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Abstract In this work, we revisit the upscaling process of diffusive mass transfer of a solute
undergoing a homogeneous reaction in porous media using the method of volume averaging.
For linear reaction rate kinetics, the upscaled model exhibits a vis-à-vis correspondence
with the mass transfer governing equation at the microscale. When nonlinear reactions are
present, other methods must be adopted to upscale the nonlinear term. In this work, we explore
a linearization approach for the purpose of solving the associated closure problem. For large
rates of nonlinear reaction relative to diffusion, the effective diffusion tensor is shown to
be a function of the reaction rate, and this dependence is illustrated by both numerical and
analytical means. This approach leads to a macroscale model that also has a similar structure
as the microscale counterpart. The necessary conditions for the vis-à-vis correspondence
are clearly identified. The validation of the macroscale model is carried out by comparison
with pore-scale simulations of the microscale transport process. The predictions of both
concentration profiles and effectiveness factors were found to be in acceptable agreement.
In an appendix, we also briefly discuss an integral formulation of the nonlinear problem that
may be useful in developing more accurate results for the upscaled transport and reaction
equations; this approach requires computing the Green function corresponding to the linear
transport problem.
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684 H. D. Lugo-Méndez et al.

List of Symbols

Aγ κ,M Solid–fluid interface within the macroscopic domain
Aγ κ Solid–fluid interface within the averaging domain
Aγ e,M Macroscopic entrances and exits surface
b Closure variable vector as defined in Eq. (40) (m)
bγ Closure variable vector as defined in Eq. (25) (m)
br x Closure variable vector as defined in Eq. (69) (m)
cAγ Mole concentration of species A in the γ -phase (mol/m3)
c̃Aγ Mole concentration deviations of species A in the γ -phase (mol/m3)
〈cAγ 〉γ Intrinsic averaged concentration of species A (mol/m3)
cin Inlet concentration value (mol/m3)
Ddiff-rx Reactive diffusivity tensor (m2/s)
Deff Passive part of Ddiff-rx (m2/s)
Drx Reactive part of Ddiff-rx (m2/s)
DAγ Molecular diffusivity (m2/s)
E Pore-scale concentration at the macroscopic entrances and exits (mol/m3)
F Initial pore-scale concentration (mol/m3)
G Value of the pore-scale concentration at the macroscopic entrances and exits of

the system (mol/m3)
Gqs Green’s function associated to the closure problem solution in the unit cell

under quasi-steady state conditions (sm−3)
Gr x Reactive–diffusive Green’s function (sm−3)
Gω Green’s function associated to the closure problem solution in the unit cell

(m−3)
G M Green’s function associated to the closure problem solution considering the

entire macroscopic domain (m−3)
H Value of the pore-scale concentration deviations at the macroscopic entrances

and exits of the system (mol/m3)
I Identity tensor
I Initial pore-scale concentration deviations fields in the unit cell (mol/m3)
IM Initial pore-scale concentration deviations fields in the macroscale (mol/m3)
k0, k1 Reaction rate coefficients (mol/m3, s−1)
li Unit cell lattice vectors, i = 1, 2, 3 (m)
� Length of the side of a unit cell (m)
�γ Characteristic length associated to the γ -phase (m)
Lc1 Characteristic length associated to the spatial variations of ∇〈cAγ 〉γ (m)
Lε Characteristic length associated to the spatial variations of the porosity (m)
L Characteristic length associated to the system (m)
nγ κ Unit normal vector directed from the fluid to the solid phase
r0 Characteristic size of the averaging domain (m)
R(cAγ ) Pore-scale reaction rate (mol/m3 s)
R̃(cAγ ) Spatial deviations of the pore-scale reaction rate (mol/m3 s)
〈R(cAγ )〉γ Intrinsic average of the reaction rate (mol/m3 s)
t Time (s)
t∗ Characteristic time for the concentration deviations (s)
VM Macroscopic domain
Vγ,M Macroscopic domain occupied by the γ -phase
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Vγ Domain occupied by the γ -phase within V of volume Vγ (m3)
V Averaging domain
x, r, y Position vectors (m)

Greek Symbols

δ Dirac’s delta function (m−3)
εγ Volume fraction occupied by the γ -phase within the averaging domain
φc Thiele modulus for the closure problem defined as φ2

c = �2
γ R̃/DAγ	c̃Aγ

Φ Closure Thiele modulus defined as Φ2 = R′�2/DAγ

η Effectiveness factor
Ω Domain occupied by the unit cell
Ωγ Domain occupied by the γ -phase within the unit cell
∂Ωγκ Domain occupied by the solid–fluid interface within the unit cell

1 Introduction

Study of mass transport and reaction in multiscale systems is a relevant topic that involves
applications ranging from transport in cellular media (Vafai 2010) to catalytic reactors (Fro-
ment et al. 2010). In media that are structured with a discrete hierarchy of scales, one often
attempts to eliminate the redundant information associated with the microscale solution by
developing effective medium equations that are applicable at the macroscale (cf., Cushman
2010; Pinder and Gray 2008). This process is generally referred as upscaling, and it can
be carried out by a wide array of techniques including homogenization (Sanchez-Palencia
1970), thermodynamically constrained averaging theory (Gray and Miller 2014), volume
averaging (Whitaker 1999), the generalized method of moments (Brenner 1980), mixture
theory (Bowen 1967), and ensemble averaging (Saffman 1959). In these upscaling tech-
niques, the information from the smaller scale is systematically filtered by identifying the
corresponding time- and length-scale constraints and assumptions that allow reducing the
number of degrees of freedom and to well bound the applicability of the upscaled model
(Wood 2009; Wood and Valdés-Parada 2013). In this work, we derive an upscaled model for
diffusive mass transport of a solute undergoing a chemical reaction with nonlinear kinetics
in the fluid phase that saturates a homogeneous porous medium using the volume averaging
method (Whitaker 1999).

