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Abstract This paper investigates the permeability of microcracked porous solids containing
2D random crack networks. The past works on permeability of crack networks are firstly
reviewed. The geometry analysis is performed on numerical samples of crack networks
with different crack length distributions, crack densities, domain size ratios and clustering
degrees. The parameters from continuum percolation theory are used to characterize the
geometry of random networks including the percolation threshold, the scaling exponents for
percolation probability and correlation length of crack clusters, and the fractal dimension
of spanning clusters. The crack density is used as the basic percolation variable, and a
new connectivity factor is proposed for the cluster spanning in finite domain. Then the
effective permeability of porous matrix containing 2D random crack networks is analyzed
on numerical samples via finite element method. A scaling law for effective permeability
is established near the percolation threshold taking into account the matrix permeability,
crack opening aperture, crack connectivity and tortuosity. The results from geometry analysis
and permeability analysis show that: (1) The new connectivity factor is proved pertinent
to network percolation, related to both crack density and crack clustering degree; (2) the
percolation parameters of uncorrelated crack networks are rather near to the universal values
from the continuum percolation theory, but their values change with the clustering degree
of crack networks; (3) the numerical results confirm the scaling law proposed for effective
permeability, and the permeability is found to scale with the crack opening through a power
law.
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1 Introduction

Permeability of solids is a physical property valued by various engineering applications
(Wong et al. 1984). For engineered materials, the permeability is closely related to its func-
tion and durability (Pan et al. 2010; Loosveldt et al. 2002). For multiphase porous solids,
the permeability depends both on the properties of each phase and on the microstructure
including volume fractions, spatial distribution and geometry of the phases (Torquato 1991).
The presence of cracks, intrinsic or induced by external actions, can greatly facilitate the
flow of fluids and thus alter the permeability of porous solids (Hearn 1999). For quasibrittle
materials like concrete and rocks, the presence of cracks can further trigger the mass trans-
port and exchange between the solid phases and external fluids, deteriorating the long-term
durability of materials (Suzuki et al. 1998; Samaha and Hover 1992). Thus, mastering the
impact of cracks on the permeability of porous solids is fundamental for various engineering
applications.

Relationship between geometry characteristics of crack network in solids and the effec-
tive permeability has attracted great attention over the past decades; the connectivity, length,
density, aperture and orientation of cracks are regarded as control parameters for the per-
meability of cracked porous solids (Lespinasse et al. 2005; Adler et al. 2013). From the
point of view of effective medium theory (EMT), the cracks can be regarded as inclu-
sions with large local permeability in a homogeneous porous matrix (Pouya and Ghabezloo
2010). The homogenization techniques from computational composite theory can help to
solve the permeability of materials having homogeneously distributed cracks in statisti-
cal sense (Guéguen and Dienes 1989). Multiple schemes have been derived from EMT
models: The dilute solution considers cracks to be isolated and embedded in homogeneous
matrix with determined property(Kachanov 1992); the self-consistent approximation ide-
alizes the cracked material as a single crack embedded in a matrix with properties of the
effective medium(Berryman and Hoversten 2012); the differential scheme solves the perme-
ability through an iterative procedure until the cracks attain the desired concentration (Norris
1985). The interaction direct derivative (IDD) scheme (Zheng and Du 2001), a simplified
self-consistent scheme, provides a direct solution for permeability without iteration and has
been applied to the solution of permeability of microcracked solids with low crack density
(Zhou et al. 2011).

The fundamental idea of these EMTmodels is to treat the influence of cracks on fluid flow
in a homogenized way, and these models fail as the local connectivity or clustering of cracks
dominates the flow pattern (Li and Zhang 2011). In the latter case, the representative elemen-
tary volume (REV) loses its meaning for the cracked porous materials and the prediction of
permeability is beyond the reach of EMTmodels. As the theoretical counterpart, the percola-
tion theory provides concepts and methods to quantify the clustering of crack networks and
the effect on the material properties like permeability (Guéguen et al. 1997). The classical
percolation theory is based on lattice concepts and more adapted to solve the properties of
materials with regular crack networks (Wilke et al. 1985), and some efforts have been taken
to idealize the random networks to the equivalent lattices (Hestir and Long 1990; Leung
and Zimmerman 2012). The continuum percolation theory, more recently developed, is more
adapted to the materials with random or less regular crack networks (Somette 1988) and
has been applied to the connectivity analysis of random fractures (Berkowitz 1995) and the
permeability estimate of soils with discrete pore geometry (Berkowitz and Ewing 1998; Hunt
and Ewing 2009). Albeit these developments, the results from percolation theory, continuum-
or lattice-based, are far from enough to provide satisfactory prediction for permeability of
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solids incorporating random crack networks, and the role of such crucial geometry factors
as the connectivity and opening aperture are not yet included in the permeability prediction.
A detailed review of the relevant results is given in Sect. 2.

In this paper, we attempt to characterize the geometry of random crack networks and then
establish the relation between geometrical characterization of crack network and the material
permeability through a continuum percolation approach. To this purpose, the past works on
the relation between crack geometry and permeability are reviewed in Sect. 2; the geometry
characteristics of random crack networks are studied in Sect. 3 for 2D cases, and a new
connectivity factor is defined; the scaling law of permeability is established for microcracked
porous media near percolation threshold considering the crack opening aperture in Sect. 4;
and the concluding remarks are given in Sect. 5.

