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Abstract Thiswork examines the steady double-diffusivemixed convection flow in a porous
open cavity filled with a nanofluid using mathematical nanofluid model proposed by Buon-
giorno. The analysis uses a two-dimensional square cavity of size L with an inlet of size
0.2 · L in the bottom part of the left vertical wall and an outlet of the same size in the upper
part of the right vertical wall. The mathematical problem is represented by non-dimensional
governing equations along with the corresponding boundary conditions, which are solved
numerically using a second-order accurate finite differencemethod. The developed algorithm
has been validated by direct comparisons with previously published papers, and the results
have been found to be in good agreement. Particular efforts have been focused on the effects
of the key parameters on the fluid flow, heat and mass transfer characteristics. In addition,
numerical results for the average Nusselt and Sherwood numbers are presented in tabular
forms for various parametric conditions and discussed.
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1 Introduction

Convective flow in cavities filled with porous media is a topic of fundamental heat transfer in
many analyses and has received considerable attention over the last few decades. This interest
is due to its wide range of applications, for example, high-performance insulation for build-
ings, chemical catalytic reactors, packed sphere beds, grain storage, float glass production,
air-conditioning in rooms, cooling of electronic devices, and such geophysical problems as
frost heave (Kaviany 1999; Nield and Bejan 2013; Saleh and Hashim 2013).

It has been shownbyMohamad (1995) that natural convection in open cavities has received
much attention due to the importance of such geometry in solar thermal receiver systems,
fire research, electronic cooling devises, energy-saving household refrigerators, etc. Further,
Bilgen and Oztop (2005) pointed out that partially open cavities are encountered in various
engineering systems, uncovered flat plate solar collectors having rows of vertical strips, in
buildings, etc. In these situations, the flow may be substantially affected by the flow at the
openings. The spread and growth of the combustion products in a room, for example, are sub-
stantially governed by the location and size of the doors andwindows (Abib and Jaluria 1988).

It is well established (see De Groot andMazur 1984) that a multicomponent system under
non-isothermal condition is subject to mass transfer related to coupled-transport phenomena.
This has strong practical importance in many situations since the flow dynamics and con-
vective patterns in mixtures are more complex than those of one-component fluids due to the
interplay between advection and mixing, solute diffusion (see Davarzani et al. 2010). There
are many important processes in nature and technology where thermal diffusion plays a cru-
cial role. It has various technical applications, such as isotope separation in liquid and gaseous
mixtures (see Rabinovich 1981), polymer solutions and colloidal dispersions (see Wiegand
2004), study of compositional variation in hydrocarbon reservoirs (see Firoozabadi 1991),
and coating of metallic items. It also affects component separation in oil wells, solidifying
metallic alloys, volcanic lava, and in the Earth Mantle (see Ilya 2006).

The double-diffusive convection in a porous cavity has been studied by several researchers.
Goyeau et al. (1996) considered the double-diffusive natural convection in a porous cavity
using Darcy-Brinkman formulation. Karimi-Fard et al. (1997) investigated the non-Darcian
effects on double-diffusive natural convection within a porous square cavity filled with a
porous media. At the same time, Nithiarasu et al. (1997) considered the double-diffusive
natural convection in a fluid-saturated porous cavity with a freely convecting wall. Bennacer
et al. (2001) considered the problem of the double-diffusive natural convection in a vertical
enclosure filledwith anisotropic porousmedium. The problemof double-diffusive convection
in inclined triangular porous enclosures with sinusoidal variation of boundary conditions was
discussed numerically by Mansour et al. (2011). Finally, we mention the paper by Rashad
et al. (2014) (who has studied the effects of chemical reaction and thermal radiation on
unsteady double-diffusive convection in a square enclosure filled with a porous mediumwith
sinusoidal boundary conditions on the bottom wall).