Upscaling mass transport and reaction in porous media has been widely studied in the
literature, and it remains a topic of wide interest (cf., Dadvar and Sahimi 2007; Ding et al.
2013; Edery et al. 2013; Habibi-Matin and Pop 2013; Hochstetler and Kitanidis 2013; Koc̆i
et al. 2010; Pereira et al. 2014; Ratnakar et al. 2012). Due to recent increase in the computa-
tional capabilities, it is now feasible to carry out detailed pore-scale simulations of reactive
transport in porous media using, for example, the lattice-Boltzmann method (Li et al. 2013;
Machado 2012; Patel et al. 2014; Tian et al. 2014). Nevertheless, it is often desirable to
develop upscaled theories of microscale processes to help reduce the number of degrees of
freedom required to numerically simulate a problem and to eliminate redundant microscale
information that is not, in itself, of primary interest. This motivates the derivation of rigorous
upscaled models with a clear identification of their range of validity.

As mentioned above, most upscaled models are expressed in terms of effective medium
coefficients that capture essential information from the microscale. For diffusive and reactive
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686 H. D. Lugo-Méndez et al.

mass transfer in porous media, the main effective medium coefficients are the effective
diffusivity and the effective reaction parameters [see, for example, Eqs. (1.4–68) in Whitaker
1999]. The issue of the dependence of the effective transport coefficients with the reaction
rate has been extensively debated in the literature (cf., Park and Kim 1984; Sharratt and
Mann 1987; Toei et al. 1973). In their study of substrate transport through grains coated
by biofilms, Dykaar and Kitanidis (1996) showed the dependence of the effective medium
coefficients with the Péclet and Damköhler numbers. Dadvar and Sahimi (2007) used pore
network and continuum models and estimated the effective diffusivity under both reactive and
nonreactive conditions, noticing significant differences between them. Recently, it has been
shown (Valdés-Parada et al. 2011a; Valdés-Parada and Alvarez-Ramírez 2010), by means of
the volume averaging method, that the effective transport coefficients involved in diffusion
and dispersion in porous media depend, in general, on the nature and magnitude of the
reaction rate. As mentioned above, the use of upscaled models is restricted to certain time
and length-scale constraints and assumptions. For applications in which these constraints are
not met, one may use nonlocal models as suggested by Wood and Valdés-Parada (2013).

The above works have been centered on reaction rates involving first-order kinetics. A
study involving nonlinear kinetics (Michaelis–Menten type and second-order kinetics) using
3D pore network modeling was carried out by Dadvar and Sahimi (2007). These authors
found that the effective diffusion coefficients under reactive and nonreactive conditions may
differ considerably. Modeling nonlinear reactive transport in porous media has been carried
out in the literature using both stochastic and deterministic approaches (cf., Giacobbo and
Patelli 2007; Kang et al. 2010; Liu and Ewing 2005; Weerd et al. 1998; Wood et al. 2007;
Wood and Whitaker 1998). In their study of reactive colloids in groundwater, Weerd et al.
(1998) showed that nonlinear reactions lead to breakthrough curves that are steeper during
contamination than in the linear case, which are in closer agreement with experimental data.
Previous applications of the volume averaging method for studying mass transport with
nonlinear reactions have been directed to the study of biofilms involving Michaelis–Menten
kinetics (Wood and Whitaker 1998, 2000; Wood et al. 2002) under local mass equilibrium
(Golfier et al. 2009) and nonequilibrium (Davit et al. 2010; Orgogozo et al. 2010) conditions.
Moreover, the applications have not been restricted to diffusive transport but also to dispersion
with heterogeneous nonlinear reactions as shown by Wood et al. (2007).

In the above-referenced works, the reaction term in the upscaled model, even when involv-
ing nonlinear kinetics, is of the same mathematical form as the reaction rate term in the
pore-scale model. In other words, the structure of the macroscale model exhibits a vis-à-vis
correspondence with its microscale counterpart. This often constitutes an approximation that
needs to be validated in order to assure that the macroscopic models that are derived via
upscaling are accurate. With this as a goal, in this work we study diffusive mass transfer of
a solute undergoing a homogeneous reaction in homogeneous porous media. To derive the
upscaled model, we employ the method of volume averaging involving a closure scheme to
predict the corresponding effective medium coefficients. We first carry out our derivations
assuming that the reaction rate is linear, and then, the analysis is extended to treat nonlinear
reaction kinetics using a linearization approach. In both situations, the time- and length-scale
constraints associated with the vis-à-vis approximation are clearly identified. In addition,
we carry out a comparison with (direct) pore-scale simulations (PSS) to test the capabili-
ties of the upscaled model. In addition, in the appendix, we outline an approach to generate
implicit integral solutions of the closure problem; these solutions may be valuable when
the conditions are such that the linearization of the reaction term is not accurate. To adopt
this latter approach, the Green function for the linear part of the transport operator must be
calculated.
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(a) (b)

Fig. 1 a Macroscopic region, averaging domain and characteristic lengths of the system. b Position vectors
associated to the averaging domain

2 Microscale Formulation

We begin by considering a rigid porous medium (Fig. 1) that is saturated by only one fluid
phase (the γ -phase) that carries a solute (species A) forming a dilute solution. In this work,
we consider only diffusive mass transport and a homogeneous reaction in the fluid phase.
This means that the solid phase (the κ-phase) is assumed impermeable to mass transport. The
governing initial and boundary-value problem for transport of species A at the pore scale is
given by

∂cAγ

∂t
= ∇ · (DAγ∇cAγ

) − R(cAγ ), in Vγ,M (1a)

− nγ κ · DAγ∇cAγ = 0, at Aγ κ,M (1b)

cAγ = E (x, t) , at Aγ e,M (1c)

cAγ = F (x) , when t = 0 (1d)

