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Abstract Ion storage in porous electrodes is important in applications such as energy storage
by supercapacitors, water purification by capacitive deionization, extraction of energy from
a salinity difference and heavy ion purification. A model is presented to simulate the charge
process in homogeneous porousmedia comprising big pores. It is based on a theory for capac-
itive charging by ideally polarizable porous electrodes without faradaic reactions or specific
adsorption of ions. A volume averaging technique is used to derive the averaged transport
equations in the limit of thin electrical double layers. Transport between the electrolyte solu-
tion and the charged wall is described using the Gouy–Chapman–Stern model. The effective
transport parameters for isotropic porous media are calculated solving the corresponding
closure problems. The source terms that appear in the average equations are calculated using
numerical computations. An alternative way to deal with the source terms is proposed.
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List of symbols

Aα β Interphase area α–β (m2)
av Effective area (m2 m−3)

ci Ion concentration (mol m−3)

C∞ Salt bulk concentration (mol m−3)

c̃α Deviation salt concentration in α-phase (mol m−3)

〈cα〉α Intrinsic phase average concentration (mol m−3)

D
eff

Effective diffusivity tensor (m2 s−1)
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Di Diffusion coefficient (m2 s−1)

f
1

Closure vector field (m)

f2 Closure scalar field (s m−1)

F Faraday constant (C mol−1)

g
1

Closure vector field (m)

g2 Closure scalar field (V m2 s mol−1)

I Unit tensor (dim.)

I e Ionic current per unit area (A m−2)

Jcharge Charge-transfer flux (C m−2 s−1)

Jsalt Salt molar flux (mol m−2 s−1)

lα Microscopic length scale (m)
li Lattice vectors (m)
L Macroscopic length scale (m)
Lc Macroscopic length scale for the gradient (m)
nα β Unit normal vector from the α into the β-phase (dim.)

Ni Ion flux (mol m−2 s−1)

q Excess charge density (C m−2)

〈q〉α β Excess charge area averaged (C m−2)

ro Radius of the representative elementary volume (m)
t Time (s)
t•C Characteristic time for the supercapacitor regime (s)
t•D Characteristic time for the desalination regime (s)
ui Isotropic mobility (m2 V−1 s−1)

U
eff

Mobility tensor (m2 V−1 s−1)

Vα α-Phase in REV (m3)

VT Thermal voltage (V)
w Excess salt density (mol m−2)

〈w〉α β Excess salt adsorption area average (mol m−2)

x Spatial position (m)
zi Ionic charge number (dim.)

Greek letters

�φD Diffuse-layer potential difference (V)
�φStern Stern-layer potential difference (V)
εα α-Phase volume fraction (dim.)
φ Electrostatic potential (V)
φ̃α Potential deviation in α-phase (V)
〈φα〉α Intrinsic phase average potential (V)
κ Effective conductivity (A V−1 m−1)

λB Bjerrum length (m)
λD Debye length (m)
ψα Generic variable in α-phase
∇ Nabla operator (m−1)
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Subscripts

i Component i
α α-Phase
β β-Phase
α β α–β interphase

Superscripts

α α-Phase
β β-Phase

1 Introduction

The demand of water for human consumption is continuously increasing. Although the
amount of water is estimated to be about 1.38 billion km3 worldwide, only 2.5% of this
amount is freshwater. Most of it is locked up in ice and in the underground leaving only
about 1.2% of all freshwater (only 2.5% of all water) as surface water, which provides most
of life needs (USGS 2014 with data from Shiklomanov 1993). The availability of good-
quality freshwater resources is also decreasing dramatically because of the increase in severe
pollution and irrational waste (Mathioulakis et al. 2007). Therefore, new low-cost desalina-
tion processes have been a topic of growing research interest (Spiegler and El-Sayed 2001;
Anderson et al. 2010; Villar et al. 2010).

Capacitive deionization (CDI) is an electrochemical water treatment process that can be a
viable alternative for treating water at low energy demand. CDI works by sequestering ions,
or other charged species, in the electrical double layers of ultracapacitors. The ion removal
step stores capacitive energy that can be recycled to reduce the total energy budget of the
process (Anderson et al. 2010; Porada et al. 2013). The process efficiency depends on the
electrode available area to store ions. Therefore, porous materials with high surface area are
chosen as electrodes. Mesoporous carbon materials are suitable for CDI electrodes because
of their high surface area and desirable pore size range (Zhou et al. 2008; Liu et al. 2010;
Tsouris et al. 2011).

Biesheuvel and Bazant (2010) presented a model for capacitive charging and desalination
by ideally polarizable porous electrodes. This model excludes effects of faradaic reactions
or specific adsorption of ions. The authors discussed the theory for the case of a dilute,
binary electrolyte using the Gouy–Chapman–Stern (GCS) model of the EDL. This model
has been extended to include faradaic reactions and a dual-porosity (macropores and micro-
pores) approach (Biesheuvel et al. 2011) which considers that the electrodes are composed
of solid particles that are porous themselves. Biesheuvel et al. (2011) for the first time used
a novel modified-Donnan (mD) approach for the micropores, valid for strongly overlapped
double layers. Biesheuvel et al. (2012) also presented a porous electrode theory for ionic mix-
tures, including faradaic reactions. Recently, Biesheuvel and Porada (2014) improved themD
model by making the ionic attraction term dependent on total ion concentration in the carbon
pores. The authors reported that the new mDmodel significantly improves predictions of the
influence of salt concentration on CDI performance.
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The goal of this paper is to use the volume averaging method (Whitaker 1999) to conduct
a detailed analysis of the CDI process in the case of porous materials of homogeneous size
distribution.