It is already well known that ultrahigh-performance cooling is one of the most vital needs
of many industrial technologies. However, inherently low thermal conductivity is a primary
limitation in developing energy-efficient heat transfer fluids that are required for ultrahigh-
performance cooling.Because of the increasingnecessity of themodern technology, including
chemical processes, microelectronics, biotechnology, etc., it is very important to obtain new
type of fluids, having improved heat transfer characteristics. In order to enhance the thermal
characteristics of thefluids, one can formmixtures by addingultrafine solid particles (metallic,
nonmetallic or polymeric) to the fluid. Nanofluids technology, a new interdisciplinary field
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of great importance, where nanoscience, nanotechnology, and thermal engineering meet, has
largely developed over the past several decades. Nanofluids are new types of fluids containing
small fractions of nanoparticles, usually smaller than 100nm, which are uniformly and stable
suspended in a liquid. The thermal behavior of nanofluids provides a basis for heat transfer
intensification, in industrial sectors including power generation, thermal therapy for cancer
treatment, chemical sectors, ventilation, refrigeration, etc. It is also mentioned in the book by
Schaefer (2010) that from the top ten advances in materials science, at least five are directly
related to nanoscience, such as materials science, information processing, biotechnology,
chemistry, and medicine. In biological systems, nanosized structures play an important role
from proteins to deoxyribonucleic acid carrying the genetic code, ribonucleic acid.

Buongiorno (2006) developed a non-homogeneous equilibrium model by considering the
effect of the Brownian diffusion and thermophoresis that are important slip mechanisms in
nanofluid. This model has been widely used by many researchers to study the free convection
boundary layer flowpast a vertical flat plate embedded in a porousmediumfilled bynanofluids
(Nield and Kuznetsov 2011; Kuznetsov and Nield 2011) or flow and heat transfer over a
stretching/shrinking surface (Khan and Pop 2010; Bachok et al. 2011), etc.

In the present study, we investigate the double-diffusive mixed convection in a porous
open cavity filled with a nanofluid using the mathematical nanofluid model proposed by
Buongiorno (2006). The Darcy model is used in the porous layer. It should be mentioned
that many researchers focused their studies on effects of aspect ratios on the double-diffusive
natural convection in enclosures. Chamkha andAl-Naser (2001) studied the unsteady laminar
double-diffusive convective flow in an inclined rectangular enclosure filled with a uniform
porous medium. Costa (2004a) studied the double-diffusive natural convections in parallel-
ogrammic enclosures, and emphasis was given to the situation that the porous media in the
enclosure were saturated with moist air. The same author (Costa 2004b) also pointed out that
the combinations of different aspect ratios and inclination angles can lead to considerably
high heat and mass transfer rates in the enclosure. Further, we mention that Jeng et al. (2009)
performed the experimental and numerical studies of the transient natural convection due to
mass transfer in the inclined enclosures at different inclination angles. The Rayleigh number
Ra ranged from 1.126 × 108 to 1.157 × 1011 and the angle of inclination ϕ varied from 30
to 90◦; the aspects ratio of the enclosure A was changed from 0.6 to 1.

2 Basic Equations

Figure 1 shows the considered double-diffusivemixed convection flow, heat andmass transfer
in a porous open cavity filled with a water based nanofluid. It is assumed that nanoparticles
are suspended in the nanofluid using either surfactant or surface charge technology. This
prevents nanoparticles from agglomeration and deposition on the porous matrix (see Nield
and Kuznetsov 2011; Kuznetsov and Nield 2011). The porous medium is assumed to be
homogeneous and isotropic, and the local thermal equilibrium is valid. The flow in the cavity
is considered to be steady, laminar, and incompressible. The domain of interest is a square
cavity of size L with an inlet of size 0.2 · L in the bottom part of the left vertical wall and
an outlet of the same size in the upper part of the right vertical wall. The heat source of high
temperature Th and a contaminant source of high concentrationCh are considered on the right
vertical wall. The rest of the walls of the cavity are assumed to be adiabatic and impermeable.
In addition, the incoming nanofluid through the inlet with nanoparticle volume fraction ϕin
is at a uniform horizontal velocity uin (vin = 0) at the constant ambient temperature Tin and
concentration C in.
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Fig. 1 Physical model and
coordinate system

It should be noted that we investigate in this paper the interaction between base fluid,
nanoparticles, and porous structure when the base fluid of nanofluid is a binary fluid such
as salty water. The outcome is that we are studying a sort of triple-diffusion problem in
a porous structure involving heat, the nanoparticles and the contaminant. As suggested by
one Reviewer, there should be a net throughflow through the cavity, so that there will be an
extra contribution to the nanoparticle flux (see Jaimala and Singh 2014; Nield and Kuznetsov
2015). Thus, the basic equations for the flow, heat transfer, contaminant and nanoparticles
transport can be written in the following form (see Jaimala and Singh 2014, and Nield and
Kuznetsov 2015).