Here, cAγ is the molar concentration of species A in the γ phase, R is the molar reaction
rate owing to homogeneous chemical reaction, and DAγ is the mixture diffusion coefficient
for species A in the γ phase. In this formulation, Aγ κ,M represents the surface of the γ –κ
interface contained within the macroscopic region shown in Fig. 1a, while Aγ e,M represents
the entrances and exits of the γ phase at the boundaries of the macroscopic region (see Fig. 2
in Wood and Valdés-Parada 2013); finally x is a position vector. Although in previous works
a more relaxed notation has been used, we find it convenient to conserve the explicit relation
between dependent and independent variables. Furthermore, unless explicitly indicated to be
different from x, all spatial derivatives are taken with respect to x. In the following section, we
will derive the macroscale model by volume averaging the pore-scale model and the benefits
of using this notation will be clear. In each step of the averaging process, the corresponding
length-scale constraints and assumptions are clearly identified.
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3 Spatial Smoothing for Linear Reactions

To begin the averaging process, we first associate each point in the macroscopic region VM

with an averaging domain V of characteristic size r0 that contains portions of both the solid
and fluid phases and an interface, i.e., V = Vγ ∪Aγ κ ∪Vκ . Here, Vγ and Vκ are the domains
occupied by the γ -phase and κ-phase, respectively, within V , and Aγ κ represents the interface
between these two domains. For each x ∈ VM , we locate the centroid of an averaging volume,
V , which is classically a compact uniform weighting function over a spherical volume with
domain specified by

V (x) = {r ∈ VM : ||y|| < r0} (2)

here y = r − x as illustrated in Fig. 1b. The magnitude of the averaging domain is given by
|V | = V . The value of the weighting function, m(x), is given by

m(r) =
{

1
V for r ∈ V (x)

0 otherwise
(3)

Certainly, if r ∈ Vγ (x), we may define the weighting function as

mγ (r) = 1

Vγ
(4)

For a piecewise smooth function defined everywhere, ψ , the intrinsic averaging operator
over the averaging domain, is introduced as

〈ψ〉γ |x =
∫

r∈Vγ (x)

mγ (r) ψ |r dV (r) = 1

Vγ

∫

r∈Vγ (x)

ψ |r dV (r) (5)

Notice that the resulting average quantities are continuous, as they are defined for all
x ∈ VM . Following Whitaker (1999), the next steps established in the method of volume
averaging in order to upscale the microscale balance equations can be listed as

1. Application of the intrinsic averaging operator given by Eqs. (5) to Eq. (1a)
2. Interchange temporal differentiation and spatial integration using the general transport

theorem and recall that the porous medium has been assumed to be rigid,

1

Vγ

∫

r∈Vγ (x)

∂ψ

∂t

∣∣∣∣∣
r

dV (r) = ∂ 〈ψ〉γ |x
∂t

(6)

3. Interchange spatial differentiation and spatial integration using the spatial averaging
theorem for intrinsic averages (Whitaker 1999),

〈∇ψ〉γ = ∇〈ψ〉γ + 〈ψ〉γ ε−1
γ ∇εγ + 1

Vγ

∫

r∈Aγ κ (x)

nγ κψ dA(r) (7)

here εγ is the volume fraction of the γ -phase within the averaging domain, i.e., εγ =
Vγ /V .

4. Use the interfacial boundary condition given by Eq. (1b) where applicable.
5. Decompose the point concentration, cAγ , in terms of the averaged concentration, 〈cAγ 〉γ ,

and the concentration spatial deviation, c̃Aγ (Gray 1975)

cAγ
∣∣
x = 〈cAγ 〉γ ∣∣x + c̃Aγ

∣∣
x (8)
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In the above expression, we only use averages that are computed when x is located in the
fluid phase.

After conducting these steps, the unclosed average equation (valid everywhere in the
domain of the porous medium VM ) can be written as (see Whitaker 1999, for details)

∂〈cAγ 〉γ
∂t

= ∇ ·
⎡

⎢
⎣DAγ

⎛

⎜
⎝∇〈cAγ 〉γ + 〈cAγ 〉γ ε−1

γ ∇εγ + 1

Vγ

∫

r∈Aγ κ (x)

nγ κ 〈cAγ 〉γ dA(r)

+ 1

Vγ

∫

r∈Aγ κ (x)

nγ κ c̃Aγ dA(r)

⎞

⎟
⎠

⎤

⎥
⎦ − 〈

R(cAγ )
〉γ (9)

This equation is nonlocal since it involves a surface integral in which 〈cAγ 〉γ is evaluated at
points other than the averaging domain centroid, x. In addition, notice that, up to this point,
no expression has been provided for the reaction rate. In the following, we will treat it as a
linear function and then extend the analysis to nonlinear expressions.

4 Closure: Linear Case

To complete the upscaling process, it is necessary to derive an expression for the concentration
deviations in terms of 〈cAγ 〉γ and, if necessary, of its derivatives. This is usually known as
closure. To this end, it is necessary to derive and formally solve the initial and boundary-value
problem for the concentration deviations. The governing differential equation for c̃Aγ can
be obtained by subtracting Eq. (9) from Eq. (1a), as suggested from Eq. (8). The result is
expressed as follows

∂ c̃Aγ

∂t
= ∇ · (DAγ∇ c̃Aγ

)−∇ ·
⎛

⎜
⎝

DAγ

Vγ

∫

r∈Aγ κ (x)

nγ κ c̃Aγ dA(r)

⎞

⎟
⎠−DAγ∇ · (〈cAγ 〉γ∇ ln εγ

)

︸ ︷︷ ︸
volume diffusive source

− ∇ ·
⎛

⎜
⎝

DAγ

Vγ

∫

r∈Aγ κ (x)

nγ κ 〈cAγ 〉γ dA(r)

⎞

⎟
⎠

︸ ︷︷ ︸
volume diffusive source

− R̃
(
c̃Aγ + 〈cAγ 〉γ )

︸ ︷︷ ︸
volume reactive source

, in Vγ,M (10a)

As a matter of consistency with Eq. (8), the reaction rate deviations are defined as

R̃(cAγ ) = R(cAγ )− 〈
R(cAγ )

〉γ (10b)

Since R is assumed to be a linear function, it follows that R̃(cAγ ) = R
(
c̃Aγ

)
, thus

becoming a homogeneous term in Eq. (10a).
From Eq. (1b) and the concentration decomposition given by Eq. (8), the interfacial

boundary condition for c̃Aγ can be expressed as

− nγ κ · DAγ∇ c̃Aγ = nγ κ · DAγ∇〈cAγ 〉γ
︸ ︷︷ ︸
surface diffusive source

, at Aγ κ,M (10c)
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In a similar fashion, the second boundary condition and the initial condition are given by

c̃Aγ = H (x, t) , at Aγ e,M (10d)

c̃Aγ = IM (x) , when t = 0 (10e)

here H = E − 〈cAγ 〉γ and IM = F − 〈cAγ 〉γ , respectively, are also sources of the initial
and boundary-value problem for the concentration deviations, which is also nonlocal due to
the second term on the right-hand side of Eq. (10a).