2 Theoretical Development

2.1 Model Description

The physical model used in this work is based on the one proposed by Biesheuvel and Bazant
(2010). The porous electrode is divided into pore space filled with quasi-neutral electrolyte
and a solid matrix. The solution inside the pore space exchanges ions with a charged, thin
double-layer “skin” on the electrode matrix. A key assumption in this model is that the
double-layer “skin,” containing the diffuse ionic charge that screens the surface charge, is
thin compared to the typical pore size in the electrode (Levich 1962; Tiedemann andNewman
1975; Bazant et al. 2004; Chu and Bazant 2006; Biesheuvel et al. 2009).

The Biesheuvel and Bazant (2010) approach is based on Newman’s macroscopic porous
electrode theory (Johnson and Newman 1971; Newman and Thomas-Alyea 2004), with
the same assumptions made. The local salt concentration and electrostatic potential of the
quasi-neutral solution within the pores are assumed to vary slowly enough to permit volume
averaging to yield smooth macroscopic variables. The exchange of ions with the double
layers on the pore surfaces is modeled as a slowly varying volumetric source/sink term in
the macroscopic, volume-averaged transport equations. The porous electrode is thus treated
as a homogeneous mixture of charged double layers and quasi-neutral solution, see original
work by Biesheuvel and Bazant (2010) for more details.

We will follow a route based on the volume averaging method (VAM) developed by Prof.
S. Whitaker and co-workers over a period of many years (Whitaker 1999). In the bulk of the
quasi-neutral solution filling the pores, the Nernst–Planck (NP) equation is used (Pivonka
et al. 2007, 2009; Scheiner et al. 2010). The ion flux of species i is given by:

Ni = −Di {∇ci + (zi F ci/R T )∇φ}, (1)

where Ni is the ionflux, ci is the ion concentration,∇ is the nabla operator for one-dimensional
variation in x the spatial position, zi is the ion charge, Di is the diffusion coefficient of ionic
species i , and φ is the electrostatic potential in the pores. Equation (1) has been derived
assuming that the isotropic mobility, ui , is given by the Nernst–Einstein relation (Bockris
et al. 2000) for constant absolute temperature T (ui = Di/R T ).

We consider a two-phase medium consisting of an α phase (liquid) and a β phase (solid)
as shown in Fig. 1. The point species molar continuity equation, including the NP expression
for the molar flux for the α phase, is given by:

∂ci/∂t = −∇ • Ni . (2)

Substituting Eq. (1) into (2) yields:

∂ci/∂t = ∇ • (Di {∇ci + zi ci∇φ/VT}). (3)

Here, the thermal voltage (VT) is given by, VT = R T/F . In the case of a monovalent ionic
salt, NaCl for example, Eq. (3) leads to two differential equations for the positive and negative
ions. Adding up these equations leads to a single equation in the salt concentration, c, where
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r

α-phase 

β- phase 

Fig. 1 Porous medium and representative elementary volume (REV)

the migration terms disappear if c− = c+ = c and D = D− = D+:

∂c/∂t = ∇ • (D∇c). (4)

The corresponding boundary condition at the liquid–solid interface (Aα β) is given by:

− nα β • (D∇c) = Jsalt, (5)

where nα β is the unit outwardly directed normal vector pointing from the α-phase into the
β-phase, and Jsalt is the salt molar flux from the pore phase into the diffuse double layers on
the electrode surface.

In order to calculate the electrostatic potential in the system, we follow the Johnson and
Newman (1971) derivation. This formulation requires that we solve for the pore phase of
the electrode the differential Ohm’s law for the current carried by the ions per unit area (I e)
given by:

I e/F =
N∑

i=1

zi N i , (6)

where F is the Faraday constant. We assume c+ = c− = c, D = D− = D+, and z+ = 1 =
−z− and substitute Eq. (1) into Eq. (6) to obtain:

I e/F == −κ∇φ, (7)

where κ , the effective conductivity of the solution phase, is calculated using:

κ = c F(u+ + u−) = 2D F c/R T . (8)

A local charge balance in the bulk fluid for a quasi-neutral binary electrolyte leads to:

∇ • (I e/F) = −∇ • (κ∇φ) = −∇ •
(
2D

VT
c∇φ

)
= 0, (9)

with the corresponding boundary condition at the interphase α–β:

− nα β • (κ∇φ) = Jcharge. (10)

Here, Jcharge describes the charge-transfer flux from the pore solution into the interphase.
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In order to close the porous electrode model, we follow Biesheuvel and Bazant (2010) to
relate the rate of charge removal from the liquid phase, Jcharge, to the excess charge density,
−q , by:

∂q/∂t = Jcharge, (11)

and Jsalt to the excess salt adsorbed, w, by:

∂w/∂t = Jsalt. (12)

Equations (11) and (12) define source terms that will enter into the averaged equations
during the averaging process. These source terms will be described in this work using a
methodology similar to the one proposed by Carbonell and Whitaker (1983) in their study of
nonlinear adsorption. We propose using the GCS model (Bazant et al. 2004; Chu and Bazant
2006; Zhao et al. 2010) that leads to:

w = F(c, φ) = 8λDC∞
√
c/C∞ sinh2(�φD/4/VT), (13)

and q = G(c, φ) = −4λDC∞
√
c/C∞ sinh(�φD/2/VT), (14)

where C∞ is the bulk concentration, �φD is the potential difference over the diffuse
layer, (�φD = φStern − φ), φStern is the Stern potential, λD is the Debye length (λD =
1/

√
8πλBNavC∞), Nav is the Avogadro number, and λB (the Bjerrum length) is ∼ 0.72 nm

at room temperature.
Zhao et al. (2010) reported that a key property of the porous electrode is the charge effi-

ciency of the double layer,Λ, defined as the ratio of equilibrium salt adsorption over electrode
charge, and from Eqs. (13) and (14), the charge efficiency is given by, Λ = tanh(�φD/4).
The authors also presented experimental data for Λ as a function of voltage and salt concen-
tration and used this data set to characterize the double-layer structure inside of the electrode
and determine the effective area for ion adsorption.

Equations (9) and (10) cannot be solved independently for the electrostatic potential in
the liquid phase (φ) due to the dependence of the effective conductivity of the solution
on the ionic strength c. This is an important difference with the electrophoretic problem
studied by Locke (1998), where the electrostatic potential can be calculated independently
of the solute concentration in most situations. Therefore, the averaging procedure will yield
two differential equations in the potential and salt concentration which can only be solved
simultaneously.

2.2 Species Continuity Equation

We start our derivation from Eq. (4) and the boundary condition at the α–β interphase given
by Eq. (5). The boundary conditions in the input–output area of the macroscopic domain are
not relevant to the volume averaging method, as several authors (Ryan et al. 1980; Carbonell
and Whitaker 1984; Nozad et al. 1985; Whitaker 1986; Quintard and Whitaker 1998; Locke
1998; Ulson de Souza and Whitaker 2003) have proved that the problem under study can
be always expressed by a local problem that does not require knowledge of these boundary
conditions. The physical system defined by Eqs. (4) and (5) is somewhat similar to the
diffusion with surface adsorption problem studied by several authors (Quintard andWhitaker
1998; Ulson de Souza andWhitaker 2003). The source term enters into the volume- averaged
equation through the boundary condition. The source terms in this work are highly nonlinear,
describing the mass and charge- transfer fluxes into the double layers.
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A variety of averages is encountered in this type of analysis (Whitaker 1999). The tradi-
tionally encountered averages are the phase average given by:

〈cα〉 = 1

V

∫

V

cα dV , (15)

and the intrinsic phase average which takes the form:

〈cα〉α = 1

Vα

∫

V

cα dV = εα〈cα〉. (16)

Here, V is the volume of the REV, Vα represents the volume of the α phase contained
within the REV, and εα is the volume fraction given explicitly by εα = Vα/V . We also use
the spatial averaging theorem (Gray and Lee 1977) that takes the form for a scalar variable
ψα:

〈∇ψα〉 = ∇〈ψα〉 + 1

V

∫

Aα β

nα βψα dA. (17)

After repeated use of the averaging tools described above, plus algebraic manipulations,
we obtain the following volume-averaged equation:

εα∂〈cα〉α/∂t = ∇ •
(
D

eff
• ∇〈cα〉α

)
+ ∇ • (Dεαu∂〈w〉α β/∂t) − av∂〈w〉α β/∂t. (18)

Here, av is the effective area, and 〈w〉α β is the excess salt adsorption averaged at the interphase
area α–β and calculated by:

∂〈w〉α β/∂t = 〈Jsalt〉α β = ∂

∂t

⎧
⎪⎨

⎪⎩
1

Aα β

∫

Aα β

w dA

⎫
⎪⎬

⎪⎭
. (19)

Here, we have used Eq. (12) and permutated the integral and derivative operations. D
eff

is
the effective diffusivity tensor given by:

D
eff

= εαD

⎛

⎜⎝I + 1

A α β

∫

Aα β

nα β f 1 dA

⎞

⎟⎠ . (20)

The vector u is given by:

u = 1

Vα

∫

Aα β

nα β f2 dA. (21)

In the derivation of the volume-averaged equations, we have used the following equations:

cα = 〈cα〉α + c̃α (22)

and c̃α = f
1
•∇〈cα〉α + f2∂〈w〉α β/∂t. (23)

Equation (22) is an application of Gray’s decomposition (Gray 1975), while Eq. (23) has been
derived by introducing Eq. (22) into the boundary condition given by Eq. (5). In the derivation
of Eq. (23), we considered the local closure problem to be quasi-stationary. Crapiste et al.
(1986) in their study of diffusion with first-order reaction in porous media concluded that the
local process in the REV is quasi-stationary when the following restriction holds:

t∗D/ l2α >> 1, (24)
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where t∗ is the characteristic time for the mass transport process, lα is a characteristic length
of the micro-scale, and D is the diffusion coefficient. According to Biesheuvel and Bazant
(2010), the characteristic time for the supercapacitor regime (t•C ) and the characteristic time
for the desalination regime (t•D) both satisfy the condition given by Eq. (24).