2 Permeability of Cracked Solids: Review

The most recent results on the relation between the geometry of cracks and the effective per-
meability are reviewed in the following from EMTmodels, percolation theory and numerical
simulations. A recent EMT model dedicated to the permeability of cracked solids is due to
Zhou et al. (2011). The model uses the IDD scheme and considers the cracks as inclusions
into homogeneous porousmatrix with infinite local permeability. Based on the dilute solution
for penny-like crack inclusions (Shafiro and Kachanov 2000), the effective permeability of
solids incorporating randomly distributed cracks in 2D case writes,

K

Km
=

1 + π

2
(1 − γD)ρ2

1 − π

2
γDρ2

(1)

where K , Km are, respectively, the permeability of cracked solid and homogeneous matrix,
ρ2 is the area density of cracks, and γD is the shape function for the penny cracks. These
results are extended to crack networkswith finite connectivity by introducing an amplification
factor to the crack density,

ρ′
2 = (1 + β ′φ)ρ2 (2)

where β ′ denotes the local amplification of fluid flow by crack connection, and φ is the
connectivity ratio of connected cracks with respect to total cracks. Through numerical sim-
ulation on numerical cells, the amplification factor β ′ is expressed in terms of crack density
and connectivity ratio. Thismodel takes into account the effect of finite connectivity of cracks
on permeability, but no analytical result is obtained for the amplification factor β ′, and this
model will not be valid as the cracks are highly connected and form a percolation path for
fluid flow.

Following percolation theory,Mourzenko et al. (2004) investigated the permeability of 3D
crack networks containing plane polygons randomly oriented with a power law distribution
for crack size: n(l) = αl−a , where n(l)dl is the number of cracks with radius in the range
[l, l + dl] and α a normalization coefficient. The macroscopic permeability K was proposed
in a general expression as,

K = ρ〈σ ′Ap〉K ′
2

(
ρ′
3

)
(3)

Here the term ρ〈σ ′Ap〉 represents the volumetric area of cracks, weighted by the individual
crack permeability; the K ′

2 is a function of the dimensionless density ρ′
3 that controls the

network percolation, and incorporates the influence of the crack shape and size distributions.
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The percolation threshold ρ′
3c(L

′) of crack networks depends on the geometry of cracks and
can be expressed as,

ρ′
3c = α3c

[
1 − 4

(
η′ − 2

π

)2]
(4)

where α3c = 2.69 for mesh size L ′ = 6 and α3c=2.41 for L ′ → ∞; η′ is a shape factor with
η′ = 2/π for disks. For infinitely elongated objects (η′ → 1), ρ′

3c(∞) = 1.14. Two heuristic
analytical models were proposed from numerical simulations, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

K ′
2 = 2

3

[
1 − 1

0.1(ρ′
3 + 6.6)

]
for ρ′

3 � ρ′
3c

K ′
2 = 0.1

ρ′
3

(
ρ′
3 − ρ′

3c

)1.6 for ρ′
3 ∼ ρ′

3c

(5)

No sharp change of K is predicted by the second equation as ρ′
3 → ρ3c, and the perme-

ability of homogeneous matrix is assumed to zero.
Jafari and Babadagli (2013) proposed the effective permeability of rocks containing 2D

fracture networks in terms of a percolation term, ρ′ − ρ′
c, as

K = 88.411
(
ρ′ − ρ′

c

)0.4602 (6)

The 2D crack density ρ′ is defined as ρ′ = N
L2 Aex , where N is the number of cracks in

the domain L × L , and Aex is the excluded area of cracks. The authors used L = 100m
and ρ′

c = 3.6 taken as the continuum percolation threshold from Adler and Thovert (1999).
The above model applied to ρ′ > ρ′

c and the aperture of fracture were considered to be less
influential for permeability compared to fracture density and length.Note that this assumption
was reached for the fracture length attaining 80m, almost the domain size, and the influence
of fracture aperture can be different for domains containing much shorter fractures and local
crack clustering.

Yazdi et al. (2011) provided an expression for the effective permeability of 2D crack
networks with finite crack apertureW for crack density ρ′ = 1.59 ∼ 89.52. The permeability
K scales with the ratio b, ratio between the crack aperture W and crack length l, through a
power law,

K ∝ b−0.02ρ′+1.1 (7)

where crack density ρ′ has the same definition in Eq. (6). Since the corresponding percolation
threshold ρ′

c was not provided for this analysis, the validity range of this scaling law cannot
be located with respect to the percolation threshold. However, it is clear that the scaling law
K − b depends also on the crack density ρ′

c.
de Dreuzy et al. (2001a) investigated the relationship between the permeability and the

connectivity for random crack networkswith power law length distribution, i.e., n(l) = αl−a .
It was showed that the exponent a governs the flow patterns: The flow by long fractures
dominates for a < 2, the percolation controls the flow as a > 3, and a mixed pattern exists in
between. Further, de Dreuzy et al. (2001b) investigated the influence of crack length (power
distribution) and crack aperture (lognormal distribution) on the permeability of 2D crack
networks K and found the following simplified law for correlated length and aperture of
cracks,

log K = δMb̄ + ωM

2
b̄2 (8)

where b̄ is the standard deviation of the crack aperture, and δM , ωM are geometry parameters
of random networks depending on the length ratio between domain size and crack charac-
teristic length, exponent a, and percolation parameter. In their later work (de Dreuzy et al.
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2002), the crack length and aperture of both power distributions were investigated following
the same framework.