Using an integral equation formulation based on Green’s functions, as suggested by
Wood and Valdés-Parada (2013), the formal solution for the concentration deviations can
be expressed as

c̃Aγ (x, t) = −
t0=t∫

t0=0

∫

r∈Vγ,M

G M (x, r, t − t0)SM (r, t0)dV (r)dt0

︸ ︷︷ ︸
influence of the volume diffusive source

−
t0=t∫

t0=0

∫

r∈Aγ κ,M

G M (x, r, t − t0)nγ κ (r) · DAγ∇r〈cAγ 〉γ |(r,t0) dA(r)dt0

︸ ︷︷ ︸
influence of the surface diffusive source

+
t0=t∫

t0=0

∫

r∈Aγ e,M

G M (x, r, t − t0)H (r, t0)dA(r)dt0

︸ ︷︷ ︸
influence of the entrance and exit sources

+
∫

r∈Vγ,M

G M (x, r, t)IM (r)dV (r)

︸ ︷︷ ︸
influence of the initial condition

(11)

For the sake of brevity in presentation, we have introduced the notation

SM (r, t0) = ∇r · (DAγ 〈cAγ 〉γ |(r,t0) ∇r ln εγ (r)
)

+∇r ·
⎛

⎜
⎝

DAγ

Vγ

∫

w∈Aγ κ (r)

nγ κ 〈cAγ 〉γ |(w,t0) dA(w)

⎞

⎟
⎠ (12)

In Eq. (11), G M (x, r, t − t0) denotes the associated Green’s function, which solves the
following initial and boundary-value problem in the macroscopic domain

∂G M (x, r, t0)

∂t
− ∇ · (DAγ∇G M (x, r, t0)

)

+ ∇ ·
⎛

⎜
⎝

DAγ

Vγ

∫

w∈Aγ κ (x)

nγ κ (w, t0)G M (w, r, t0)dA(w)

⎞

⎟
⎠

− R (G M (x, r, t0)) = δ(x − r)δ(t − t0), in Vγ,M (13a)

− nγ κ (x, t0) · DAγ∇G M (x, r, t0) = 0, at Aγ κ,M (13b)
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G M (x, r, t0) = 0, at Aγ e,M (13c)

G M (x, r, t0) = 0, when t < t0 (13d)

Certainly, the expression for the concentration deviations given in Eq. (11) may be substituted
into Eq. (9) to close the averaged model. However, the resulting equation system would be
nonlinear, nonlocal in both time and space, and strongly coupled to the microscale closure
problem that needs to be solved in the whole macroscale domain. Under these conditions,
it may be more feasible to solve the microscale equations (Eqs. 1) directly and then carry
out the average (i.e., to perform pore-scale simulations). Unfortunately, this modeling choice
would also require a complete knowledge of the microscopic geometry everywhere in the
system, which is not always a tractable nor desirable line of work. For this reason, we will
pursue an upscaling approach that requires imposing a set of length and timescale constraints
and assumptions (see for instance Wood 2009; Wood and Valdés-Parada 2013) that allows
reducing the number of degrees of freedom involved in the model. This approach is explained
in detail in the following section.

5 Local Closure Problem

As a first simplification step, we seek for length-scale constraints that permit reducing the
nonlocal transport equation given by Eq. (9), to a local transport equation. The development
of these constraints is based on Taylor series expansions of 〈cAγ 〉γ |r around the centroid of
the averaging domain, x, and on the use of the geometrical theorems that allow evaluating
volume integrals instead of surface integrals (see Section 2.1 in Quintard and Whitaker 1994).

Let r0 be the characteristic length of the averaging domain, V that satisfies the following
length-scale constraints (Whitaker 1999)

(i) �γ 	 r0

This assumption implies that the characteristic length associated to the macroscopic scale
is large compared to the characteristic length scale for theγ -phase. For a discussion about
the meaning of characteristic lengths, see Section 3 in Wood and Valdés-Parada (2013).

(ii) r2
0 	 LεLc1

where Lc1 represents a characteristic length associated with the first derivative of 〈cAγ 〉γ ,
and Lε is the length scale associated to the porosity. If the porous medium is homoge-
neous (i.e., second-order spatially stationary in the sense of Wood 2013), the porosity is
uniform and then Lε = ∞, Consequently,

1

Vγ

∫

r∈Aγ κ (x)

nγ κ 〈cAγ 〉γ |rdA (r) ≈ 1

Vγ

∫

r∈Aγ κ (x)

nγ κdA (r) 〈cAγ 〉γ |x

= −ε−1
γ ∇εγ 〈cAγ 〉γ (14)

The length-scale constraints mentioned above are generally represented as �γ 	 r0 	
L , where L is conceived as the smallest large length scale associated with the problem
under consideration. Under these conditions, the averaging domain can be regarded as a
representative elementary volume (REV).

In item (ii) and in all this work, we use the term homogeneous in the same sense as
Quintard and Whitaker (1987), i.e., A porous medium is homogeneous with respect to a given
averaging volume and a given process when the effective transport coefficients in the volume-
averaged transport equations are independent of position. A more formal statement of this
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692 H. D. Lugo-Méndez et al.

concept is offered by Wood (2013), where the term homogeneous is interpreted to mean that
the structure of the medium is second-order spatially stationary.

