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Abstract This work is devoted to numerical analysis of permeability in rocks with multiple
fractures. We propose a discrete approach for porous media with dual porosity. The intact
porous rock is first discretized by an assembly of impermeable blocks according to the
Voronoi diagram. The pore space of the intact rock is replaced by an equivalent network of
interfaces between blocks, which produces the same macroscopic hydraulic conductivity as
the intact rock. An induced network of macroscopic fracture or cracks is then introduced into
the discrete porous rock. A specific numerical algorithm is developed to solve the obtained
dual-porosity discrete porousmedium.A series of numerical studies are performed in order to
verify the efficiency of the proposed method and to investigate influences of mesh sensitivity,
effects of fracture geometry and distribution. The proposed model is then applied to the
study of permeability evolution in rock samples submitted to biaxial compression tests with
different confining pressures. It is found that the proposedmodel is able to correctly reproduce
the progressive process of initiation and propagation of fractures and the related evolution of
permeability.

Keywords Permeability · Fracture · DFN · Porous media · Rocks · RBSM

1 Introduction

The evolution of intrinsic permeability of rocks is an important factor in many engineering
applications, such as hydroelectric engineering, deep mining, petroleum engineering, under-
ground storage of oil and gas, and geological disposal of radioactive waste. A number of
experimental works have shown that the intrinsic permeability evolution in rocks is highly
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related to the initiation and propagation of cracks (Bruno 1994; Chen et al. 2000; Schulze
and Kern 2001; Berkowitz 2002; Gueguen and Schubnel 2003; Louis et al. 2005). In some
cases, the intrinsic permeability can increase by several orders of magnitude due to the onset
of connected fractures (Suzuki et al. 1998; Souley et al. 2001; Bossart et al. 2002; Oda et al.
2002; Jiang et al. 2010). Therefore, the permeability evolution in many rocks is inherently
coupled with the deformation, damage and failure process. It is then necessary to develop
coupled models for the description of hydromechanical behavior of porous rocks.

Based on experimental evidences, various numerical models have been developed by con-
sidering the evolution of permeability. Without giving an exhaustive list of such works, we
can mention continuous plastic and damage models which consider that the permeability is
coupled with plastic deformation or damage state. In some more empirical approaches, the
permeability was even directly depending on the applied stress state. All these models give a
phenomenological description of experimental data obtained but fail to take into account the
relationship between the microstructural modification and macroscopic permeability evolu-
tion. In order to improve the phenomenological models, tentative efforts have been made on
the micro–macro modeling. The main objective was to develop damage models for modeling
the coupled permeability evolution and growth of microcracks. For instance, Oda (1985) and
Oda et al. (2002) introduced the concept of crack density tensor to describe the permeabil-
ity change in granite. Souley et al. (2001) used an anisotropic damage model to account for
changes in permeability induced by the growth ofmicrocracks. Someworks (Shao et al. 2005;
Zhou et al. 2006; Jiang et al. 2010) were devoted to the micromechanics-based anisotropic
damage models and tried to establish the relationship between damage variables and micro-
crack aperture to predict the intrinsic permeability using the cubic law. Pereira and Arson
(2013) investigated the influence of deformation and damage on the permeability and reten-
tion properties of cracked porous media based on the pore size distribution. These models
generally introduced some strong assumptions on the distribution of microcracks and can
only consider materials with relatively simple microstructures. Further, the permeability was
generally not explicitly calculated from the real aperture of cracks.

During the recent years, discrete models have retained an increasing attention as a promis-
ing alternative approach for the explicit description of the microcrack initiation, propagation
and coalescence and the related permeability evolution in porous rocks. The basic motiva-
tion is not only to improve our understanding of the fundamental mechanisms and physical
processes that control the change of permeability, but also to provide a numerical model for
quantitatively reproducing the representative experimental data. For instance, Bruno (1994)
proposed a conceptual micromechanical model based on the discrete element method and
network model. But only qualitative studies have been reported. Tang et al. (2002) presented
a coupled model that was able to describe the deformation, fluid flow, damage and failure
in rocks. However, in this model, the flow of fluid was governed by the classical Biot’s con-
solidation theory, and effects of microscopic cracks on the permeability were not explicitly
considered. Mansouri et al. (2011) computed the permeability of a cemented granular mate-
rial based on the discrete element model and the lattice Boltzmann method, but the focus of
this work was on the cementation process and no effects of cracks were considered.