∇ · V = 0 (1)
ρ f 0

ε

∂V
∂t

= −∇ p − μ

K
V + [

ϕρp + (1 − ϕ)
{
ρ f 0

(
1 − βT (T − Tin) − βC

(
C − C in

))}]
g

(2)
(
ρCp

)
m

∂T

∂t
+ (

ρCp
)
f (V · ∇) T = ∇ (km∇T ) + ε

(
ρCp

)
p

[
DB∇ϕ · ∇T

+ (DT /Tc) ∇T · ∇T − (ϕ − ϕin)

ε
V · ∇T

]
+ (

ρCp
)
m ∇ (

DTC∇C
)

(3)

∂C

∂t
+ 1

ε
(V · ∇)C = ∇ [

DSm∇C + DCT∇T
]

(4)

∂ϕ

∂t
+ 1

ε
(V · ∇) ϕ = ∇ [DB∇ϕ + (DT /Tc)∇T ] (5)

where V is the Darcy velocity vector, T is the fluid temperature, C is the contaminant
concentration, ϕ is the nanoparticle volume fraction, t is the time, p is the fluid pressure,
g is the gravity vector, ε is the porosity of the porous medium, K is the permeability of
the porous medium, ρ f 0 is the reference density of the fluid, μ is the viscosity of the fluid,
βT is the thermal expansion coefficient, βC is the contaminant expansion coefficient, ρp

is the nanoparticle mass density,
(
ρCp

)
f is the volume heat capacity of the fluid,

(
ρCp

)
m

is the effective volume heat capacity of the porous medium, km is the effective thermal
conductivity of the porous medium,

(
ρCp

)
p is the effective volume heat capacity of the

nanoparticle material, DB is the Brownian diffusion coefficient, DT is the thermophoretic
diffusion coefficient, DTC is the diffusivity ofDufour type, DSm is the contaminant diffusivity
for the porousmedium, and DCT is the diffusivity of Soret type. It should bementioned thatwe
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have neglected here the term kd∇T , where kd is the enhancement in the thermal conductivity
due to the thermal dispersion (see Khanafer et al. 2003 and Nakayama 1995). This is because
we have used the model proposed by Buongiorno (2006), and Nield and Kuznetsov (2015).
But, in the future work, we will take into account this phenomenon in order to evaluate this
mechanism in comparison with other ones.

The flow is assumed to be slow so that an advective term and a Forchheimer quadratic drag
term do not appear in the momentum equation. It is assumed also that the contaminant does
not affect the transport of the nanoparticles. In keeping with the Boussinesq approximation
and an assumption that the nanoparticle concentration is dilute, and with a suitable choice
for the reference pressure, we can linearize the momentum equation and write Eq. (2) as

0 = −∇ p− μ

K
V+[

ϕ
(
ρp − ρ f 0

) + ρ f 0

(
1 − (1 − ϕin)

{
βT (T − Tin) + βC

(
C − C in

)})]
g

(6)
Equations (1), (3)–(6) for the steady problem under consideration can be written in dimen-

sional coordinates x, y as follows

∂u

∂x
+ ∂v

∂ y
= 0 (7)

∂p

∂x
= − μ

K
u (8)

∂p

∂ y
= − μ

K
v − [

ϕ
(
ρp − ρ f 0

) + ρ f 0

(
1 − (1 − ϕin)

{
βT (T − Tin) + βC

(
C − C in

)})]
g

(9)

u
∂T

∂x
+ v

∂T

∂ y
= αm

(
∂2T

∂x2
+ ∂2T

∂ y2

)
+ δ

{
DB

(
∂ϕ

∂x

∂T

∂x
+ ∂ϕ

∂ y

∂T

∂ y

)