Imposing the length-scale constraint stated above transforms Eq. (9) into a local averaged
equation valid in the bulk of the porous medium

∂〈cAγ 〉γ
∂t

= ∇ ·
⎡

⎢
⎣DAγ

⎛

⎜
⎝∇〈cAγ 〉γ + 1

Vγ

∫

r∈Aγ κ (x)

nγ κ c̃Aγ dA(r)

⎞

⎟
⎠

⎤

⎥
⎦ − 〈

R(cAγ )
〉γ (15)

In addition, the term representing the volume diffusive source in the closure problem
(see Eq. 12) becomes negligible with respect to the surface diffusive source. Furthermore,
if �γ 	 Lc̃, the nonlocal diffusion term can be discarded with respect to the local diffusion
term in Eq. (10a), i.e.,

∇ ·
⎛

⎜
⎝

DAγ

Vγ

∫

r∈Aγ κ (x)

nγ κ c̃Aγ dA(r)

⎞

⎟
⎠ 	 ∇ · (DAγ∇ c̃Aγ

)

In this way, we may write Eq. (10a) as follows

∂ c̃Aγ

∂t
= ∇ · (DAγ∇ c̃Aγ

) − R
(
c̃Aγ

)
, in Vγ,M (16)

Despite these simplifications, the formal solution of the closure problem given by Eq. (11)
still requires computing the associated Green’s functions in the entire macroscopic domain.

To simplify this solution, we will solve the closure problem in a more convenient domain
that maintains the essential microscale information. Let V be a representative region of the
porous medium VM , with characteristic length r0. For the purpose of solving the closure
problem, the representative region V is modeled as a spatially periodic porous medium
generated by three nonunique lattice vectors li (i = 1, 2, 3) defining a representative unit
cell Ω . The characteristic length, �, of the representative unit cell must be equal to or less
than the characteristic length of the representative region, i.e., � ≤ r0.

The use of spatially periodic models at the microscale is of primary importance in the
method of volume averaging, and its main implications are provided below. As a matter of fact,
other upscaling techniques share this modeling approach for the microscale geometry (see for
instance, Bear and Cheng 2010; Sanchez-Palencia 1970). It is worth emphasizing that using a
periodic domain for the closure problem solution is a convenient approximation but does not
imply that the resulting macroscopic model would only be applicable to periodic geometries.
The required length-scale constraint to treat the source terms of Eqs. (10a) and (10c) as
constants in the unit cell is (Quintard and Whitaker 1994)

� ≤ r0 	 Lc, Lc1 (17)

thus, both 〈cAγ 〉γ and ∇〈cAγ 〉γ can be treated as position invariant within the representative
unit cell Ω , and their values correspond to the cellular intrinsic average concentration and
its gradient, respectively, evaluated at the centroid of the unit cell.

Furthermore, if � ≤ r0 	 min
(
Lc, Lc1

)
, it is also concluded that

(i) 〈c̃Aγ 〉γ |x = 0.
(ii) The boundary condition at the entrances and exits of the macroscopic domain (i.e., Eq.

10d) is no longer necessary.
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In this way, the initial and boundary-value problem defined in the porous medium VM and
given by Eqs. (10a)–(10e) is simplified to a periodic and local closure problem defined in
a unit cell Ω , which is bounded by the length-scale constraints established above, and it is
given by

∂ c̃Aγ

∂t
= ∇ · (DAγ∇ c̃Aγ

) − R
(
c̃Aγ

)
, in Ωγ (18a)

− nγ κ · DAγ∇ c̃Aγ = nγ κ · DAγ∇〈cAγ 〉γ
︸ ︷︷ ︸
surface diffusive source

, at ∂Ωγκ (18b)

c̃Aγ (x + li ) = c̃Aγ (x) , i = 1, 2, 3 (18c)

c̃Aγ = I (x) , when t = 0 (18d)

〈c̃Aγ 〉γ = 0 (18e)

In the above equations, Ωγ represents the domain occupied by the γ -phase within the unit
cell, and Ω and ∂Ωγκ denote the solid–fluid interface in the unit cell. In addition, I is the
initial distribution of the concentration deviations in the unit cell.

At this point, it is convenient to re-formulate the formal solution of the closure problem
in the unit cell. Once again, to achieve our goals we use integral equation formulations based
on Green’s functions and express the solution as follows

c̃Aγ (x, t) = −
t0=t∫

t0=0

⎛

⎜
⎝

∫

r∈∂Ωγκ
GΩ(x, r, t − t0)nγ κDAγ dA(r)

⎞

⎟
⎠ · ∇〈cAγ 〉γ dt0

︸ ︷︷ ︸
influence of the surface diffusive source

+
∫

r∈Ωγ
GΩ(x, r, t)I (r)dV (r)

︸ ︷︷ ︸
influence of the initial condition

(19)

In the above expression, GΩ(x, r, t − t0) is the Green function that solves the following initial
and boundary-value problem

∂GΩ

∂t
− ∇ · (DAγ∇GΩ

) − R(GΩ) = δ(x − r)δ(t − t0), in Ωγ (20a)

−nγ κ · DAγ∇GΩ = 0, at ∂Ωγκ (20b)

GΩ (x + li ) = GΩ (x) , i = 1, 2, 3 (20c)

GΩ = 0, when t < t0 (20d)

〈GΩ 〉γ = 0 (20e)

Certainly, the closure problem solution in Eq. (19) is simpler than the one given in Eq.
(11); however, it is pertinent to emphasize that, despite the simplification in the solution
domain for the concentration deviations, the average concentration and its gradient are only
constant in space but not in time. Consequently, if Eq. (19) is substituted into Eq. (15), the
resulting expression would be nonlocal in time. For this reason, in the following paragraphs,
we constrain the analysis to quasi-steady conditions. Before moving on, it is worth mentioning
that the length-scale constraints imposed so far may be too severe in some applications. For
example, if there are portions of the system exhibiting a linear average concentration profile,
the concentration gradient would be constant, thus making it unnecessary to impose additional
constraints.
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6 Quasi-Steady Closure Problem