In this study, we propose a new discrete approach for the numerical modeling of coupled
mechanical damage and failure and fluid flow with the evolution of permeability. The pro-
posed model is based on the rigid block spring method (RBSM) for the mechanical modeling
(Yao et al. 2013, 2015) and the discrete fracture network (DFN) model for fluid flow in
porous rocks (Yao et al. 2012; Jiang et al. 2013). The outline of the proposed approach is
illustrated in Fig. 1. Firstly, we use the randomly and uniformly distributed Voronoi diagram
to, respectively, represent preexisting or induced macroscopic fractures and connected pore
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Fig. 1 Outline of the discrete approach based on RBSM and DFN for modeling hydromechanical coupling

space of porous rock matrix. Secondly, with an appropriate local failure criterion, the RBSM
is employed to model the process of crack initiation, propagation and coalescence of rock
material. Finally, we propose a dual-porosity model to describe the fluid flow in both rock
matrix and macroscopic fractures.

2 DFN-Based Dual-Porosity Model

2.1 Equivalent Interface Network

For the modeling of fluid flow in a porous continuum using Darcy’s conduction law, a per-
meability tensor is defined and identified. In order to describe the evolution of permeability
due to the initiation and propagation of cracks or fractures, we propose here to develop a dis-
crete approach. The porous continuum is discretized by a randomly or uniformly distributed
assembly of impermeable blocks based on the so-called Voronoi diagram. The pore space of
the porous continuum is hydraulically replaced by the network of interfaces between blocks,
preserving the same macroscopic permeability. Therefore, in order to develop the discrete
approach for numerical modeling of fluid flow in rock matrix based on this concept, it is first
needed to determine the equivalent hydraulic aperture of interfaces so that the macroscopic
permeability of the interfaces network is equivalent to that of the rock matrix. In order to
determine this aperture and also to investigate its mesh dependency at the same time, we
have chosen seven groups of numerical specimens by varying the total number of elements
(blocks) as 1010, 2053, 5235, 10,566, 21,329, 53,584 and 107,854. Further, each group con-
tains 10 specimens with different element arrangements. The size of each specimen is 1m
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Fig. 2 Hydraulic boundary conditions for computation of vertical and horizontal conductivity. a Vertical flow,
b horizontal flow

Table 1 Statistical analysis of
conductivity for different groups
of numerical tests

Number of elements Qh Qv

μ (m2/s) λv (%) μ (m2/s) λv (%)

1010 2.42E−11 0.31 2.42E−11 0.32

2053 3.49E−11 0.27 3.49E−11 0.20

5235 5.63E−11 0.10 5.62E−11 0.09

10,566 8.03E−11 0.07 8.03E−11 0.09

21,329 1.14E−10 0.06 1.14E−10 0.06

53,584 1.82E−10 0.03 1.82E−10 0.03

107,854 2.58E−10 0.04 2.58E−10 0.04

by 1m. The hydraulic aperture of each interface segment bi is set to be 1 × 10−6 m; the
transmissivity of interface is calculated by using the cubic law:

Ti = gb3i
12v

(1)

g and v are, respectively, the gravity acceleration and the coefficient of kinematic viscosity
of water. The hydraulic boundary conditions are shown in Fig. 2, respectively, for the vertical
and horizontal flow. As in many engineering applications, in this paper, we have used the
water head as the measure of water pressure. The water head of 1m is equivalent to 9.81kPa.
Accordingly, the unit of hydraulic gradient is set as 1m/m, which is equivalent to 9.81kPa/m.
For each group of specimens, ten values of flow rate have been obtained from numerical
simulations for each flow direction. Based on these values, it was possible to perform a
statistical analysis to determine themean value and coefficient of variance, as listed in Table 1.
Qh and Qv are, respectively, the total horizontal and vertical flow rate, respectively.μ denotes
the mean value while λv is the coefficient of variance defined as the ratio of the standard
deviation to the mean value. One can see that there is a very small difference between the
vertical and horizontal flow rate in all groups of specimens, indicating that the hydraulic
isotropy is reproduced by the Voronoi interfaces network. Then, the variance of effective
hydraulic conductivity among the same group of specimens is also very small, not exceeding
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Fig. 3 Relationship between
Q0/Ti and

√
N

Q0/Ti

0.32%. This means that the mesh arrangement has a negligible impact on the macroscopic
results. Further, it seems that the variance in each group trends to decrease when the total
number of elements increases.