The f
1
vector field and the scalar f2 field required for calculationof the effective diffusivity

tensor and the u-vector given by Eq. (21) are calculated by solving the following boundary
value problems:

Problem 1

∇2 f
1

= 0 (25)

−nα β • ∇ f
1

= nα β, (26)

in the Aα β and for spatially periodic porous media,

f
1
(r + li ) = f

1
(r). (27)

Problem 2

∇2 f2 = −av/(εαD) (28)

−nα β • ∇ f2 = 1/D, (29)

in the Aα β and also for spatially periodic porous media,

f
2
(r + li ) = f

2
(r) for i = 1, 2, 3. (30)

Here, and in Eq. (25), li represents the three non-unique lattice vectors that are needed to
describe a spatially periodic porous medium (Brenner 1980).

An order of magnitude analysis based upon Eq. (29), see “Appendix,” proves that the
second term on the right-hand-side can be eliminated compared to the last. This leads to:

εα∂〈cα〉α/∂t = ∇ • (D
eff

• ∇〈cα〉α) − av∂〈w〉α β/∂t. (31)

Equation (31) is identical to the one derived by Biesheuvel and Bazant (2010). This result
is also similar to those obtained by Ryan et al. (1980) and Crapiste et al. (1986) for the case
of diffusion and first-order reaction in porous media. Ryan et al. (1980) concluded that the
effect of the heterogeneous reaction on the f

1
-field was negligible and that a geometrical

surface source term, represented by nα β, was the dominant characteristic of the flux boundary
condition. After this simplification, problem 1 is the only relevant closure problem to be
solved. This problem was presented earlier by Ryan et al. (1980) and solved numerically
to produce excellent agreement between theory and experiment. Several authors have also
solved successfully this closure problem or similar ones (Kim et al. 1987; Gabitto 1991;
Quintard 1993; Ochoa-Tapia et al. 1993; Borges da Silva et al. 2007; Valdes-Parada and
Alvarez-Ramirez 2010). The boundary value problem defined by Eqs. (25)–(27) depends
only upon the geometric characteristics of the porous medium and, therefore, can be solved
to evaluate the effective diffusivity tensor.

2.3 Electrical Potential

We start our derivation from Eq. (9) and the boundary condition at the α–β interphase given
by Eq. (10). Again, the boundary conditions in the input–output area of the macroscopic
domain are not relevant to the volume averaging method, as the problem can be expressed
by a local problem. The physical system defined by Eqs. (9) and (10) is somewhat similar to
the diffusion–dispersion problem with heterogeneous reaction and/or absorption studied by
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several authors (Carbonell and Whitaker 1983; Quintard and Whitaker 1998; Ochoa-Tapia
et al. 1994; Borges da Silva et al. 2007; Ulson de Souza and Whitaker 2003; Paine et al.
1983; Buyuktas and Wallender 2004). In the dispersion studies, we have an independently
calculated vector field (v) that influences the value of the concentration scalar field. The
analysis of electrophoretic transport done by Locke (1998) presented a similar situation with
the electric field vector, also independently calculated, replacing the velocity vector field. In
both cases, the vector field satisfies a zero divergence condition. The source term enters into
the volume-averaged equation through the boundary condition. However, in this work, the
concentration and potential gradient distributions cannot be calculated independently.

We proceed applying the phase average operation defined by Eq. (12) to both sides of Eq.
(9). Repeated use of the tools described above leads to:

∇ •
{
U

eff
• 〈cα〉α∇〈φα〉α

}
+ ∇•

⎧
⎪⎨

⎪⎩
εαU 〈cα〉α

Vα

⎛

⎜⎝
∫

Aα β

nα βg2 dA

⎞

⎟⎠
∂〈q〉α β

∂t

⎫
⎪⎬

⎪⎭

+∇ •

⎧
⎪⎨

⎪⎩
εαU

Vα

∫

Vα

c̃α∇φ̃α dV

⎫
⎪⎬

⎪⎭
− av

∂〈q〉α β

∂t
= 0. (32)

Here, U = 2D/VT and ∂〈q〉α β/∂t is the time variation of the excess charge averaged at the
interphase area α–β calculated by:

∂〈q〉α β/∂t = 〈Jcharge〉α β = ∂

∂t

⎧
⎪⎨

⎪⎩
1

Aα β

∫

Aα β

q dA

⎫
⎪⎬

⎪⎭
. (33)

We have used Eq. (11) to relate the excess adsorbed charge q to Jcharge. The effective
mobility tensor, U

eff
, is given by:

U
eff

= εα
2D

VT

⎛

⎜⎝I + 1

Vα

∫

Aα β

nα βg1 dA

⎞

⎟⎠ . (34)

The term 1
Vα

∫

Vα

c̃α∇φ̃α dV = 〈c̃α∇φ̃〉α accounts for the “dispersion-like” interaction between
the salt concentration and the electric field. It should be noted that the dispersion-like term
depends upon a volume integral.