A common simplification in the method of volume averaging is to treat the closure problem
as quasi-steady, even when the macroscopic reaction–diffusion process is unsteady. In order
to derive the timescale constraint associated to the quasi-steady assumption of the closure
problem, let us perform an order-of-magnitude analysis to Eq. (18a), the resulting estimates
can be written as

∂ c̃Aγ

∂t︸ ︷︷ ︸

O

⎛

⎝
	c̃Aγ

t∗

⎞

⎠

= ∇ · (DAγ∇ c̃Aγ
)

︸ ︷︷ ︸

O

⎛

⎝
Dγ	c̃Aγ

�2
γ

⎞

⎠

− R
(
c̃Aγ

)

︸ ︷︷ ︸
O(R)

, in Ωγ (21)

From these estimates, the following constraint can be obtained,

1

1 + �2
γ R̃

DAγ	c̃Aγ

	 DAγ t∗

�2
γ

(22)

which, when satisfied, allows treating the closure problem as quasi-steady, and thus, Eq. (21)
is simplified to

∇ · (DAγ∇ c̃Aγ
) − R

(
c̃Aγ

) = 0, in Ωγ (23)

In the inequality (22), the term
�2
γ R̃

DAγ 	c̃Aγ
can be regarded as a Thiele modulus for the closure

problem, say φ2
c . It is convenient to introduce this dimensionless number since it relates

the reaction rate to the diffusion rate. In this way, whenever 1 	 φ2
c the diffusive process

is negligible with respect to the reactive transport, and for cases in which φ2
c 	 1, the

transport process is mainly diffusive. Therefore, if 1 	 φ2
c , the timescale constraint reduces

to 	c̃Aγ /R 	 t∗, and if φ2
c 	 1, it results that �2

γ /DAγ 	 t∗.
The following two corollaries arise from the quasi-steady assumption:

1. The influence of the initial condition over the c̃Aγ -fields becomes negligible.
2. The volume-averaged concentration and its derivatives can be assumed as constants in

the timescale of c̃Aγ .

Therefore, the formal solution of the closure problem given by Eq. (19) simplifies to

c̃Aγ (x, t) = b(x) · ∇〈cAγ 〉γ
︸ ︷︷ ︸

influence of the surface diffusive source

(24)

As a matter of convenience, we defined the closure variable b as (Wood and Valdés-Parada
2013)

b(x) = −
∫

r∈∂Ωγκ
Gr x (x, r)nγ κDAγ dA(r) (25)
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In Eq. (24), Gr x (x, r) is the Green function associated to diffusion and reaction that solves
the following boundary-value problem

∇ · (DAγ∇Gr x
) − R(Gr x ) = δ(x − r), in Ωγ (26a)

− nγ κ · DAγ∇Gr x = 0, at ∂Ωγκ (26b)

Gr x (x + li ) = Gr x (x) , i = 1, 2, 3 (26c)

〈Gr x 〉γ = 0 (26d)

In this way, the closure variable b solves the following boundary-value problem

DAγ∇2b − R(b) = 0, in Ωγ (27a)

− nγ κ · DAγ∇ ⊗ b = nγ κDAγ , at ∂Ωγκ (27b)

b (x + li ) = b (x) , i = 1, 2, 3 (27c)

〈b〉γ = 0 (27d)

At this point, let us assume that the reaction rate obeys a first-order kinetics, say R(cAγ ) =
kcAγ . This allows, proposing the following decomposition

b = kbr x + bγ (28)

here br x solves the following boundary-value problem

DAγ∇2br x − kbr x = bγ , in Ωγ (29a)

− nγ κ · DAγ∇ ⊗ br x = 0, at ∂Ωγκ (29b)

br x (x + li ) = br x (x) , i = 1, 2, 3 (29c)

〈br x 〉γ = 0 (29d)

In Eq. (28), bγ is defined in Eq. (65) and it solves the boundary-value problem given by
Eqs. (1.4–58) in Whitaker (1999), which is independent of the reaction rate. At first sight, it
is tempting to only solve the boundary-value problem given by Eqs. (27) and use Eq. (24) as
the closure problem solution; however, this approach leads to a single effective diffusion-like
coefficient that is dependent on the reaction rate (i.e., a diffusion–reaction coefficient, as
shown by Valdés-Parada and Alvarez-Ramírez 2010). With the aim of making a distinction
between an effective diffusivity (i.e., an effective medium coefficient that only depends of the
porous medium structure) and a diffusion–reaction coefficient, we put forward the use of the
decomposition given in Eq. (28). Nevertheless, it is worth stressing that solving the closure
problem given by Eqs. (27) is simpler than solving the closure problem for br x (Eqs. 29)
because the latter is coupled with the fields of bγ , given by Eq. (25). In summary, the closure
problem solution strategy that we follow is to: (1) compute the fields of the closure variable
bγ ; (2) compute the fields of the closure variable b; and (3) substitute these solutions into
Eq. (28) to compute br x . Notice that, for a given porosity, it is only necessary to recalculate
steps (2) and (3) for different reaction rate coefficients. Finally, before proceeding with the
derivation of the closed model, we discuss the case in which the reaction rate expression is
nonlinear.

7 Linearization of the Closure Problem for Nonlinear Reactions

The developments provided so far have been restricted to situations involving a linear reaction
rate; with the aim of extending the analysis to cases in which the reaction rate is nonlinear,
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we follow an approach similar to the one used by Whitaker (see Problem 1–11 in Whitaker
1999) in order to linearize the reaction rate term. This is accomplished by

1. Developing a Taylor series expansions of the reaction rate, R, around the average con-
centration, 〈cAγ 〉γ .

2. Neglecting nonlinear terms by performing an order-of-magnitude analysis based on the
length-scale constraints established in the local theory presented in Sect. 5. This allows
one to develop explicit constraints that indicate the range of validity of the linearized
equation.