Due to the symmetry, we define the average total flow rate for each group of specimens
as Q0:

Q0 ∼= average(Qh) or Q0 ∼= average(Qv) (2)

The relationship between the average total flow rate and the element number of each group
N is given in Fig. 3. It can be observed that there is a linear relationship between and the
dimensionless parameter Q0/Ti, such as

Q0/Ti = 0.9473
√
N − 1.0448 (3)

Then, for the isotropic network of interfaces, we define the macroscopic hydraulic conduc-
tivity as C0:

C0 = Ch = Qh/h or C0 = Cv = Qv/w (4)

Ch and Cv are, respectively, the macroscopic horizontal and vertical conductivity, h and w

the width and height of the specimen, taken equal to 1m here. According to Eqs. (1), (2) and
(4), if N and C0 are known a priori, the effective hydraulic aperture b can be calculated. It is
worth noting that N is the element number in a unit square. If the real size of the specimen
hm × wm and the total number of elements is N0, then the needed value of N in Eq. (2) is
given by:

N = N0/(h × w) (5)

2.2 Numerical Method Flow Simulation in Fractured Media

As mentioned above, the failure process of most rocks is controlled by the initiation and
propagation of macroscopic fractures or cracks, affecting not only the mechanical behavior
but also the hydraulic property. In the framework of discrete fracture network (DFN) method
adopted in this work, induced macroscopic fractures are embedded in the Voronoi diagram-
based interface network, which represents the initial porous medium. One obtains the so-
called dual-porosity medium, respectively, with the initial interface network and induced
fracture network. In this way, the fluid flow in both the rock matrix and fractures is treated in
the same way based on the discrete fracture network model. However, there is a numerical
problem to be solved to apply the DFN-based dual-porosity model in practice. Since the
transmissivity of fractures is significantly different from that of interfaces, usually in several
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Fig. 4 Geometry and fracture
distribution of the specimen for
the verification of the numerical
solution for ill-conditioned
system of equations

1
1

orders of magnitude, the global equilibrium equations for the flow simulation may be ill-
conditioned, and the PCG method sometimes cannot give the correct solution. Indeed, the
global system of equilibrium equations for the flow simulation can be expressed as (Jiang
et al. 2013):

[K ]{φ} = {Q} (6)

[K ] is the globalmatrix of hydraulic conductivity, {φ} the vector ofwater head (or equivalently
pore pressure) and {Q} the vector of hydraulic charge. For the sake of simplicity, no details
on the construction of this systemwill be given here. Readers can refer to Yao et al. (2012). In
the PCGmethod, one needs the initialization of the vector {φ}, noted by {φ}0. {φ}0 is usually
chosen according to the boundary condition by experience. The solution of the system can
be very sensitive to {φ}0 when [K ] is very ill-conditioned.

Consider here an example. The geometry of the studied porous medium is shown in
Fig. 4. Five fractures are randomly located in the porous medium. The effective conductivity
of the rock matrix is set as Cr = 1 × 10−14 m/s, and N = 13, 527. Using the method
mentioned above, the equivalent hydraulic aperture of interfaces is calculated and equal to
bi = 4.79 × 10−8 m. The hydraulic aperture of fractures is bf = 4.79 × 10−5 m, say 1000
times that of interfaces. In this case, the difference between the minor and major component
in [K ]reaches 9 orders of magnitude. Here, the equilibrium between the flow rate on the
upstream boundary (Qu) and that on the downstream boundary (Qd) is used as an indicator
to check the quality of numerical solution. Take {H1} as the initialization of {φ}, so that
all elements take the water head of the upstream boundary. Using the PCG method, we get
Qu = 8.953 × 10−14 m2/s and Qd = 9.071 × 10−14 m2/s. The solution is totally wrong
since the flow rate on the downstream boundary (Qd) should not be positive.

In light of the sensitivity of the solution to {φ}0, a pragmatic procedure is proposed here
to improve the solution with PCG. We consider it as pragmatic since we cannot provide here
a rigorous mathematical demonstration. The basic idea is to find an initialization {φ}0 to
approach gradually to the real solution. The following steps are proposed:

1. Suppose the total number of iterative steps of the procedure is S, in the first step, we set:

{φ}01 = {H1} (7)

2. In the sth step, assume that b′
f = (s/S)1/3bf , take this b′

f as the hydraulic aperture of the
fractures to construct the global matrix [D]s ;

bi
b′
f = (s/S)1/3bf

}
⇒ [D]s (8)
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Table 2 Numerical results
obtained with the proposed
procedure

S Qu (10−14 m/s) Qd (10−14 m/s) Error =
|(Qu + Qd)
/Q32| (%)

1 8.953 9.071 926.21

10 2.463 −1.138 68.09

100 2.204 −1.545 33.86

1000 1.739 −2.276 27.60

10,000 1.901 −2.021 6.17

1,000,000 1.943 −1.956 0.67

3. With the solution in the step (s − 1) as the input data for the step (s);

{φ}0s = {φ}s−1 (9)

Solve the following system of equations:

[D]s{φ}s = {B} (10)

In the last step (S), we can get the final solution of the system (6).