− (ϕ − ϕin)

ε

(
u

∂T

∂x
+ v

∂T

∂ y

)
+ DT

Tc

[(
∂T

∂x

)2

+
(

∂T

∂ y

)2
]}

+ σDTC

(
∂2C

∂x2
+ ∂2C

∂ y2

)

(10)

1

ε

(

u
∂C

∂x
+ v

∂C

∂ y

)

= DSm

(
∂2C

∂x2
+ ∂2C

∂ y2

)

+ DCT

(
∂2T

∂x2
+ ∂2T

∂ y2

)
(11)

1

ε

(
u

∂ϕ

∂x
+ v

∂ϕ

∂ y

)
= DB

(
∂2ϕ

∂x2
+ ∂2ϕ

∂ y2

)
+ DT

Tin

(
∂2T

∂x2
+ ∂2T

∂ y2

)
(12)

where u, v are the velocity components along x, y directions, respectively.
One can introduce a stream function ψ defined by

u = ∂ψ

∂ y
, v = −∂ψ

∂x
(13)

so that Eq. (7) is satisfied identically. We are then left with the following equations

∂2ψ

∂x2
+ ∂2ψ

∂ y2
= ρp − ρ f 0

μ
Kg

∂ϕ

∂x
− ρ f 0gβT (1 − ϕin) K

μ

∂T

∂x
− ρ f 0gβC (1 − ϕin) K

μ

∂C

∂x

(14)
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∂ψ

∂ y

∂T

∂x
− ∂ψ

∂x

∂T

∂ y
= αm

(
∂2T

∂x2
+ ∂2T

∂ y2

)
+ δ

{
DB

(
∂ϕ

∂x

∂T

∂x
+ ∂ϕ

∂ y

∂T

∂ y

)

− (ϕ − ϕin)

ε

(
∂ψ

∂ y

∂T

∂x
− ∂ψ

∂x

∂T

∂ y

)

+ DT

Tc

[(
∂T

∂x

)2

+
(

∂T

∂ y

)2
]}

+σDTC

(
∂2C

∂x2
+ ∂2C

∂ y2

)

(15)

1

ε

(
∂ψ

∂ y

∂C

∂x
− ∂ψ

∂x

∂C

∂ y

)

= DSm

(
∂2C

∂x2
+ ∂2C

∂ y2

)

+ DCT

(
∂2T

∂x2
+ ∂2T

∂ y2

)
(16)

1

ε

(
∂ψ

∂ y

∂ϕ

∂x
− ∂ψ

∂x

∂ϕ

∂ y

)

= DB

(
∂2ϕ

∂x2
+ ∂2ϕ

∂ y2

)
+ DT

Tin

(
∂2T

∂x2
+ ∂2T

∂ y2

)
(17)

Introducing the following dimensionless variables

x = x/L , y = y/L , ψ = ψ/αm, θ = (T − Tin)/(Th − Tin),

C = (
C − C in

)
/
(
Ch − C in

)
, ϕ = ϕ/ϕin (18)

and substituting (18) into Eqs. (14)–(17), we obtain

∂2ψ

∂x2
+ ∂2ψ

∂22
= −Ra

(
∂θ

∂x
+ Nc

∂C

∂x
− Nr

∂ϕ

∂x

)
(19)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= ∂2θ

∂x2
+ ∂2θ

∂y2
+ Nb

(
∂ϕ

∂x

∂θ

∂x
+ ∂ϕ

∂y

∂θ

∂y

)

+ (1 − ϕ)Nb · Ln
(

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
+ Nt

[(
∂θ

∂x

)2

+
(

∂θ

∂y

)2
]

+ Nd

(
∂2C

∂x2
+ ∂2C

∂y2

)

(20)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= 1

Le

(
∂2C

∂x2
+ ∂2C

∂y2

)
+ Ld

Le

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
(21)