Note that in some instances, the range of validity of the constraints may prevent the
linearized solution from being useful under a set of conditions for which one wants a solution.
The idea of treating the nonlinear terms as source terms has a long history in the theory of
nonlinear PDEs (cf., Flesch and Trullinger 1987; Stakgold and Holst 2011). The result is an
implicit integral equation for the dependent variable, and iterative approaches must be used
to determine the solution. Questions of existence and uniqueness of such solutions are often
more difficult (or impossible) to prove, but when the solutions can be found, they may often
be verified to be correct and physically relevant. We have detailed the nonlinear approach in
the appendix; for the remainder of this section, we take the first critical step to the general
nonlinear case by establishing the integral solution of the linear model.

The reaction rate of the species involved in the reaction–diffusion process is described by
R = R(cAγ ), which can also be viewed as the composite function R ◦ cAγ = R

(
cAγ (r)

)

defined in the γ -phase of the unit cell, i.e., for all y ∈ Ωγ . If R ∈ C∞ (
R

+)
, R is an

infinitely differentiable function in Ωγ , and then, it can be locally defined by a convergent
power series determined by its Taylor series. This means that, for every c∗

Aγ ∈ R
+, there

exists some r > 0, known as the radius of convergence of the series, such that, for all
cAγ ∈ (c∗

Aγ − r, c∗
Aγ + r) ⊂ R

+, the reaction rate function is given by (Arfken et al. 2013)

R|cAγ
= R|c∗

Aγ
+ dR

dcAγ

∣∣∣∣
c∗

Aγ

(
cAγ − c∗

Aγ

)
+ 1

2!
d2 R

dc2
Aγ

∣∣∣∣∣
c∗

Aγ

(
cAγ − c∗

Aγ

)2 + · · · ,

|cAγ − c∗
Aγ | < r (30)

Since the local theory of the method of volume averaging is based on the local periodicity
assumption, it follows that the concentration deviations are locally expressed in the unit cell
Ω (x) as c̃Aγ |r = cAγ |r − 〈cAγ 〉γ |x for x ∈ Ω and r ∈ Ωγ . From the above discussion and
taking c∗

Aγ = 〈cAγ 〉γ |x, there exists a range of positive values of r , such that, for all cAγ

satisfying 〈cAγ 〉γ − r < cAγ < 〈cAγ 〉γ + r , the reaction rate can be locally defined by its
convergent Taylor series expansion about 〈cAγ 〉γ |x and can be expressed as

R|cAγ |r = R|〈cAγ 〉γ |x + dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

c̃Aγ |r + 1

2!
d2 R

dc2
Aγ

∣∣∣∣∣〈cAγ 〉γ |x
c̃2

Aγ |r + · · · ,

|c̃Aγ | < r
(〈cAγ 〉γ ) (31)

The intrinsic average of the reaction rate in the unit cell is

〈 R|cAγ
〉γ |x = R|〈cAγ 〉γ |x︸ ︷︷ ︸

O(R(〈cAγ 〉γ ))

+ 1

2!
d2 R

dc2
Aγ

∣∣∣∣∣〈cAγ 〉γ |x

〈
c̃2

Aγ

〉γ |x
︸ ︷︷ ︸

O

⎛

⎝
R

(〈cAγ 〉γ )
(〈cAγ 〉γ )2

〈
c̃2

Aγ

〉γ
⎞

⎠

+ · · · , |c̃Aγ | < r
(〈cAγ 〉γ ) (32)

123



Upscaling Diffusion and Nonlinear Reactive Mass Transport 697

Subtracting Eq. (32) to Eq. (31), the spatial deviations of the reaction rate in the unit cell Ω
are given by

R̃
∣
∣∣
cAγ |r

= dR

dcAγ

∣
∣
∣
∣
〈cAγ 〉γ |x

c̃Aγ |r
︸ ︷︷ ︸

O

⎛

⎝
R

(〈cAγ 〉γ )
〈cAγ 〉γ c̃Aγ

⎞

⎠

+ 1

2!
d2 R

dc2
Aγ

∣
∣
∣∣
∣〈cAγ 〉γ |x

(
c̃2

Aγ |r −
〈
c̃2

Aγ

〉γ |x
)

︸ ︷︷ ︸

O

⎛

⎝
R

(〈cAγ 〉γ )
(〈cAγ 〉γ )2

(
c̃2

Aγ−
〈
c̃2

Aγ

〉γ )
⎞

⎠

+ · · · ,

|c̃Aγ | < r
(〈cAγ 〉γ ) (33)

At this point, it is worth noting that no approximations have been made to the reaction rates,
as long as the convergence of the series is guaranteed. In other words, if Eq. (33) is substituted
into Eq. (24), the resulting expression would still be implicit and nonlinear. To attend this
issue, the following inequality should be met

1

2!
d2 R

dc2
Aγ

∣
∣
∣
∣
∣〈cAγ 〉γ |x

(
c̃2

Aγ |r −
〈
c̃2

Aγ

〉γ |x
)

	 dR

dcAγ

∣
∣
∣
∣
〈cAγ 〉γ |x

c̃Aγ |r (34)

In order to derive the length-scale constraint that supports this assumption, we use the order-
of-magnitude estimates provided in Eq. (33), and the result can be written as follows,

c̃2
Aγ −

〈
c̃2

Aγ

〉γ

c̃Aγ
	 〈cAγ 〉γ (35)

To make further progress, we need to estimate the order of magnitude of the concentration
deviations, for which we analyze Eq. (24) to arrive to

c̃Aγ = O
(
�γ 〈cAγ 〉γ
L(1 + φ2

c )

)
(36)

Substituting this estimate into inequality (35) yields

�γ

L
	 1 + φ2

c (37)

This constraint not also supports the inequality given in (34), but also leads to the assumption
that c̃Aγ 	 〈cAγ 〉γ , which limits the range of application of the upscaled model. At this
point, it is worth emphasizing that the results from order-of-magnitude estimates should be
taken with caution, because the resulting constraints are usually more restrictive than needed.
Certainly, a detailed analysis about the extents and limitations of the resulting upscaled model,
as done by Battiato et al. (2009) and Battiato and Tartakovsky (2011) for reactions with linear
kinetics, is desirable but lies beyond the scope of this work.