From a purely numerical simulation scheme, Leung and Zimmerman (2012) proposed the
following scaling law for the permeability (hydraulic conductivity) K of random 2D crack
networks,

K

KR
= B

√
1 + 2ζ

nl̄

2L
(9)

Here KR is the reference hydraulic conductivity of domain L × L containing orthogonal pair
of crackswith uniform aperture, ζ is the ratio between the node number of crack networks and
total crack number nnode/n, l̄ is the average of crack length, and B is the regressed constant
taken as 9.26×10−2 in this study. This expression contains actually the information of crack
connectivity through ζ , and crack size and density through nl̄/L . No explicit percolation
was provided from this result. In the same literature, the influence of variation of fracture
aperture was represented through a power average (Desbarats 1992),

K̂ =
(
1

n

n∑

i=1

Kω
i

)1/ω

(10)

where Ki is the permeability (hydraulic conductivity) of fracture i, K̂ is the equivalent
permeability for all fractures, and ω is the averaging power. Then permeability of 2D random
crack networks with different apertures was estimated by KCB = K̂ (1 − 2 f ′) with f ′
for the ratio of no-conducting bonds. The authors found that the arithmetic average, i.e.,
ω = 1, gives the best estimation for effective permeability. Bogdanov et al. (2003) used
direct numerical method to determine the permeability of porous media incorporating 3D
random crack systems through the solution of steady single-phase flow equations in periodic
porous unit cells. The effective permeability was showed to assume different expressions for
low, intermediate, large and very large crack densities.

On the basis of the above results fromEMT, percolation theory and numerical simulations,
this paper aims to solve the permeability of microcracked solids incorporating random crack
networks. The basic concepts and methods from continuum percolation theory are used
to describe the geometry characteristics and to establish the scaling law. In the geometry
characterization of random crack networks, the concept of fractal dimension is adopted, and
the focus is on the pertinent definition of the connectivity of random crack networks. The
scaling law of effective permeability is proposed through the connectivity and tortuosity of
the crack networks, and the role of crack opening aperture is investigated particularly.

3 Geometry of Random Crack Networks

3.1 Percolation Basis

Classical percolation theory uses lattice or bond model to illustrate the percolation concepts:
The probability of a site or a bond being occupied is p, and the probability at which a
percolating cluster occurs, pc, is called the critical probability or percolation threshold. In
other words, for p > pc, at least one percolating cluster exists and no percolating cluster
exists as p < pc. As p → pc, the following scaling law holds,

P(p) ∝ (p − pc)
β, ξ(p) ∝ (p − pc)

−ν (11)
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where P is the probability that any site or bond belongs to the percolating cluster, and
ξ is correlation length between the percolating clusters. The exponents β, ν are universal
constants in classical percolation theory, i.e., β = 5/36 and ν = 4/3 for 2D case according
to Stauffer and Aharony (2003).

In a finite domain L × L , the percolation threshold depends on the domain size, i.e.,
pLc = pc(L). Normally this size-dependent threshold pLc is not a sharp function but repeat-
ing numerical simulations can help to determine the value (Stauffer and Aharony 2003).
Moreover, pLc → pc as L → ∞. Under this situation, the domain size appears in the scaling
laws in Eq. (11) and writes,

P(L , p) ∝ (p − pc)
β h

[
(p − pc)L

1/ν] , ξ(L , p) ∝ L (p − pc)
−ν h

[
(p − pc)L

1/ν]

(12)

with h as a nonsingular function, e.g., in Gaussian form (Stauffer 1979). This expression
is of vital importance since it is supposed to apply to all the quantities associated with the
percolation networks. For random crack networks in a finite domain, the above classical
site/bond percolation theory is extended to continuum percolation theory, and the scaling
law in Eq. (12) is assumed to still hold but adopt different scaling exponents (Masihi and
King 2007; Halperin et al. 1985). The main difference between the classical and continuum
percolations resides in the definition of probability p, that is, for random crack networks, the
probability is substituted by the crack density ρ. For a random network with n cracks in a
finite domain L × L , the crack density is defined as,

ρ = 1

L2

N∑

i=1

( li
2

)2
(13)

with li for the length of i th crack. Accordingly, the percolation threshold, ρc, is the crack
density at which a percolating cluster appears in statistical sense. Certainly, this threshold
depends on the geometry characteristics such as the domain size, crack length as well as
crack orientation.

3.2 Fractal Dimension and Connectivity

The random crack clusters are assumed to have fractal properties (Davy et al. 1990). In this
study, the fractal property of crack clusters is described by the two-point correlation function
(Darcel et al. 2003), which describes the spatial correlation of the cracks. This correlation
function depicts the probability of two cracks within a distance r belonging to the same
cluster, defined as,

C(r) = N (r)

NT
(14)

with NT for the total crack center number of all cracks and N (r) the number of crack centers
of which mutual distance is within r . The functionC(r) is expected to scale with the distance
r through a fractal dimension Dc,

C(r) ∝ r Dc (15)

and the fractal dimension Dc can be read from the linear regression C(r) ∼ r on logarithm
scale.