∂ψ

∂y

∂ϕ

∂x
− ∂ψ

∂x

∂ϕ

∂y
= 1

Ln

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
+ Nt

Ln · Nb
(

∂2θ

∂x2
+ ∂2θ

∂y2

)
(22)

The corresponding boundary conditions for these equations are as follows (see Kuznetsov
and Nield 2013)

ψ = Re · Pr · 0.2, ∂θ

∂x
= 0,

∂C

∂x
= 0,

∂ϕ

∂x
= 0 on x = 0, 0.2 ≤ y < 1

ψ = Re · Pr · y, θ = 0, C = 0, ϕ = 1 on x = 0, 0 < y < 0.2

ψ = 0, θ = 1, C = 1, Nb
∂ϕ

∂x
+ Nt

∂θ

∂x
= 0 on x = 1, 0 < y ≤ 0.8

∂ψ

∂x
= 0,

∂θ

∂x
= 0,

∂C

∂x
= 0,

∂ϕ

∂x
= 0 on x = 1, 0.8 < y < 1

ψ = 0,
∂θ

∂y
= 0,

∂C

∂y
= 0,

∂ϕ

∂y
= 0 on y = 0

ψ = Re · Pr · 0.2, ∂θ

∂y
= 0,

∂C

∂y
= 0,

∂ϕ

∂y
= 0 on y = 1 (23)
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Here Re is the Reynolds number, Pr is the Prandtl number for the porous medium,Ra is
the Rayleigh number for the porous media, Nr is the nanofluid buoyancy ratio, Nc is the
regular double-diffusive buoyancy ratio, Nb is the Brownian motion parameter, Nt is the
thermophoresis parameter, Nd is the modified Dufour parameter, Le is the usual Lewis num-
ber, Ld is the Dufour-contaminant Lewis number, and Ln is the nanofluid Lewis number,
which are defined as

Re = ρ f 0uinL

μ
, Pr = μ

ρ f 0αm
, Ra = (1 − ϕin) gKρ f 0βT (Th − Tin) L

αmμ
,

Nr =
(
ρp − ρ f 0

)
ϕin

ρ f 0βT (Th − Tin) (1 − ϕin)
,

Nc = βC
(
Ch − C in

)

βT (Th − Tin)
, Ln = αm

εDB
, Nb = δDBϕin

αm
, Nt = δDT (Th − Tin)

αmTin
,

Nd = σDTC
(
Ch − C in

)

αm (Th − Tin)
,

Le = αm

εDSm
, Ld = DCT (Th − Tin)

DSm
(
Ch − C in

) (24)

The physical quantities of interest are the local Nusselt Nu and Sherwood Sh, Shϕ numbers
along the right vertical wall, which are defined as

Nu = −
(

∂θ

∂x

)

x=1
, Sh = −

(
∂C

∂x

)

x=1
, Shϕ = −

(
∂ϕ

∂x

)

x=1
(25)

and the average Nusselt Nu and Sherwood Sh, Shϕ numbers, which are given by

Nu = 1

0.8

∫ 0.8

0
Nu dy, Sh = 1

0.8

∫ 0.8

0
Sh dy, Shϕ = 1

0.8

∫ 0.8

0
Shϕdy (26)

3 Numerical Method

The partial differential equations (19)–(22) with corresponding boundary conditions (23)
were solved using the finite difference method with the second-order central differencing
schemes (see Aleshkova and Sheremet 2010; Sheremet and Trifonova 2013; Sheremet et al.
2014; Sheremet and Pop 2014). The solution for the corresponding linear algebraic equa-
tions was obtained through the successive under relaxation method. Optimum value of the
relaxation parameter was chosen on the basis of computing experiments. The computation
is terminated when the residuals for the stream function get bellow 10−7.