In deriving Eq. (32), we have used that

φα = 〈φα〉α + φ̃α, (35)

and

φ̃α = g
1
•∇〈φα〉α + g2∂〈q〉α β/∂t. (36)

Equation (35) is an application of Gray’s decomposition for φα. Equation (36) has been
derived by introducing Eq. (35) into the boundary condition given by Eq. (10) and following
the procedure presented by Carbonell and Whitaker (1983) to obtain the local closure prob-
lem. In the derivation of Eq. (36), we have also considered the local closure problem to be
quasi-stationary and used order of magnitude analysis.
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The vector field g
1
and the scalar field g2 that map the gradient of the averaged potential

in the liquid phase and the excess charge source term onto the potential deviations can be
calculated by solving the following boundary value problems:

Problem 3

∇2g
1

= 0 (37)

−nα β • ∇g
1

= nα β, (38)

in the Aα β and for spatially periodic porous media,

g
1
(r + li ) = g

1
(r). (39)

Problem 4

∇2g2 = −avVT/
(
2εαD〈cα〉α

)
(40)

−nα β • ∇g2 = VT/(2D〈cα〉α), (41)

in the Aα β and for spatially periodic porous media:

g2(r + li ) = g2(r). (42)

Inspection of the closure problems shows that problem 3 is identical to problem 1 and
problem 4 becomes dependent on the average salt concentration. The latter result reflects the
fact that salt migration depends on the interaction between the electric field (−∇φ) and the
salt concentration (cα).

An order of magnitude analysis conducted on Eq. (32) shows that the third term can be
neglected compared to the first and the second compared to the fourth, see “Appendix.” This
conclusion leads to the following equation:

∇ •
{
U

eff
• 〈cα〉α∇〈φα〉α

}
− av ∂〈q〉α β/∂t = 0. (43)

Equation (43) is identical to the one derived by Biesheuvel and Bazant (2010). This result
makes it not necessary to solve problem 4, while the solution of problem 1 will allow us to
calculate the value of the salt effective mobility tensor (U

eff
). An interesting additional result

is that from Eqs. (20) and (34), we can see that the salt effective mobility tensor is related to
the salt effective diffusivity tensor by the Einstein equation:

U
eff

= 2D
eff

VTF
. (44)

2.4 Alternative Treatment of Source Terms

The source terms ∂〈w〉α β/∂t and ∂〈q〉α β/∂t , which appear in Eqs. (31) and (43), could
only be calculated numerically. In order to overcome this problem, we derived an alternative
theoretical formulation based upon values of 〈cα〉α and 〈φα〉α. We followed Quintard and
Whitaker (1998), expressing 〈w〉α β as a function of 〈cα〉α and 〈φα〉α using:

〈w〉α β = F
(〈cα〉α, 〈φα〉α

)
, (45)

and

∂〈w〉α β/∂t=∂F/∂〈cα〉α∂〈cα〉α/∂t+∂F/∂〈φα〉α∂〈φα〉α/∂t=F1∂〈cα〉α/∂t+F2∂〈φα〉α/∂t.
(46)
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In Eq. (46), F1 and F2 represent the partial derivatives of F with respect to 〈cα〉α and 〈φα〉α,
respectively. Quintard and Whitaker (1998) derived the length-scale constraint associated
with Eq. (45). Following their approach, we also required that variations of F1 and F2 be
neglected within the averaging volume. Introducing Eq. (46) into Eq. (31), we obtained:

εα(1 + avF1/εα)∂〈cα〉α/∂t = ∇ • (D
eff

• ∇〈cα〉α) − avF2∂〈φα〉α/∂t. (47)

Equation (47) is similar to the one derived by Quintard and Whitaker (1998) and Ulson de
Souza and Whitaker (2003) studying diffusion with nonlinear adsorption. The extra source
term dependent on the potential appears because the excess salt concentration depends upon
both concentration and potential.

We can also express 〈q〉α β as a function of 〈cα〉α and 〈φα〉α using:

〈q〉α β = G(〈cα〉α, 〈φα〉α), (48)

and

∂〈q〉α β/∂t=∂G/∂〈cα〉α∂〈cα〉α/∂t+∂G/∂〈φα〉α∂〈φα〉α/∂t=G1 ∂〈cα〉α/∂t+G2∂〈φα〉α/∂t.
(49)

Here, G1 and G2 represent the partial derivatives of G with respect to 〈cα〉α and 〈φα〉α,
respectively. We also required that the length-scale constraints associated with Eq. (48) be
valid and that variations ofG1 andG2 be neglected within the averaging volume. Introducing
Eq. (49) into Eq. (43) leads to:

av G2∂〈φα〉α/∂t = ∇ • {U
eff

〈cα〉α∇〈φα〉α} − av G1∂〈cα〉α/∂t. (50)

Equation (50) shows that the potential field depends upon the time variation of the salt
concentration field. The value of the two source terms depends upon the partial derivatives of
q with respect to potential and concentration. The terms F1, F2,G1 and G2 can be computed
using an appropriate EDL model, for example, the modification to the GCS model in the
case of thin EDLs proposed by Biesheuvel and Bazant (2010). These authors set the ratio
of the diffuse-layer Debye–Hückel and Stern-layer capacitances (δ) equal to zero; therefore,
�φD = φ1 − φ.