The connectivity is recognized as one crucial geometry parameter for fluid flow in random
crack networks, and some straightforward definitions are available in the literature: the aver-
age number of intersections per crack (Robinson 1984), the density of the degree of freedom
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(DDOF) (Li and Zhang 2011), or the ratio of connected cracks (Zhou et al. 2012). These
definitions are all from average point of view, and local clustering of cracks is not taken into
account. It will be showed later that local clustering, under the same average connectivity,
can change the flow substantially. To improve the definition, a new connectivity factor, f , is
defined for domain L×L considering the local clustering effect through the fractal dimension
of crack clusters,

f = ξ

L
[P(ρ, L)](3−Dc), with f ∈ [0, 1] (16)

where ξ is correlation length of clusters or the cluster size, and P(ρ, L) is the likelihood of a
crack being connected to the spanning clusters. The term P(ρ, L) can be determined as the
area ratio between the spanning cluster and the whole network. This definition includes both
the cluster size ξ and the local clustering effect through Dc. Note that f → 1 as P → 1 (all
cracks belong to one spanning cluster) and L → ξ . Using the scaling law in Eq. (12), the
connectivity f around percolation threshold adopts the scaling law

f ∝ |ρ − ρc|−ν+(3−Dc)β (17)

3.3 Numerical Generation of Random Crack Networks

A numerical repeating unit cell (RUC) is established for the finite domain L × L . The
statistical properties are attributed to the crack length and opening apertures. This study
adopts lognormal distribution for crack length following the geometrical analysis on cracks
of concrete specimens after axial loading in Zhou et al. (2012), cf. Fig. 1. The probability
density function of crack length is,

g(l; δ, σ ) = 1

lσ
√
2π

e−(lnl−δ)2/2σ 2
(l > 0) (18)

where δ and σ are the mean value and variance of logarithm crack length.
The statistical analysis revealed that the crack opening aperture is well correlated to the

crack length (Zhou et al. 2012). Accordingly, the ratio of opening aperture to length, b, is

δ σ

Fig. 1 Crack network (left) and crack length distribution (right) for Specimen OPC7-2 after uniaxial loading
in Zhou et al. (2012)
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Table 1 Crack patterns retained for geometry and permeability simulations

Analysis Crack length
distribution

Domain size
x = L/ lmean

Density ρ Fractal
dimension Dc

Aperture
ratio b

Geometry Constant 5∼20 (ρc) 0, 3.0; 0.05 (ρc) 2.0∼1.62 (ρc) –

3∼50 (β, ν) 0, ρc; 0.05 (β, ν) 2.0∼1.51 (β, ν)

Lognormal 10∼30 (ρc) 0, 3.0; 0.05 (ρc) 2.0 (ρc) –

3∼50 (β, ν) 0, ρc; 0.05 (β, ν) 2.0 (β, ν)

Permeability Constant 30 0, ρc; 0.05 2.0, 1.75, 1.62 0.001∼0.028

Lognormal 30 0, ρc; 0.05 2.0 0.001∼0.028

retained as a basic variable: The ratio is taken as 0.001∼ 0.028 from the results in Zhou
et al. (2012), corresponding to the absolute values of opening aperture equal to 5 ∼ 100 µm
and l equal to 3.606mm. In parallel, the case of constant crack length distribution is kept in
geometry and permeability analysis for comparison purpose. So, the lognormal distribution
of crack length has the mean length lmean = 3.606mm and the standard deviation SD(l) =
2.716mm, and the constant distribution has the mean length lmean = 3.606mm. A length
scale x is defined as the ratio between the domain size L and the crack mean length lmean.
The ranges of parameters for the numerical simulation cases in this study are summarized in
Table 1.

The numerical generation of a random crack network is realized through Monte Carlo
algorithm as follows. The crack densityρ and the crack length distribution are first determined
for the random crack network. The fractal dimension of crack networks Dc is controlled by
the average number of interaction per crack, ninter/NT with ninter, NT standing, respectively,
for the intersection number of cracks and total crack number. Then, cracks are generated,
obeying the predetermined statistical distribution, and located randomly one by one into
the domain L × L . As one crack is positioned and the number of its intersection with the
already generated cracks is calculated, this crack will be accepted if the intersection ratio
on this stage does not exceed the expected value, otherwise the crack will be rejected. If the
generated crack overlaps the domain boundary, its outer part is trimmed off. At the same
time, the intersection ratio on this stage is calculated and checked, and the groups of isolated
and connected cracks are updated. This procedure is repeated until the target density and
intersection ratio are achieved. The generated crack network is subject to geometry analysis
for crack clusters and the relevant percolation parameters, including the connectivity factor
f . Releasing the control of the intersection ratio ninter/NT produces an uncorrelated network
with cracks totally randomly distributed. Figure 2 illustrates an uncorrelated network and a
network with intersection ratio of 3.0 for a same crack density (ρ = 0.75).

Since the fractal dimension Dc and the connectivity factor fc are controlled actually by
the parameter ninter/NT in numerical simulations, it deserves to gain an insight on the impact
of ninter/NT on the network geometry. To this purpose, Fig. 3 illustrates the random networks
generated for a density ρ = 1.5 but with ninter/NT = 0 ∼ 5. The length ratio is fixed as
x = 20 and x = 30 for constant and lognormal length distributions, and the fractal dimension
Dc is evaluated through Eq. (15) as shown in Fig. 4a for constant crack networks. One can see
that Dc decreases constantly with ninter/NT, and higher ninter/NT induces more important
local clustering, so lower Dc means stronger local clustering. Thus both Dc and ninter/NT are
related directly to local clustering degree of crack networks. But high local clustering will
not necessarily contribute to the global connectivity; this point will be discussed further in
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Fig. 2 Crack networks with constant length, ρ = 0.75, x = 20: uncorrelated network (left) and correlated
network with ninter/NT = 3.0 (right)

Fig. 3 Examples of simulated crack networks with different Dc and different length distribution. From left to
right, the fractal dimension decreases by improving the clustering: constant length distribution (up x = 20);
lognormal length distribution (down x = 30)

(a) (b)

Fig. 4 Regression of fractal dimension Dc in terms of ninter/NT through two-point correlation function (a)
and in terms of length ratio x (b)
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the geometry analysis part. The regression of the fractal dimension Dc is illustrated in Fig. 4a
for different intersection ratios and in Fig. 4b for different length ratios. The Dc values are
confirmed to relate closely with the ninter/NT ratio, and Dc remains nearly constant for large
range of length ratio x . This indicates that the nature of fractal dimension Dc is not empirical
but belongs to the intrinsic properties of the random crack networks.