For the purpose of obtaining grid independent solution, a grid sensitivity analysis was
performed by preparing the solution for steady-state double-diffusive mixed convection in a
square porous cavity filled with a Cu–water nanofluid at Re = 100, Pr = 0.2,Ra = 100,
Nc = Nr = Nb = Nt = Nd = 0.1, Le = Ld = Ln = 1.0, ε = 0.9, solid matrix of
the porous medium is the aluminum foam. Four cases of non-uniform grid are tested: a
grid of 100×100 points (�xmin = �ymin = 0.00087 and �xmax = �ymax = 0.038), a grid
of 150×150 points (�xmin = �ymin = 0.00022 and �xmax = �ymax = 0.033), a grid of
200 × 200 points (�xmin = �ymin = 0.00019 and �xmax = �ymax = 0.024), and a grid
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Table 1 Variations of the average Nusselt and contaminant Sherwood numbers with the non-uniform grid

Non-uniform
grids

Nu � =
∣
∣Nui× j−Nu200×200

∣
∣

Nui× j
× 100%

ShC � =
∣
∣∣ShC i× j−ShC 200×200

∣
∣∣

ShC i× j
× 100%

100×100 −4.784 1.53 −0.467 1.28

150×150 −4.716 0.11 −0.462 0.22

200×200 −4.711 – −0.461 –

250×250 −4.709 0.04 −0.460 0.22

Table 2 Comparison of the average Nusselt and Sherwood numbers

Ra Le Present results Goyeau et al. (1996) Bourich et al. (2004)

Nu Sh Nu Sh Nu Sh

100 10 3.09 13.45 3.11 13.25 3.11 13.27

20 3.09 19.34 3.11 18.89 3.11 19.02

200 10 4.96 20.37 4.96 19.86 4.96 20.02

20 4.96 29.23 4.96 28.17 4.96 28.37

500 10 8.96 34.71 8.93 33.27 9.075 33.27

20 8.96 47.58 8.93 46.77 9.075 45.91

of 250 × 250 points (�xmin = �ymin = 0.00015 and �xmax = �ymax = 0.0194). Table 1
shows an effect of the mesh on the average Nusselt number of the right vertical wall.

On the basis of the conducted verifications, the non-uniform grid of 200× 200 points has
been selected for the following analysis.

The numericalmethodologywas coded inC++, and to check its validity, a comparisonwith
selective data from the published literature was carried out. The performance of the double-
diffusive convection was tested against the results of Goyeau et al. (1996) and Bourich et al.
(2004) for steady-state double-diffusive natural convection in a porous cavity differentially
heated and salted. Table 2 shows the values of the average Nusselt and Sherwood numbers
computed for various Rayleigh and Lewis numbers at Nc = 0 in comparison with data of
Goyeau et al. (1996) and Bourich et al. (2004).

It can be seen in Table 2 that the present mathematical model and numerical method are
in good agreement with the earlier results for double-diffusive natural convection in a porous
cavity. The performance of natural convection in a porous enclosure part of the model was
tested earlier (see Sheremet et al. 2014; Sheremet and Pop 2014).

4 Results and Discussion

Numerical investigation of the boundary value problem (19)–(23) has been carried out at
the following values of key parameters: Reynolds number (Re = 10−100), Prandtl num-
ber (Pr = 0.2), Rayleigh number (Ra = 50−500), usual Lewis number (Le = 1−50),
Dufour-contaminant Lewis number (Ld = 1−50), nanofluid Lewis number (Ln = 1−50),
nanofluid buoyancy ratio (Nr = 0.1−0.4), regular double-diffusive buoyancy ratio (Nc =
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Fig. 2 Streamlines ψ , isotherms θ , isoconcentrations of contaminant C , and nanoparticles volume fraction
ϕ at Ra = 50, Le = Ld = Ln = 1.0, Nr = Nc = Nb = Nt = Nd = 0.1 : Re = 10 − a, Re = 50 − b,
Re = 100 − c, Re = 500 − d

0.1−0.4), Brownian motion parameter (Nb = 0.1−0.4), the thermophoresis parameter
(Nt = 0.1−0.4), modified Dufour parameter (Nd = 0.1−0.4). Particular efforts have been
focused on the effects of these key parameters on the fluid flow, heat and mass transfer
characteristics.

Figure 2 presents the effect of the Reynolds number on isolines of stream function, tem-
perature, contaminant concentration and nanoparticles volume fraction at Ra = 50,Le =
Ld = Ln = 1.0, Nr = Nc = Nb = Nt = Nd = 0.1.