Note here that the total number of iteration (S) is set a prior and then a knownparameter.We
use the gap between Qu and Qd as the indicator of convergence. When the final gap is under
1%, we consider that the convergence condition is satisfied. Using the proposed procedure,
the results of the example presented above are given in Table 2 with different values of S. In
this Table, Q32 = 1.946×10−14 m/s, is the flow rate computed when bf = 32bi. We can see
that the gap between Qu and Qd generally becomes smaller as S increases, indicating that
this procedure can effectively solve this kind of ill-conditioned linear systems of equations.
According the results shown in Table 2, the rate of convergence of the numerical method
seems to be quite slow. But it is worth noting that the example studied here is an extreme
case in which the difference between the minor and major component in the matrix [K ]
reaches 9 orders of magnitude. Therefore, the convergence rate is very slow. We just use this
example here to show the efficiency of the method proposed. In the biaxial compression tests
presented later, however, the difference is only 6 orders of magnitude. We will see that the
value of S = 100 is enough for almost all cases, and this is an acceptable convergence rate.

3 Verification of the DFN-Based Dual-Porosity Model

In the proposed DFN-based dual-porosity model, the interfaces representing the intact rock
are treated in the same manner as macroscopic fractures, only with a different hydraulic
aperture as that of fractures. In order to verify the efficiency of proposedmethod in predicting
the effective conductivity of fractured rocks,we consider here the numerical example reported
in Lough et al. (1998). This example considers a unit cube containing a single macroscopic
fracture. The fracture with a length of 0.6units is centered at the cube and oriented at an angle
α with respect to the x axis. The initial geometry of the 3D example used by Lough et al.
(1998) is illustrated in Fig. 5a. In Fig. 5b, we present the 2D domain studied in the present
work. The simplification of the 3D problem to the 2D one is motivated by the fact that in this
example the fluid flow occurs essentially in the x–y plane, and the main objective here is to
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Fig. 5 Geometry of the specimen with an oriented fracture. a 3D geometry of Lough’s example, b 2D
geometry used in this study

Fig. 6 Voronoi mesh for the
sample with a fracture orientated
at 45◦

study effects of the preexisting fracture on the hydraulic conductivity in x and y directions.
The local transmissivity of interface (Ti) is set as 1unit, and the transmissivity of the fracture
is set as Tf = 2 × 106 Ti. The Voronoi mesh used is illustrated in Fig. 6.

We know that the effective conductivity will depend on the fracture orientation. Denote
the macroscopic horizontal and vertical conductivity as Ch0 and Cv0 for α = 0. Then, for an
arbitrary orientation α, the effective conductivity can be written as:

Ch = Ch0 cos
2 α + Cv0 sin

2 α (11)

Cv = Ch0 sin
2 α + Cv0 cos

2 α (12)

Take that Cv0 = 1, the relative value of Ch0 computed by the proposed model is 1.347,
with a minor difference of 0.12% compared to the theoretical prediction of 1.3486 given by
Lough et al. (1998). Comparisons between numerical results and theoretical predictions of the
relative effective conductivity are presented in Fig. 7 for different orientations of fracture. One
can observe that the numerical results are in good agreement with the theoretical predictions.
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Fig. 7 Variation of conductivity with fracture orientation-comparisons between theoretical prediction and
numerical results

Fig. 8 Effective horizontal
conductivity for different values
of hydraulic aperture of fracture
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4 Effects of Fracture Geometry on the Effective Conductivity

In this section, we propose to study effects of some geometric parameters of macroscopic
fractures on the effective hydraulic conductivity such as hydraulic aperture, length and con-
nectivity.