Equations (47) and (50) provide an alternative set of equations equivalent to the ones
reported by Biesheuvel and Bazant (2010) and can be used to simulate the transport process.

These equations show explicitly terms depending upon the average electrical potential and
salt concentration and not based on w and q . The treatment of the source terms presented
here has not been reported in literature before.

3 Numerical Calculations

3.1 Effective Diffusion Coefficients

The calculation of the effective diffusivity tensor defined by Eq. (20) has been done several
times in the literature for homogeneous and heterogeneous porous media, as mentioned
above. However, we solved it numerically for the case of 3D homogeneous porous media in
order to validate our numerical scheme for the calculation of the other unit cell parameters
given by Eqs. (25)–(27), (37)–(39) and (40)–(42). Our goal is to implement these calculations
into the transport in porous electrodes model.
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la

Lb

La

lb

Fig. 2 Schematic of the isotropic porous medium

In the system depicted in Fig. 2, the particles are considered rectangular prisms of infinite
height. Under this assumption, the process can be described by a simple two-dimensional
unit cell of sides La and Lb containing particles of sides la and lb. We analyzed the isotropic
case where la = lb. This system was originally solved by Ryan et al. (1980) and produced
excellent agreement between theory and experiments.

The dimensionless diffusion tensor is calculated from:

D
eff

/D = εα(I + τ
eff

). (51)

Here, τ
eff

is the tortuosity tensor calculated from the following integral over the interphase
area of the vector field f

1
:

τ
eff

= 1

Aα β

∫

Aα β

nα β f 1 dA. (52)

Since the system depicted by Fig. 2 is transversely isotropic, then τxx = τyy and τxy =
τyx = 0. Thismeans that the only independent, nonzero component of the effective diffusivity
tensor (Dxx ) is given by:

Dxx/D = εα(1 + τxx ). (53)

3.2 “Dispersion-Like” Terms

The vector u that appears in Eq. (21) and the “dispersion-like” term that appear in Eq.
(32) were calculated numerically for the same periodic system used for calculation of the
effective diffusivity coefficient. The vector u depends upon the value of the coefficient f2 and
was calculated using the area integral defined by Eq. (21). The f2 values were calculated by
solving Eq. (28) subjected to the boundary conditions (29) and (30). The calculated numerical
results supported the conclusion reached using order of magnitude estimates.

In order to numerically estimate the values of the second and third terms in Eq. (32),
we solved for the scalar field g2. These parameters were calculated by solving Eqs. (40)–
(42). However, the problem is dependent upon the 〈cα〉α value. An iterative scheme was
used with the following procedure. First, values of the average salt concentration, 〈cα〉α,
potential, 〈φα〉α, and the time derivatives, ∂〈w〉α β/∂t , and ∂〈q〉α β/∂t , were provided. Then,
the deviations and concentration point values for the basic unit cell were calculated using
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Eqs. (22) and (23). The term 〈c̃α∇φ̃α〉α is calculated from the values of g
1
and the scalar

field g2 by performing numerical volume integration in the basic unit cell. The values of g
1

were calculated using that the g
1
values are equal to the f

1
values. The whole procedure was

implemented as a subroutine in a computer program that solves the full system of equations
proposed in this work for simulating the CDI process in porous electrodes (Sharma et al.
2013). The values of average concentration and potential in the overall numerical scheme are
calculated by iteration.We included the procedure presented here to evaluate the vector u and
the term 〈c̃α∇φ̃α〉α within the general iterative scheme. Finite difference schemes were used
to solve the closure problems using the calculated average values of 〈cα〉α, 〈φα〉α, ∂〈w〉α β/∂t
and ∂〈q〉α β/∂t .

4 Results

The computer code described in Sect. 3 was validated in two different ways. First, we calcu-
lated values of the effective diffusivity tensor and compared them to simulation results and
experimental data available in literature. Second, we compared calculated closure parameters
with published literature results. In all our calculations, we used the simple square unit cell
depicted in Fig. 2 to solve the closure problems. This unit cell was originally used by Ryan
et al. (1980). Whitaker (1999) established that the only relevant geometrical information
required by this transport problem in isotropic porous media was the void fraction (εα). In
the case of anisotropic porous media, the matter is more complex (Ochoa-Tapia et al. 1994).

The results for the effective diffusivity calculations are shown in Fig. 3. We can see that
there is very good agreement with results from Ryan et al. (1980) and experimental data.
These results validate the proposed numerical procedure to calculate the unit cell parameters
f
1
, f2, g1 and g2.We also calculated the integrals of the deviations variables and the gradients

of these deviations variables. The accuracy of the calculations was checked by requiring that
the integrals of the deviations variables be equal to zero. This condition was satisfied up to
the precision error of the computer program.