It should be noted that an increase in the Reynolds number is related to an increase in the
inlet velocity uin. Regardless of Re in the domain of interest, one can find a forced flow due to
a presence of inlet and outlet and a single circulation flow due to the effect of the temperature
and concentration differences between the right vertical wall and the fluid inside the cavity.
Therefore, the considered modes are defined by the interaction of the forced flow and natural
convection circulation. The presence of external forced flow leads to cooling of the domain of
interest with a reduction in the contaminant concentration. Distributions of low temperature
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and concentration wave from the inlet to outlet characterize the momentum transport in the
same direction. An increase in the inlet velocity (Re ≤ 100) leads to an intensification of
forced flowalong the bottomwall and as a result the convective single circulation in the central
part of the cavity. The latter is caused by an intensification of flow along interface between
these flows. For high values of Re, the intensive forced flow is characterized by widening
of the forced fluid tube. In case of Re = 500 (Fig. 2d), the forced flow is a prevailing flow
inside the cavity. Therefore, it is possible to conclude that for Re < 100, we have the natural
convection mode, for 100 ≤ Re < 300, we have the mixed convection regime and for high
values of the Reynolds number, we have the forced convection regime. It is worse noting
that in case of the forced convection regime, the single circulation flow has small sizes or is
absent. The average temperature and contaminant concentration inside the cavity are fully
defined by the inlet conditions and confined the essential variations of θ and C close to the
right vertical wall.

Distributions of nanoparticles volume fraction are essentially non-homogeneous. An
increase in the inlet velocity leads to homogenization of nanoparticles distribution inside
the cavity. It should be noted that homogenization of nanoparticles distribution in case of
the intensive circulation has been noticed early in the case of natural convection inside
the three- and two-dimensional domains (see Sheremet et al. 2014; Sheremet and Pop
2014).

In Fig. 3, streamlines, isotherms, contaminant isoconcentrations, and nanoparticles iso-
concentrations are presented for different values of the Rayleigh number at Re = 100,Le =
Ld = Ln = 1.0, Nr = Nc = Nb = Nt = Nd = 0.1. Study of the Rayleigh number effect on
the mixed convection processes within a porous medium is very important. For small values
of the Rayleigh number (Ra = 50), the forced convection is a prevailing heat transfer mode
with heat and mass conduction regime. The latter is clearly presented in the temperature and
concentration fields close to the right vertical wall. The isotherms and isoconcentrations are
parallel to each other close to this wall. The flow inside the cavity is characterized only by
external forced flow without any recirculation. At the same time, a penetration of the cold
temperature and low contaminant concentration for this regime is more essential in compari-
son with other one. An increase in the Rayleigh number to the value Ra = 50 (Fig. 2c) leads
to a formation of the single recirculation in the central part of the cavity that distorts the
forced flow and reduces the penetration of the low temperature and contaminant concentra-
tion into the cavity. Further increase in Ra leads to a formation of central convective vortex
of high intensity that essentially confines external forced flow. Distributions of nanoparticles
characterize the developed hydrodynamic and temperature field.

The effect of the Reynolds and Rayleigh numbers on the average Nusselt and contaminant
Sherwood numbers at right vertical wall for Le = Ld = Ln = 1.0, Nr = Nc = Nb =
Nt = Nd = 0.1 is presented in Fig. 4. Taking into account boundary conditions for the
nanoparticles volume fraction (23) dependences of Shϕ are similar to Fig. 4a.