4.1 Hydraulic Aperture of Fracture

A group of simulations are conducted by varying the hydraulic aperture of preexisting
fractures (bf ) to investigate its effect on the effective horizontal conductivity of rock mass
(Ch). The geometry used in the simulations is the same as that shown in Fig. 5b, with α = 0.
The hydraulic boundary conditions are those given in Fig. 2b. N is set as 11,458, and the
conductivity of rock matrixCr = 1×10−12 m/s. According to Eqs. (1) and (2), the hydraulic
aperture of interfaces is computed and equal to bi = 2.287 × 10−7 m. Numerical results are
presented in Fig. 8 for various values of bf , say from bf = bi to bf = 512bi. It is found that
the ration between the horizontal and vertical conductivity (Ch/Cr) increases as the value
of bf increases until bf = 32bi. After that value, this conductivity ratio becomes constant
and the increase in bf has no more impacts on this conductivity ratio. The limit value of the
ratio Ch/Cr is 1.347 in this case. Such a result suggests that an isolated fracture has a limited
influence on the enhancement of hydraulic conductivity of porous medium.

4.2 Fracture Length

Two different cases are considered to study the effect of fracture length on the effective
conductivity. In the first case, the fracture is located in the center of the rock specimen (see
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Fig. 9 Geometry and fracture disposition for study of length effect. a Fracture located at the center, b fracture
connected to the upstream boundary

Fig. 10 Influence of fracture
length on effective conductivity
for two fracture dispositions
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Fig. 9a), while in the second case, the fracture is connected to the upstream boundary (see
Fig. 9b). The hydraulic boundary conditions are those shown in Fig. 2b. N is set as 11,458 and
the hydraulic conductivity of rock matrix isCr = 1×10−12 m/s. The computed values of the
ratio (Ch/Cr) are presented in Fig. 10 by varying the fracture length l from 0.1 to 0.9units.
One can see that the conductivity ratio increases as the length gets larger. In particular, the
value of Ch/Cr for the case with a connected fracture is overall larger than that with an
isolated and centered fracture. Note that when l = 1, the percolation condition is satisfied,
the ratio of transmissivity (Th/Tr) abruptly rises to 834, about 300 times the value for l = 0.9.

In most constitutive models based on the homogenization procedure, it is generally
assumed that the hydraulic pressure gradient is uniform inside the unit cell or equivalent
volume element and equal to the prescribed macroscopic pressure gradient. According to the
present study, this assumption seems to be debatable. The contour graphs of water head for
l = 0.1, 0.5 and 0.9 are shown in Fig. 11. One can see that the local pressure gradient of the
fracture is, respectively, equal to 1.08 × 10−4, 3.03 × 10−4 and 1.64 × 10−3. These values
are all much smaller than the prescribed macroscopic hydraulic pressure gradient (1m/m).
Moreover, there seems to be a trend that the shorter the fracture is, the smaller the gradient
is. As a result, those models with this assumption may greatly exaggerate the contribution of
the isolated fractures to the macroscopic permeability.

123



A Numerical Analysis of Permeability Evolution 299

H
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(a) (b) 

H
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(c) (d) 

Fig. 11 Contours of water head with different values of fracture length. a l = 0.1, b l = 0.5, c l = 0.9, d
l = 1

4.3 Intersection Between Multiple Fractures

Intersections of multiple fractures may result in complex flow behaviors. A simple example
containing two fractures is considered here to study the effect of fracture intersection. The
geometry conditions are shown in Fig. 12. Two fractures, respectively, extend in the horizontal
and vertical direction. They are both 0.4 in length and perpendicular to each other. The
horizontal fracture is positioned in the center of specimen. A geometrical parameter (r)
is used to define their intersection position. The combined effects of the two fractures are
investigated by varying the value of r from 0 to 0.4.

The computed values of the effective horizontal conductivity are shown in Fig. 13 with
different values of r . With the increase in r, Ch first goes down before r reaches 0.2, i.e., the
middle of the horizontal fracture. Then, it goes up until r reaches the end of the horizontal
fracture. In the present case, when r = 0 and r = 0.4, Ch gets to the maximum value as
1.23. And when r = 0.2, Ch gets to the minimum value as 1.14.
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Fig. 12 Geometry of specimen
and fracture configuration for
study of intersection effect
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Fig. 13 Influence of intersection
position on effective horizontal
conductivity
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Note that in Fig. 7, one can see that an isolated vertical fracture (α = 90◦) does not affect
the horizontal conductivity (Ch). However, as clearly shown in Fig. 13, through the intersec-
tion effect with the horizontal fracture, the presence of the vertical fracture can significantly
affect the variation of the horizontal conductivity and this effect depends on the position of
vertical fracture.