We followed the reasoning of Ryan et al. (1980) and Kim et al. (1987) in order to calculate
the profiles of the unit cell parameters. In the solution of the boundary value problems 1
through4, the solutionprofiles are generated by the interphase boundary conditions; therefore,
based on these boundary conditions, we can predict whether the profiles are symmetric or
skew-symmetric. Kim et al. (1987) showed that determination of the symmetry conditions
allows one to solve the boundary value problem in one quarter of the unit cell instead of the
whole domain. In this work, we calculated both the entire unit cell profiles using periodic
boundary conditions and the quarter unit cell using the symmetry boundary conditions. Very
good agreement was found between both sets of results.

Our computed results for the isotropic effective diffusivity are represented by the following
equation:

Dxx/D
o
i = ε3α − 0.7548ε2α + 0.7452εα. (54)

The only information published in the literature on closure parameters has been related
to the vector f

1
calculated by solving problem 1 (Ryan et al. 1980; Kim et al. 1987; Gabitto

1991; Ochoa-Tapia et al. 1994; Valdes-Parada and Alvarez-Ramirez 2010; among others). In
the case of isotropic porous media the tortuosity tensor defined by Eq. (52) is transversely
isotropic, then, only the x component of the vector f

1
needs to be calculated.

Figure 4 depicts a contour plot for the x component of the vector f
1
calculated in this

work using the isotropic unit cell depicted in Fig. 2. The dark lines depict the borders of
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Fig. 4 Contour plot depicting the fx field in the proposed periodic unit cell

the unit cell. The central particle is represented by the white square in the middle of the
figure, armchair seat. The z-axis depicts the values of the fx component. Red to yellow
colors represent positive values, while light to dark blue colors represent negative values of
fx .
The results presented in Fig. 4 show the typical “armchair” distribution of the fx field

values around the central solid particle reported by several authors (Ryan et al. 1980; Kim
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et al. 1987; Gabitto 1991; Ochoa-Tapia et al. 1994; Valdes-Parada and Alvarez-Ramirez
2010; among others). A symmetry analysis can be conducted by dividing the unit cell domain
drawing two straight lines, one parallel to the y-axis and passing through x = 0.5 and the
other parallel to the x-axis passing by y = 0.5. The two straight lines divide the domain
into four areas. Analyzing the fx function in the four areas, we can conclude that the fx
function is symmetric around the y = 0.5 line ( fx right = fx left). We can also conclude
that the fx field is skew-symmetric around the x = 0.5 line ( fx above = − fx below).
These symmetries have also been reported by Ryan et al. (1980) and Kim et al. (1987).
It is important to state that the symmetry conditions were not imposed by the authors, but
resulted from setting the appropriate boundary conditions on the boundaries of the central
solid particle.

The calculated f2 scalar field, not shown here, was found out to be completely symmetric;
therefore, the integral given by Eq. (21) should be zero and, consequently, the vector u.
Whitaker (1999) reached the same conclusion using mathematical arguments. Same results
were found for the scalar field g2. Other numerical results, not shown here, show that the
“dispersion-like” term appearing in Eq. (32) is negligible compared to the other terms. These
findings confirm our order of magnitude estimates.

A practical problem appears in the calculation of the time derivatives, ∂〈w〉α β/∂t and
∂〈q〉α β/∂t . In Sect. 2.4 we assumed that 〈w〉α β and 〈q〉α β are explicit functions of the average
functions, 〈cα〉α and 〈φα〉α. However, the average variables are function of time themselves
following a complex functionality given by the solution of Eqs. (31) and (43). Therefore,
originally, we computed these derivatives numerically in a computer code that simulates the
CDI process (Sharma et al. 2013).

The alternative treatment presented in Sect. 2.4 allows one to calculate the source terms
by evaluation of functions of the average values. However, it requires the calculation of the
terms F1, F2,G1 and G2 using an EDL model. In this work, we used the modification of
the GCS model, in the case of thin EDLs, proposed by Biesheuvel and Bazant (2010) to
calculate the partial derivatives of 〈q〉α β and 〈w〉α β with respect to 〈cα〉α and 〈φα〉α. In this
modification, the ratio of the diffuse-layer Debye–Hückel and Stern-layer capacitances (δ)

was assumed to be equal to zero; therefore, �φD = φ1 − φ.
Our calculated results are presented in Figs. 5, 6 and 7. Figure 5 shows the time variation

of the F1, F2,G1 and G2 functions used to calculate the source terms using Eqs. (46) and
(49). Figures 6 and 7 show a comparison between the two procedures used to calculate the
source terms. These results were calculated using typical experimental values for the CDI
process, electrode thickness (Le) = 0.001m, Do = 1.5 10−9 m2/s, pore diameter=50nm,
void fraction=0.5, salt concentration=0.05M and half-electrode potential=0.25V, and the
characteristic time (τ ) was equal to 11.1 minutes. In all the calculations using Eqs. (46)
and (49), we approximated the point values of the required variables by the corresponding
average values.