3.4 Geometry Analysis of Random Crack Networks

Percolation threshold ρc The percolation threshold in terms of crack density ρc is obtained
from Monte Carlo generation of random crack networks with predetermined crack length
distribution and fractal dimension Dc. For a given domain size L , the crack networks are
generated for density increasing from zero to 3.0, and for different length ratios x = L/ lmean,
cf. Table 1. For each case (given ρ and x), 400 random networks are generated, and the
percolation probability is evaluated as the ratio of percolation networks with respect to total
networks (400). Figure 5 shows the percolation thresholds for networks with different fractal
dimensions and crack length distributions. For each simulation case, the point at which
different probability curves intersect can be regarded as the percolation threshold. For the
uncorrelated networks, Dc = 2.0, the thresholds ρc are, respectively, 1.43 and 1.67 for
constant and lognormal length distributions. For correlated networks, ρc = 1.68 for constant
length with Dc = 1.75 and ρc = 1.78 for lognormal distribution with Dc = 1.62. Thus, the
crack length distribution has impact on percolation threshold, and the thresholds are lower
for uncorrelated networks for a same distribution. Note that the percolation threshold was
evaluated as 5.6 for the dimensionless density ρ′ = NTl2/L2 in Bour and Davy (1997).
This result can be converted to the crack density defined in Eq. (13) and is very near to the
threshold for uncorrelated networks with constant cracks, i.e., ρc = NTl2/4L2 = 1.43.

Exponent ν and β The exponent ν is defined in Eq. (11) in the scaling law for correlation
length ξ , which can be regarded as the mean cluster size near percolation threshold (Stauffer
and Aharony 2003). The term ξ diverges as ρ → ρc in infinite domain, while this exponent
can be determined from the relationship ρc(x) − ρc ∝ x−1/ν for finite domain (Stauffer and
Aharony 2003). Given crack length distribution, fractal dimension Dc and length ratio x ,
random crack networks are generated with increasing crack density until percolation occurs
in the finite domain, and the corresponding density is noted as a realized value for ρc(x).
Then this procedure is repeated for 400 simulations, and the average of these realized values
is retained for ρc(x). Since the ρc values are not known a priori for all the Dc cases, the
standard deviation of ρc(x), Δρc(x), can be used instead of |ρc(x) − ρc| in the regression
according to Stauffer and Aharony (2003). Thus the exponent ν is to be regressed from
Δρc(x) ∝ x−1/ν with Δ2ρc(x) = 〈ρ2

c (x)〉 − 〈ρc(x)〉2.
Figure 6 illustrates the results for exponent ν for two length distributions and different

fractal dimensions. For networks of constant length, the exponent is obtained as 1/ν =
0.231 ∼ 0.74 for Dc = 1.51 ∼ 2.0. Thus this exponent for correlation length is rather
sensitive to the fractal dimension of networks. For comparison, the exponent of lognormal
length for uncorrelated networks, Dc = 2.0, is evaluated as 0.73, rather near to the value of
constant length of Dc = 2.0. Both values are close to the expected value 3/4 (Stauffer and
Aharony 2003). Recent results show that, for crack length of power distribution, a similar
exponent was obtained as |ρc(x) − ρc| ∝ x−0.75 for crack length with power distribution
(Sadeghnejad et al. 2013). It seems to confirm that this exponent is not sensitive to crack length
distribution for uncorrelated networks but sensitive to the fractal dimension of correlated
networks.
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ρ ρ

ρ ρ

(a) (b)

(c) (d)

Fig. 5 Percolation probability for finite-size domains: a constant length, Dc = 2.0, length ratio x =
5, 10, 15, 20; b lognormal length, Dc = 2.0, length ratio x = 10, 20, 30; c constant length, Dc = 1.75,
length ratio x = 10, 15, 20; d constant length, Dc = 1.62, length ratio x = 10, 15, 20

(a) (b)

Fig. 6 Exponent ν from numerical simulations: a percolation density ρc(x) in terms of length ratio x ;
b deviation Δρc(x) in terms of length ratio on logarithm scale

Substituting the relationship ρc(x) − ρc ∝ x−1/ν into Eq. (12), one can get P ∝ x−β/ν .
Here the term P should be interpreted as the ratio between the accumulated area of cracks
in the spanning cluster Ab and the whole area of network AN . Based on the same simulation
results in Fig. 6, the regression of exponent β is given in Fig. 7a for both constant and
lognormal distributions. For constant length, the term β/ν ranges from 0.232 to 0.106 for
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(a) (b)

Fig. 7 Exponent β for random crack networks: a regression of 1/β through P ∼ x relation for different Dc;
b exponents 1/ν, 1/β in terms of Dc

Fig. 8 Percolation probability in terms of intersection ratio (ninter/NT = 0 ∼ 5) for constant length distrib-
ution, length ratio x = 5 and crack density ρ = 1.5. The maximum crack clusters are highlighted

Dc = 1.51 ∼ 2.0. For uncorrelated networks, the difference of β/ν between constant and
lognormal lengths is quite small. Again, it seems that β/ν is quite sensitive to Dc and remains
constant for uncorrelated networks. For constant length, the variation of 1/ν and 1/β is given
in Fig. 7b, showing both exponents are fractal dependent.

