 0.5, N = 1,
γ = 1, Kr = 1, kfr = 1, ksr = 1,
hr = 1, δr = 1, Le=1,
RaC = 100

Qfr QCr φr Analytical (initial guess) Numerical

Ra + RaC ac Ra + RaC ac

0.5 0.5 0.5 194 4.38 334.8 5.17

0.5 0.5 1 283 4.26 351.5 5.28

0.5 0.5 2 331 4.22 366.2 5.35

0.5 1 0.5 185 4.58 298.5 4.92

0.5 1 1 271 4.39 306.4 5.05

0.5 1 2 321 4.31 313.5 5.17

0.5 2 0.5 159 4.92 208.6 4.32

0.5 2 1 241 4.62 202.5 4.52

0.5 2 2 297 4.45 198.4 4.76

1 0.5 0.5 184 4.50 261.1 4.83

1 0.5 1 263 4.47 273.0 4.90

1 0.5 2 305 4.47 283.6 4.93

1 1 0.5 174 4.67 232.7 4.62

1 1 1 250 4.57 238.7 4.72

1 1 2 294 4.52 244.5 4.82

1 2 0.5 150 4.97 166.6 4.15

1 2 1 221 4.73 164.2 4.34

1 2 2 270 4.61 163.1 4.58

2 0.5 0.5 167 4.65 195.8 4.55

2 0.5 1 228 4.70 202.6 4.56

2 0.5 2 260 4.74 208.5 4.55

2 1 0.5 158 4.79 177.3 4.38

2 1 1 216 4.76 180.8 4.45

2 1 2 250 4.76 184.4 4.51

2 2 0.5 138 5.03 136.7 4.03

2 2 1 193 4.86 135.8 4.21

2 2 2 230 4.79 135.9 4.44

is not important, we have set ksr = 1, hr = 1, δr = 1 for our subsequent calculations. Further,
since the effects of heterogeneity of K and kf are already well understood (see Kuznetsov
and Nield 2014), we also set Kr = 1, kfr = 1. This leaves us with the heterogeneity of Qf ,
QC and φ to be examined in more detail. We obtained the results presented in Table 2.

These results show that, in moving from region 1 to region 2, increase in φ is stabilizing
(increasing the critical Rayleigh number), while increase in any of Qf or QC is destabilizing
(decreasing the critical Rayleigh number). The effect of heterogeneity ofφ is substantialwhen
double diffusion comes into play. These trends are in accord with those obtained for weak
heterogeneity. The source effects are in accord with our expectation. A more intense heat
or concentration source in the upper region (where the vertical basic temperature gradient is
negative) aids the onset of convection. The effect of porosity heterogeneity is more subtle and
the trend was not anticipated. It appears to be a consequence of the fact that the convective
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Fig. 1 Plots of the critical
combined Rayleigh number
Ra + RaC (a) and the critical
wavenumber ac (b) versus fluid
heat source strength ratio Qfr for
various values of the porosity
ratio φr . Case δ = 0.5, N = 1,
γ = 1, Kr = 1, kfr = 1, ksr = 1,
hr = 1, δr = 1, Le=1, QCr = 1,
RaC = 100

Fig. 2 Plots of the critical
combined Rayleigh number
Ra + RaC (a) and the critical
wavenumber ac (b) versus
concentration source strength
ratio QCr for various values of
the porosity ratio φr . Case
δ = 0.5, N = 1, γ = 1, Kr = 1,
kfr = 1, ksr = 1, hr = 1, δr = 1,
Le = 1, Qfr = 1, RaC = 100
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transfer of solute concentration occurs only in the fluid phase. Thus the greater the porosity,
the more the solutal buoyancy effect is weakened by being more spread out.

The critical wavenumber is affected to a lesser degree. Increase in either Qf or QC results
in an increase in that wavenumber, while increase in φ leads to a variable change in the
critical wavenumber.

In Figs. 1 and 2 we have plotted curves showing the variation of the critical combined
Rayleigh number and the corresponding critical wavenumber with the most critical parame-
ters. These show in more accessible format the trends shown in Table 2.

4 Conclusion

We have investigated the interaction between the effects of heterogeneity and local thermal
non-equilibrium on the onset of double-diffusive convection in a porous medium consisting
of two horizontal layers with volumetric heat and solute sources. There is a large parameters
space, and in performing our investigations we found which parameters are important; this
can be crucial for further numerical investigations of this system. We found that, as in the
case of single-diffusive convection, major effects result from heterogeneity of permeability,
fluid thermal conductivity and heat source strength in the fluid phases. With double diffusion
there are additional major effects from the heterogeneity of solutal source strength and the
heterogeneity of porosity (as distinct from heterogeneity of permeability). A lesser effect
results from heterogeneity of the interphase heat transfer coefficient. Heterogeneity of solid
thermal conductivity and heterogeneity of heat source strength in the solid phase are relatively
unimportant. Our results also show in which direction the changes in the effective combined
Rayleigh number will occur and the likely magnitude of those changes.

We remark that further complicationswould arise if one included the effect of throughflow.
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