5 Effects of Fracture Initiation and Propagation

In the previous section, we have studied the effects of some preexisting fractures on the
macroscopic hydraulic conductivity of porous rock. In many situations, the failure process
of rock materials is controlled by the initiation and propagation of fractures. The induced
fractures should also affect the macroscopic hydraulic properties of rocks. Therefore, in
this section, we propose to investigation the variation of hydraulic conductivity due to the
initiation and propagation of macroscopic fractures.

5.1 Failure Criterion of Interfaces

As for the modeling of fluid flow, the mechanical behavior of porous rock is also described
by the modified rigid block spring method (RBSM). Since the emphasis of the paper is put
on the hydraulic properties, the detailed presentation of the used RBSM is not given here and
can be found in the previous works (Kawai 1977; Nagai et al. 2004; Yao et al. 2013, 2015).
In this method, the cohesive brittle rock is represented by an assemblage of rigid blocks that
are interconnected each other by their interfaces based on the Voronoi diagram. The elastic
property of interfaces is characterized by the normal and tangential elastic stiffness, kn and
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Table 3 Mechanical parameters for intact rock

Parameters E (GPa) ν tan φ0 tan φr C (MPa) T (MPa) σcr (MPa)

Values 80 0.18 0.5 0.1 30 9 60

kt . These local elastic properties of interfaces can be directly related to the macroscopic
elastic properties (Yao et al. 2015), for instance, the elastic modulus and Poisson’s ratio E
and ν. Further, the macroscopic mechanical strength of material is entirely controlled by the
local failure process of interfaces. Two modes of failure are considered for each interface,
tensile and shear failure. For the tensile failure, an elastic brittle behavior is assumed and
characterized by the tensile strength T . Once the tensile normal stress of a point on a contact
interface reaches the tension strength, say σn = T , the brittle failure occurs and the local
normal and shear stresses (σn and σs) are instantaneously reduced to zero. For the shear
failure, a Mohr–Column-type criterion is employed and the shear strength of interface is
characterized by the friction angle φ, cohesion coefficient C and the critical normal stress
σcr. The local shear failure criterion is expressed by:

f = |σsmax| + σn tan φ − C ≤ 0, σn ≥ σcr

f = |σsmax| + σcr tan φ − C ≤ 0, σn < σcr (13)

Note that in many rocks, when the confining pressure is high enough, the mechanical strength
becomes quasi-independent on the confining pressure. This means that frictional effect pro-
gressively vanishes. In order to interpret this phenomenon in a very simply way, the critical
normal stress σcr is then introduced the failure criterion. When the normal compressive stress
is higher than this critical value, the shear strength of interface becomes constant and inde-
pendent on the normal stress. Further, when the shear failure occurs, the interface exhibits a
softening behavior by reducing the frictional angle from the initial value (φ0) to the residual
one (φr). The list of mechanical parameters used in the present study is given in Table 3.

5.2 Conductivity Variation During Failure Process of Intact Rock

Consider a representative rock specimen as shown in Fig. 14. The size of the specimen is
0.05m × 0.05m and the total number of elements is 13,236. Given that the conductivity
of the intact rock is Cr = 1 × 10−14 m/s. According to Eqs. (1), (2) and (4), the hydraulic
aperture of the interfaces is calculated and equal to bi = 1.983 × 10−8 m. With this value
of interface aperture, the effective vertical conductivity is equal to Cv = 9.94 × 10−15 m/s,
which is very close to that of Cr . The influence of local failure on the hydraulic aperture of
interface is taken into account in the following simple way. Once the failure is detected on
an interface, the hydraulic aperture of the interface is set to be 10 times and 100 times of
the original one, respectively, for tensile and shearing failure, i.e. bi = 1.983 × 10−7 m and
bi = 1.983 × 10−6 m in this case. In calculation of the relative conductivity, we use the gap
between Qu and Qd as the indicator of convergence. When the final gap is under 1%, we
consider convergence condition is satisfied. In this test, S is set as 100 and in most cases this
can make the final gap under 1%. In some specific cases, the gap may be larger than 1%;
then, we reset S, making S equal 200 or larger and recalculate the conductivity of this case
until the convergence condition is met.