Connectivity factor fc The connectivity of crack networks is closely related to the pre-
determined ninter/NT and the resulted fractal dimension Dc. To deepen this relation, Fig. 8
illustrates the probability of percolation for the random networks for ninter/NT = 0 ∼ 5, the
crack density ρ = 1.5, length ratio x = 5 and constant crack length. Each probability of
percolation is the ratio of percolated networks with respect to 400 random simulations. In the
figure are also extracted six numerical samples for each ninter/NT ratio, and the connected
cracks in the maximum cluster are highlighted compared to the isolated cracks. One can
see clearly that the intersection ratio contributes to network percolation as ninter/NT ∼ 1.5
and the percolation probability decreases as the ratio increases further. From the numeri-
cal samples, high intersection ratios induce strong local clustering but decrease the global
connectivity, in other words, high intersection ratio creates dense but local clusters in crack
networks. This adverse effect of intersection ratio on network percolation has never been
reported. The geometry parameters evaluated from Fig. 8 are given in Table 2.

Figure 9a illustrates the connectivity factor in terms of the crack density for constant crack
length and Dc = 2.0. Each f value corresponds to the average of 400 numerical samples.
One can see that f ∼ ρ relation is similar to the percolation probability in terms of ρ in
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Table 2 Cluster and connectivity analysis for crack networks with different intersection ratios

ninter/NT Total
cracks

Isolated
cracks

Maximum
cluster size

Average
cluster size

Fractal
dimension Dc

Connectivity f

0 246 246 1 1 1.99 0.001

1 213 29 55 19 1.97 0.180

2 204 11 161 51 1.75 0.676

3 218 1 187 44 1.62 0.479

4 213 2 199 71 1.51 0.501

5 212 0 203 106 1.43 0.473

ρ

(a) (b)

Fig. 9 Connectivity analysis of networks with constant length cracks and length ratio x = 20: a connectivity
factor in terms of crack density, b connectivity factor at percolation fc in terms of crack density

Fig. 5: f increases gradually with ρ from 0 to 1. Note that the definition of f in Eq. (16)
stipulates two conditions for f = 1: A spanning cluster occurs (ξ = L) and all cracks
belong to the spanning cluster (P(ρ, L) = 1). So for most simulations f < 1 even as the
percolation occurs. This observation implies that the isolated cracks are also considered into
the connectivity factor f as this factor is used in the permeability scaling law later in this
paper. Figure 9b provides the connectivity factor at percolation fc in terms of crack density
ρ. The fc is solved for a fixed density by increasing the ninter/NT ratio from 0 to 5 and using
0.1 as numerical increment, among these cases the minimum f value of all percolated cases
is noted, and then this procedure is repeated for 200 times and the average of the minimum
f values at percolation is noted for fc at this density. The fc ∼ ρ curve in Fig. 9b should
be interpreted with statistical sense: For the pair ( f, ρ) below the curve, the occurrence of
percolation is statistically low, while for the ( f, ρ) pairs above the curve, the possibility of
percolation is statistically high. The general idea of this curve is that the more is the crack
density the less is the connectivity needed to reach percolation.

4 Permeability of random crack network

4.1 Scaling law for permeability

The permeability of solids incorporating crack networks relates to two groups of fundamental
variables: the first to the permeability of the homogeneous matrix of (porous) solids Km and
the second to the characteristics of crack networks including the crack connectivity f , the
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Fig. 10 Examples of crack network and its backbone cluster at percolation: constant length distribution (left
x = 20, ρ = 1.43, Dc = 2.0); lognormal length distribution (right x = 30, ρ = 1.67, Dc = 2.0)

tortuosity τ , the crack density ρ and the crack opening aperture b, i.e.,

K = K
(
Km; f, τ, ρ, b

)
(19)

Among these parameters, the tortuosity τ should be defined for the random crack network.
In this study, the tortuosity is related to the dominating cluster (or “backbone” cluster), cf.
Fig. 10. Note Lξ the cumulative crack length in the backbone cluster and Ls its straight
line length. The tortuosity is defined as the ratio τ = Lξ /Ls and τ > 1. Assuming that
the backbone cluster has fractal properties, the length Lξ can be related to the measurement
increment ε though a fractal dimension Dτ (Mandelbrot 1983),

Lξ (ε) = Lsε
1−Dτ (20)

Here Dτ can assume the fractal dimension for the most probable flow path Dopt or the fractal
dimension for the most probable traveling time Db (Lee et al. 1999). These two values were
quantified for spanning cluster of 2D random networks as Dopt = 1.21 and Db = 1.643 in
the literature (Sheppard et al. 1999). As the choice of ε is arbitrary, letting ε = (ξ/L)−1

gives,
Lξ

(
(ξ/L)−1) = Ls(ξ/L)Dτ −1 ∝ Ls

(|ρ − ρc|−ν
)Dτ −1

(21)

Substituting this expression into the definition of tortuosity gives,

τ = Lξ

Ls
∝ |ρ − ρc|ν(1−Dτ ) (22)

With this definition, the conceptual scaling law in Eq. (19) can be put into the following form,