Figure 5 shows that the absolute values of the q derivatives are bigger than the correspond-
ing values of the w derivatives. However, for positive electrode potential (φ1), the values for
the derivative ofw with respect to concentration and the derivative of q with respect to poten-
tial are negative, while the remaining derivatives are positive. The time evolution is similar
for all the functions, i.e., big variation in value at short times and small variation at longer
times.

The time variation of the source terms is shown in Fig. 6. We can see that the values of the
source terms calculated numerically and usingEqs. (46) and (49) are practically identical. The
source term for salt concentration decreases continuously as time increases until it approaches
zero. The source term for charge increases continuously as time increases until it approaches
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Fig. 6 Time variation of source terms (∂〈w〉α β/∂t and ∂〈q〉α β/∂t) calculated using two different procedures

zero. This behavior is produced because the excess charge density is negative for a positive
electrode.

The values of the source terms calculated using both procedures influence the results
of the computations. Figure 7 shows the time variation of typical average values of
〈cα〉α in the electrode calculated using both procedures. Each value shown in Fig. 7
has been calculated by arithmetically averaging all 〈cα〉α values inside the electrode.
Therefore, Cav represents an average value of the salt concentration in the porous elec-
trode.

In Fig. 7, once again both methods predict the same values. The calculated results show
an initial decrease in the average value of the concentration inside the pores. This effect is
produced by the fast charging of the EDLs at short times that depletes the solution (superca-
pacitor regime). The source terms continuously decrease in absolute values as time increases
until a minimum concentration point is reached when the diffusive flow from outside the
electrode, that increases the electrode salt concentration, equates the charging process that
decreases it and, from that point on, the average concentration inside the electrode increases
(desalination regime).
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for source terms evaluation

Figures 6 and 7 confirm that both procedures predict the same results, within numerical
error; therefore, both formulations can be considered equivalent.

5 Conclusions

The volume averaging method has been used to derive the average equations describing salt
capture in porous electrodes by electrosorption. We have derived the complete form of the
volume- averaged equations starting from the point equations and the appropriate boundary
conditions. The concentration and electrostatic potential deviation fields were found to be
functions of the corresponding averaged variables and the excess charge and salt values inside
the double layers, Jcharge and Jsalt . These terms act like source terms in the derived equations
and lead to the presence of “dispersion-like” terms that represent the contributions of the
source terms to the deviation fields of concentration and electrostatic potential. Calculation of
the values of the source terms was accomplished by numerical calculations using a computer
program that combines a transport model with a double-layer model (GCS) of the transport
process by diffusion and electromigration in porous electrodes.

The effective diffusivity in an isotropic porous electrode was calculated using the proce-
dure presented by Ryan et al. (1980). The agreement between our results, experimental data
and Ryan et al. results was used to determine the accuracy of our numerical procedure. Order
of magnitude analysis and computed results support neglecting the vector u term in the mass
equation and the “dispersion-like” terms in the potential equation. These simplifications led
to final equations identical to the ones reported by Biesheuvel and Bazant (2010). Finally, an
alternative formulation that includes source terms based upon values of the time derivatives
of the average concentration and electrical potential was also derived. This alternative for-
mulation is similar to the equations derived by Quintard and Whitaker (1998) and Ulson de
Souza and Whitaker (2003) and can be used instead of the formulation originally proposed
by Biesheuvel and Bazant (2010).
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Appendix

Order of Magnitude Analysis in Eq. (18)

εα∂〈cα〉α/∂t = ∇ • (D
eff

• ∇〈cα〉α) + ∇ • (Dεαu∂〈w〉α β/∂t) − av∂〈w〉α β/∂t, (18)

O

(
D〈cα〉α
LLc

)
, O

(
1

L

∂〈w〉α β

∂t

)
, O

(
1

lα

∂〈w〉α β

∂t

)
.

Using, −nα β • ∇ f2 = 1/D, we get f2 ≈ O(lα/D) because f2 varies with lα. From u =
1
Vα

∫

Aα β

nα β f2 dA, using mean value theorem and f2 ≈ O(lα/D)we get, u ≈ O(1/D). Here,

we used A/Vα = aV and aV ≈ O(l−1
α ).

Order of Magnitude Analysis in Eq. (32)

∇ • {U
eff

• 〈cα〉α∇〈φα〉α} + ∇•

⎧
⎪⎨

⎪⎩
εαU 〈cα〉α

Vα

⎛

⎜⎝
∫

Aα β

nα βg2 dA

⎞

⎟⎠
∂〈q〉α β

∂t

⎫
⎪⎬

⎪⎭

O

(
Uεα〈cα〉α〈φ〉α

LLc

)
, O

(
1

L

∂〈q〉α β

∂t

)
,

+∇ •

⎧
⎪⎨

⎪⎩
εαU

Vα

∫

Vα

c̃α∇φ̃α dV

⎫
⎪⎬

⎪⎭
− av

∂〈q〉α β

∂t
= 0, (32)

O

(
Uεα〈cα〉α〈φ〉α

LLc

lα
L

)
, O

(
1

lα

∂〈q〉α β

∂t

)
.

The order of magnitude for the deviation variables c̃α and φ̃α were obtained using Eqs. (23)
and (36). We use g2 ≈ O

(
lα/

(
U 〈cα〉α

))
estimated from Eq. (41).
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