An increase in Re from 10 to 500 leads to an essential increase in
∣∣Nu

∣∣ and
∣∣Sh

∣∣ due to the
heat and contaminant removal from the vertical wall. An increase in the Rayleigh number
also leads to an increase in

∣∣Nu
∣∣ with non-monotonic changes of

∣∣Sh
∣∣. It should be noted that

an increase in the Rayleigh number from 100 to 400, one can find a reduction in
∣∣Sh

∣∣ and
the following increase in Ra leads to an increase in

∣∣Sh
∣∣. Such behavior can be explained by

thermo diffusion effect.
Figure 5 shows an effect of the usual Lewis number on the averageNusselt and contaminant

Sherwood numbers. An increase in Le leads to an essential intensification of convective mass
transfer and attenuation of convective heat transfer, namely

∣∣Sh
∣∣ increases while

∣∣Nu
∣∣ and
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Fig. 3 Streamlines ψ , isotherms θ , isoconcentrations of contaminant C , and nanoparticles volume fraction
ϕ at Re = 100, Le = Ld = Ln = 1.0, Nr = Nc = Nb = Nt = Nd = 0.1:Ra = 10 − a, Ra = 100 − b,
Ra = 500 − c, Ra = 1000 − d

∣∣Shϕ

∣∣ decrease (e.g., an increase in Le from 1.0 to 10.0 at Ra = 50,Re = 100.0 leads to
both a reduction in

∣∣Nu
∣∣ up to 42% and an increment in

∣∣Sh
∣∣ in 30 times).

The effects of the Brownianmotion and thermophoresis parameters on the averageNusselt
and contaminant Sherwood numbers are presented in Figs. 6 and 7. An increase in the
Brownian motion parameter leads to an insignificant decrease in

∣∣Nu
∣∣ and an inessential

increase in
∣∣Sh

∣∣ (see Fig. 6). At the same time, an increase in the thermophoresis parameter
from 0.1 to 0.4 leads to insignificant nonlinear changes of

∣∣Nu
∣∣, namely for Re < 90, one

can find an inessential reduction in convective heat transfer, for 100 < Re < 200 one can
find an inessential intensification of convective heat transfer and for Re > 300, we have also
an attenuation of convective heat transfer. Changes of the average contaminant Sherwood
numbers with Nt are nonlinear. An increase in Nt leads to an insignificant intensification
of convective mass transfer for Re < 90, a reduction in

∣∣Sh
∣∣ for 90 < Re < 500 and also

intensification of convective mass transfer for Re > 500.
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Fig. 4 Variation of the average Nusselt (a) and Sherwood (b) numbers at right vertical wall with different
Reynolds and Rayleigh numbers for Le = Ld = Ln = 1.0, Nr = Nc = Nb = Nt = Nd = 0.1

Fig. 5 Variation of the average Nusselt (a) and Sherwood (b) numbers at right vertical wall with different
Reynolds and usual Lewis numbers for Ra = 50, Ld = Ln = 1.0,Nr = Nc = Nb = Nt = Nd = 0.1

5 Conclusions

Double-diffusive mixed convection in a porous cavity with one isothermal vertical wall
filled with a nanofluid has been numerically studied. Particular efforts have been focused
on the effects of the Rayleigh, Reynolds and usual Lewis numbers, Brownian motion and
thermophoresis parameters on flowfield, temperature, contaminant and nanoparticles volume
fraction distributions, and average Nusselt and Sherwood numbers. It has been found that
the average Nusselt number at hot vertical wall is an increasing function of the Rayleigh and
Reynolds numbers and a decreasing function of the usual Lewis number. While the average
Sherwood number at this vertical wall is an increasing function of the usual Lewis. Effects of
the Rayleigh and Reynolds numbers on

∣∣Sh
∣∣ and the thermophoresis parameter on the average

Nusselt and Sherwood numbers are non-monotonic. It has been shown that in the present
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Fig. 6 Variation of the average Nusselt (a) and Sherwood (b) numbers at right vertical wall with different
Reynolds and Brownian motion parameter for Ra = 50,Le = Ld = Ln = 1.0,Nr = Nc = Nt = Nd = 0.1

Fig. 7 Variation of the average Nusselt (a) and Sherwood (b) numbers at right vertical wall with different
Reynolds and thermophoresis parameter for Ra = 50, Le = Ld = Ln = 1.0,Nr = Nc = Nb = Nd = 0.1

porous problem, the Richardson number Ri = Gr/Re2 does not define the prevailing of the
forced or natural convection modes. For example, at Ra = 500 and Re = 100 (Fig. 3c), we
have the natural convection regime with essential central circulation while Ri = 0.25 < 1.
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