According to the mechanical parameters given in Table 3, we have performed numerical
simulations of biaxial compression testswith different values of confining pressures and plane
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Fig. 14 Voronoit mesh for
initially intact rock specimen
with 13,236 elements 0.05m
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Fig. 15 Stress–strain curves in biaxial compression tests with different confining pressures

strain conditions. Themacroscopic stress–strain curves of the rock specimen are obtained and
presented in Fig. 15. One can see that the compressive strength increases when the confining
pressure is higher. The post-peak behavior is also depending on the confining pressure. There
is a transition from the brittle to ductile behavior as the confining pressure rises up from 0 to
40MPa. The failure patterns of the specimen are shown in Figs. 17a, 18a, 19a and 20a. It is
observed that it is not easy to establish an obvious relationship between the failure mode and
confining pressure. Themacroscopic cracks can initiate in a randomway inside the specimen.
In the real situation, the rock specimen is never uniform and contains some initial defeats.
As a consequence, the propagation of cracks generally starts from such defeats.

In Fig. 16, we present the evolutions of the relative axial conductivity (C/Cr) as functions
of the deviatoric stress (σ1−σ3) and the axial strain (ε1) for four confining pressures. We can
clearly see that the evolution of conductivity is negligible before the peak stress is reached.
Significant increases in conductivity are observed only after the peak strength and can reach
five orders of magnitude. These important increases in conductivity are directly related to
the initiation and propagation of macroscopic fractures as shown in the failure patterns. The
strain and stress threshold for the onset of conductivity increases when the confining pressure
is higher. For instance, a sudden increase in conductivity is obtained for the values of axial
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Fig. 16 Evolution of axial conductivity of initially intact rock as a function of axial strain for different
confining pressures

Fig. 17 Distributions of induced fractures and main flow paths in initially intact rock under uniaxial com-
pression (σ3 = 0). a Fracture distribution, b flow rate contours
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Fig. 18 Distributions of induced fractures and main flow paths in initially intact rock under biaxial compres-
sion (σ3 = 10MPa). a Induced fractures, b flow rate contours

Fig. 19 Distributions of induced fractures and main flow paths in initially intact rock under biaxial compres-
sion (σ3 = 20MPa). a Induced fractures, b flow rate contours

strain of 0.0017, 0.0018, 0.0021 and 0.0037, respectively, for the confining pressures of 0,
10, 20 and 40MPa. In Figs. 17b, 18b, 19b and 20b, we show the flow rate distributions
at these critical values of axial strain. Main channels for water flow are clearly depicted,
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Fig. 20 Distributions of induced fractures and main flow paths in initially intact rock under biaxial compres-
sion (σ3 = 40MPa). a Induced fractures, b flow rate contours

Fig. 21 Voronoi mesh for the
specimen with an initial fracture

0.01m

0.01m

indicating that the connectivity ofmacroscopic fractures is the essential factor of conductivity
enhancement.

5.3 Conductivity Variation in Rock Specimen with a Preexisting Fracture

In this section, we consider the rock specimen shown in Fig. 21 containing an initial fracture
oriented at 45◦, subjected to biaxial compression with different confining pressures. The
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Table 4 Mechanical parameters for the fracture

Parameters E (GPa) ν tan φ0 tan φr C (MPa) T (MPa) σcr (MPa)

Values 30 0.18 0.3 0.3 5 0.15 20

0 1000 2000 3000 4000

100

101

102

 0MPa
 10MPa
 20MPa
 40MPa

re
la

tiv
e 

co
nd

uc
tiv

ity

axial strain (1e-6)

0

20

40

60

80

100

120

140

20MPa

de
vi

at
or

ic
 s

tre
ss

 (M
Pa

)

0MPa

10MPa

40MPa

Fig. 22 Evolution of axial conductivity of the initially cracked rock as a function of axial strain for different
confining pressures

length of the fracture is l = 1.414 × 10−2 m, and the hydraulic aperture is bf = 1.983 ×
10−6 m, being 100 times that of the interfaces. The mechanical parameters of the fracture
are listed in Table 4. The effective vertical conductivity of the rock specimen is Cv =
1.02 × 10−14 m/s, being slightly higher than Cr due to the existence of the initial fracture.
All other parameters are the same as those used in Sect. 5.1.