K = K0(Km, b) |ρ − ρc|μ with μ = (3 − Dc)β − (2 − Dτ )ν (23)

In this scaling law, the permeability is assumed to be linearly proportional to the connectivity
factor f and inversely proportional to the tortuosity τ , and thus the exponent μ includes the
connectivity in Eq. (17) and the tortuosity in Eq. (22), and the contribution of crack opening
aperture and matrix permeability is included into the term K0. Note that this scaling law
applies only to the range ρ → ρc due to the valid range of Eqs. (17) and (22). Physically
the term K0 corresponds to the effective permeability as τ, f → 1, i.e., all the cracks form
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Table 3 Permeability scaling exponent μ

Crack length Dc ρc β ν Predicted μ Regressed μ

Constant 2.0 1.43 0.143 1.351 −0.924 −0.922

Constant 1.97 − 0.175 1.420 −0.942 −
Constant 1.75 1.68 0.632 2.451 −1.146 −1.122

Constant 1.62 1.78 0.941 3.300 −1.308 −1.257

Constant 1.51 − 1.004 4.329 −1.924 −
Lognormal 2.0 1.67 0.147 1.368 −0.934 −0.919

a straight line and span across the finite domain L × L . From this point of view, the K0 is
supposed to scale to the square of crack opening, which will be re-discussed with numerical
results. Adopting the most probable flow path fractal for Dτ , Dτ = Dopt = 1.21, the scaling
exponent μ of permeability is evaluated in Table 3 as “predicted μ” for the simulation cases
of geometry analysis in the previous section.

4.2 Numerical Analysis for Permeability

The permeability of solids incorporating random crack networks is solved through finite
element methods (FEM). The numerical samples retained for permeability analysis are given
in Table 1, and all cracks are idealized as 2-node elements and the matrix is discretized
into 6-node triangle elements. All endpoints and intersection points of cracks are treated as
common nodes between the 2-node and 6-node elements. The matrix takes the conventional
intrinsic permeability for concretes, i.e., Km = 10−17m2. Note that a crack with opening of
5µm has the local permeability in the order 10−11m2, 6 magnitudes higher than the matrix.
The fluid is assumed incompressible and Newtonian and the flow observes the Navier–Stokes
equation with small Reynolds number. With these assumptions, the effective permeability of
the numerical samples can be evaluated between the flow rate q and the pressure gradient∇ p
through Darcy’s law q = −∇ p × K/η with η the fluid viscosity. In the numerical solution,
the two opposite sides of numerical samples (cells) are treated as null flux condition and a
pressure gradient is imposed on the other two opposite sides of samples.

To illustrate the effective permeability in terms of the crack density, Fig. 11 provides the
effective permeability of uncorrelated crack networks for constant length distribution with
Dc = 2.0 and ρc = 1.43. One can see that at low crack density ρ 
 ρc, no percolation
occurs and the effective permeability remains very low K/Km ∼ 1. As ρ → ρc, the effective
permeability increases substantially. The results confirm the determinant impact of crack
percolation on the effective permeability. On the same figure is also illustrated the dispersion
of permeability of the same random crack networks: A total of 40 simulations are performed
for each density from 0 to 1.43 with increment of 0.05. The coefficient of variation ranges
from 0.5% (ρ = 0.05) to 19% (ρ = 1.4), showing that larger dispersion is associated with
higher crack density.

4.3 Permeability Scaling Exponent µ

The effective permeability is solved for four cases: constant length with three Dc and log-
normal length with Dc = 2.0, cf. Table 1. Since the purpose of this section is to regress
the exponent μ, the crack opening aperture is fixed at b = 0.013 and the length ratio at
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Fig. 11 Effective permeability Keff/Km in terms of crack density for x = 30, Dc = 2.0 and constant length:
percolation effect (left) and permeability dispersion (right)

x = 30. In the regression of the exponent μ, the crack density of networks changes from 0
to ρc by increment of 0.05 for each case, and for each density, 40 simulations are performed
and average value is retained for the effective permeability. A total of 5160 simulations are
performed for the regression of exponent μ, and for each crack density ρ, the exponent μ is
read as the slope of log K/Km ∼ log|ρ − ρc| plot. Further, the valid range of the proposed
scaling law in Eq. (23) is investigated following the plateau analysis on the μ ∼ log|ρ − ρc|
plot (Bonnet et al. 2001). Figrue 12 gives the scaling exponent μ in terms of |ρ − ρc| in
logarithm scale. The valid range of the scaling law is well indicated by the lower cutoffs of
plateau, i.e., |ρ − ρc| = 0.33 or 0.38 for the four study cases. Note that the scaling exponent
μ cannot be confirmed from the numerical simulations for |ρ − ρc| ≤ 0.03 due to the statistic
nature of ρc, cf. Fig. 5.

According to Eq. (23), the exponent μ can be calculated as −0.924 for constant length
and uncorrelated networks (Dc = 2.0). From the figure, the regression result for μ for
this case is −0.922, rather near to the theoretical value. The μ exponents are, respectively,
−1.122,−1.257 and −0.919 for Dc = 1.75 (constant length), Dc = 1.62 (constant length)
and Dc = 2.0 (lognormal length). Compared to the predicted μ values in Table 3, these
regressed μ values are rather consistent with the predicted values, confirming the pertinence
of the scaling law in Eq. (23). It is to note that the scaling exponent for permeability was
estimated asμ = 1.6 in Mourzenko et al. (2004),μ = 0.4602 in Jafari and Babadagli (2013)
andμ = 1.1 inYazdi et al. (2011). The difference is due to the fact that these results neglected
the contribution of nonpercolating clusters in networks and the simulation ranges of ρ were
all above the percolation threshold.