The stress–strain curves and the evolutions of relative conductivity as functions of axial
strains are shown in Fig. 22. It is found that the stress–strain curves exhibit more ductile
behaviors than those obtained for the initially intact specimen (see Fig. 15). There is also a
sudden rise of the effective conductivity in the axial direction by about 5 orders of magnitude
when the confining pressure is 0, 10 and 20MPa. However, when the confining pressure is
equal to 40MPa, the abrupt conductivity rise is not observed and the increase is only about
1 order of magnitude. Comparisons of the peak deviatoric stress between the intact rock
specimen and the pre-cracked rock specimen are shown in Fig. 23 for the different confining
pressures. We can see that the mechanical strength of the pre-cracked rock is generally lower
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Fig. 23 Peak deviatoric stress as
a function of confining pressure
comparison between the initially
intact and cracked rock
specimens
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Fig. 24 Distributions of induced fractures and main flow paths in initially cracked rock under uniaxial com-
pression (σ3 = 0). a Induced fractures, b flow rate contours

than that of the intact one. However, the effect of the preexisting fracture is not influenced
by the confining pressure.

In Figs. 24a, 25a, 26a and 27a, we show the failure patterns and flow rate distribu-
tions of the pre-cracked rock specimen after the peak strength is reached. Compared to
the intact rock, the effect of confining pressure on the failure mode of the pre-cracked
rock specimen is more obvious than in the intact one. Indeed, the preexisting fracture is
guiding the propagation of macroscopic fractures inside the specimen. The final failure
pattern of the pre-cracked specimen is represented by the formation of an inclined band
of crack coalescence. The orientation of the band decreases when the confining pressure
increases. In Figs. 24b, 25b, 26b and 27b, we present the flow rate distributions under
the vertical hydraulic gradient. Again, the main flow channels are directly correlated with
the main fracture bands, demonstrating that the crack propagation and coalescence are the
dominating factor for the variation of hydraulic conductivity. For the case of 40MPa con-
fining pressure, the fracture band is not crossing through the upper and lower surfaces
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Fig. 25 Distributions of induced fractures and main flow paths in initially cracked rock under biaxial com-
pression (σ3 = 10MPa). a Induced fractures, b flow rate contours

Fig. 26 Distributions of induced fractures and main flow paths in initially cracked rock under biaxial com-
pression (σ3 = 20MPa). a Induced fractures, b flow rate contours

of the specimen due to its high inclination angle. This can explain that the variation of
hydraulic conductivity in this case is much smaller than that in other three cases, as shown
in Fig. 22.
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Fig. 27 Distributions of induced fractures and main flow paths in initially cracked rock under biaxial com-
pression (σ3 = 40MPa). a Induced fractures, b flow rate contours

6 Conclusion

In this study, we have developed a DFN-based dual-porosity model for fluid flowmodeling in
cracked rocks with multiple cracks. This discrete model is based the randomly and uniformly
distributed Voronoi diagram and able to describe the fluid flow in both the porous rock matrix
and induced macroscopic fractures. The efficiency of the model is verified by the comparison
with Lough’s work and theoretical predictions.

Effects of some geometrical parameters of preexisting fractures on the effective conduc-
tivity of the cracked porous rock mass have been investigated, including the orientation,
aperture, length and intersection between multiple fractures. Some interesting remarks can
be made. Isolated fractures have a significant impact on the local flow field. The hydraulic
gradient in these fractures is much smaller than the macroscopic hydraulic gradient. The
intersection of fractures also affects the local flow field, and its influence depends on the
intersection position. However, the increase in effective conductivity induced by isolated
fractures is limited. But when a percolation condition is attained, the increase can be several
orders of magnitude.

This DFN-based dual-porosity model has been combined with the improved RBSM to
investigate the conductivity variation by the initiation and propagation of fractures in porous
rocks. Numerical tests have been conducted on both the intact rock and the pre-cracked rock
under biaxial compression with different confining pressures. Typical failure modes and
evolutions of conductivity have been investigated. Some conclusions can be drawn down.
Typical phases of the macroscopic stress–strain curves for most brittle rocks are reproduced
by the improved RBSM, such as linear elasticity, inelastic deformation, softening and resid-
ual phase as well as the transition from brittle to ductile behavior as the confining pressure
increases. The fracture coalescence bands leading to the final failure of material are also cap-
tured. The distribution of such bands is irregular in the initially intact rock. But in the rock
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specimen with a preexisting fracture, the propagation of fracture band is clearly guided by
the preexisting fracture. The orientation of the band depends on the confining pressure. The
evolution of hydraulic conductivity is directly related to the onset of macroscopic fractures
and can reach about 5 orders of magnitude after the peak strength. The connected fractures
constitute the main channels for water flow. There exists a percolation threshold produc-
ing a sudden increase of hydraulic conductivity, and this one increases with the confining
pressure.
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