4.4 Role of Opening Aperture b

To investigate the influence of opening aperture b on the effective permeability or K0 in
Eq. (23), the effective permeability is solved for different crack opening apertures (b =
0.001 ∼ 0.028) for uncorrelated crack networks (Dc = 2.0) with constant length and length
ratio x = 30. The crack density ranges between [0, ρc] with 0.05 as increment. Figure 13
illustrates the effective permeability K in terms of crack density ρ for different opening
aperture b. A direct observation is that the impact of b is less important as ρ 
 ρc and the
effect of b becomes significant only as ρ → ρc. It is rather reasonable since after percolation
the flow path is continuous and the crack opening has direct impact on the flow rate. In
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(a) (b)

(c) (d)

Fig. 12 Regression of the critical exponent of permeability for x = 30: a Dc = 2.0 and constant length;
b Dc = 1.75 and constant length; c Dc = 1.62 and constant length; d Dc = 2.0 and lognormal length

Fig. 13 Effective permeability Keff as a function of density ρ for various values of b for constant length
randomly oriented case, Km = 10−17 m2. The density ranging from 0 to ρc is enlarged (right)

other words, the permeability of a percolated network depends strongly on the crack opening
aperture.

Figure 14 presents the effective permeability and the term K0 in terms of crack openings
b for different crack density. The interested density range is |ρ − ρc| ∈ [0.03, 0.28], since
outside this range for very low values of ρ the network is not connected, and very large
values of ρ above ρc are out of scope of this research. The results in Fig. 14a show that the
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(a) (b)

Fig. 14 Permeability in terms of opening aperture b for uncorrelated random networks (Dc = 2.0), crack
density ρ = 1.20 ∼ 1.36 and constant crack length: a logarithmic plot of Keff ∼ b; b logarithmic plot of
K0 ∼ b

effective permeability Keff increases with b = 0.001 ∼ 0.004 (corresponding crack opening
5 ∼ 15µm) for the same density but remains rather stable as b scales from 0.007 to 0.028
(corresponding crackopening25 ∼ 100µm).This is due to theveryhigh local permeability of
cracks with large b, i.e., the local permeability of crack with opening 25µm is 7 magnitudes
of order higher than Km. Figure 14b presents the logarithmic plots of K0/Km ∼ b for
various values of ρ. On the logarithmic scale, K0/Km is a linear function of b for the range
0.001 ≤ b ≤ 0.004, i.e.,

K0/Km ∝ bλ with λ = 0.2 for 0.001 ≤ b ≤ 0.004 (24)

and,
K = K0 |ρ − ρc|μ = 11.57Kmb

0.2 |ρ − ρc|−0.924 (25)

This result provides a very useful expression for the effective permeability K
(
Km; f, τ, ρ, b

)

of the 2D network with cracks of finite apertures. This expression reveals that K depends on
the crack aperture b via a power law through the term K0. Unlike the result in Eq. (7) from
Yazdi et al. (2011), the scaling exponent of crack opening b in Eq. (25) does not depend on
the crack density since the contribution of crack density is grouped into the scaling exponent
μ via connectivity and tortuosity concepts.

5 Conclusions

1. This paper investigates the geometry of 2D random crack networks through concepts
from continuum percolation theory for a finite domain. The crack density is taken as
the basic percolation variable, and the geometry of crack networks is characterized by
the percolation threshold (ρc), scaling exponents (ν, β) for percolation probability and
correlation length, and the fractal dimension for correlation function (Dc). To help the
geometry analysis and the later permeability analysis, a new connectivity factor is defined
for the 2D random crack networks in finite domain, incorporating the correlation length
of crack clusters, domain size and the probability of percolation. This connectivity factor
ranges from 0 ∼ 1 and proved to be consistent with percolation concepts.
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2. Numerical samples of crack networks are generated for two different crack length dis-
tributions (constant and lognormal) and different crack densities, domain size ratios and
clustering degrees. The clustering degree of networks is controlled by the average inter-
section ratio ninter/NT in the generation of numerical samples, and this clustering degree
is well captured by the fractal dimension Dc of networks. The geometry analysis shows
that, for uncorrelated networks (Dc = 2.0), the percolation parameters, ρc, ν, β, do not
depend on the crack length distribution and the values from numerical simulations are
very near to the theoretical (universal) values reported in the literature while these val-
ues will change as the clustering degree of networks increases (Dc < 2.0). It is also
found that too strong local clustering of cracks will decrease the probability of the global
percolation.

3. On the basis of the geometry characterization of 2D random crack networks, the scal-
ing law of the effective permeability of cracked porous solids is established in terms
of |ρ − ρc| taking into account the matrix permeability Km, crack opening aperture
b, crack connectivity f and crack tortuosity τ . This scaling law is put into the form
K = K0(Km, b)|ρ − ρc|μ, the term K0 reflects the contribution of porous matrix and
crack opening aperture, and the second term reflects the contribution of network geometry
through crack density, connectivity and tortuosity. Numerical simulations on effective
permeability reveal that the obtained scaling exponent μ for uncorrelated networks is
very near to theoretical value and the term K0/Km scales with opening aperture b
through a power law. From the simulations in this study, |ρ − ρc| ∈ [0.03, 0.28] and
b ∈ [0.001, 0.004], the scaling exponent for opening aperture is regressed as 0.2.
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