Under these conditions, we may simplify Eq. (33) to

R̃
∣∣∣
cAγ |x+yγ

= dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

c̃Aγ |x+yγ (38)

So that Eq. (23) can be written as

∇ · (DAγ∇ c̃Aγ
) − dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

c̃Aγ = 0, in Ωγ (39)
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This linearization scheme has been previously used to estimate effectiveness factors in cat-
alytic systems (Valdés-Parada et al. 2006a), as well as in bioreactors (Valdés-Parada et al.
2005). Equation (39) is subject to the boundary conditions given by Eqs. (18b), (18c) and
to the average constraint in Eq. (18e). Before moving on, it is convenient to summarize the
scaling postulates involved in the closure problem in the following statement:

Let V be a representative region of the porous medium VM of characteristic length r0,
and assumed to be a spatially periodic porous medium generated by the unit cell Ω and
with characteristic length � ≤ r0, such that, � ≤ r0 	 min (Lc, Lc1). If the length-scale
associated with the pores �γ is constrained by �γ 	 min{Lc̃, Lc}(1 + φ2

c ), implying that

c̃Aγ 	 〈cAγ 〉γ ; and the characteristic time is large enough, so that
DAγ t∗
�2
γ

� (1 + φ2
c )

−1,

then the closure problem can be treated as local, periodic, quasi-steady, and linear.
Under these conditions, the closure problem solution is given by Eq. (24), with b being

b = dR

dcAγ

∣
∣
∣
∣
〈cAγ 〉γ |x

br x + bγ (40)

and the problem for br x , defined in Eqs. (29), is modified only in Eq. (29a) by substituting

k for dR
dcAγ

∣
∣
∣〈cAγ 〉γ |x

.

The derivations in this section show that, as long as the length-scale constraints and
assumptions supporting the linearization scheme are met, one may handle the closure problem
solution in the same manner as in the case in which R is a linear function. As mentioned
above, for cases where the problem is nonlinear, it may be possible to treat the nonlinear
term as a source in the solution. This approach is explained in Appendix.

8 Closed Upscaled Model

In order to develop the closed form of the macroscopic reaction–diffusion equation in terms
of effective transport coefficients, Eq. (24) is substituted into Eq. (15). The resulting equation
can be written as

∂〈cAγ 〉γ
∂t

= ∇ · (Ddiff-rx · ∇〈cAγ 〉γ ) − 〈R(cAγ )〉γ (41)

where Ddiff-rx is the effective reaction–diffusion coefficient composed by the effective dif-
fusivity tensor, Deff, and a diffusion-like coefficient that is dependent on the reaction rate,
Drx,

Ddiff-rx = Deff + Drx (42)

These effective coefficients can be written in terms of the closure variables as follows,

Ddiff-rx
(〈cAγ 〉γ ) = DAγ

⎡

⎢
⎣I + 1

Vγ

∫

r∈Aγ κ

nγ κ (r)bγ (r) dA(r)

⎤

⎥
⎦

︸ ︷︷ ︸
Deff

+ DAγ

Vγ

dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

∫

r∈Aγ κ

nγ κ (r)brx
(
r, 〈cAγ 〉γ ) dA(r)

︸ ︷︷ ︸
Drx

(43)
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Directing the attention to the reaction term in Eq. (41), we make use of the order-of-
magnitude estimates provided in Eq. (32) and notice that

1

2!
d2 R

dc2
Aγ

∣
∣
∣
∣
∣〈cAγ 〉γ |x

〈
c̃2

Aγ

〉γ |x 	 R|〈cAγ 〉γ |x (44)

whenever the following constraint is met,
√

〈c̃2
Aγ 〉γ 	 〈cAγ 〉γ (45)

The length-scale constraint that supports this inequality has already been adopted in our
derivations and it is given in (37). Under these circumstances, we have, from Eq. (32), the
following approximation for the volume-averaged reaction rate

〈 R|cAγ
〉γ |x = R|〈cAγ 〉γ |x (46)

In this way, Eq. (41) takes its final form,

∂〈cAγ 〉γ
∂t

= ∇ · (Ddiff-rx · ∇〈cAγ 〉γ ) − R
(〈cAγ 〉γ ) (47)

At this point, it is pertinent to provide the following comments regarding the upscaled model:

• Despite the familiar structure of Eq. (47), this is not a vis-à-vis model with respect to its
microscale counterpart (Eq. 1a). The reason for this difference is due to the dependence
of the coefficient Drx with 〈cAγ 〉γ . This is consistent with the previous study of diffusion
and reaction in biofilms by Wood and Whitaker (1998) and, more recently, with studies of
reactive transport in porous media with bimolecular reactions (Porta et al. 2012, 2013).
Wood and Whitaker (1998) imposed an additional constraint for the reaction rate in their
derivation of an upscaled model based on the local mass equilibrium assumption (see
Eq. A.37 in Wood and Whitaker 1998),

�2
γ

DAγ

dR

dcAγ

∣∣∣∣
〈cAγ 〉γ

	 1 (48)

This restriction allows neglecting Drx with respect to Deff. This constraint is inherent in
the derivation of local mass equilibrium models. As shown by Orgogozo et al. (2010),
this constraint is not necessary in nonequilibrium models and will not be imposed in our
work. Certainly, the functionality of the diffusion–reaction coefficient with the reaction
rate will still be present even for linear reaction rate kinetics if no additional constraints
are imposed (Valdés-Parada and Alvarez-Ramírez 2010).

• For nonlinear reaction rate kinetics, the price to be paid for maintaining the relationship
between Drx and 〈cAγ 〉γ is not only the nonlinearity of the upscaled model, but also
the coupling with the closure problem. In other words, in order to compute the closure

variable br x , it is necessary to have the value of dR
dcAγ

∣∣∣〈cAγ 〉γ as shown in Eq. (29a).

This dependence of the closure problems with the macroscale concentration values has
also been encountered in other problems, such as in transport of chemotactic bacteria in
porous media (Valdés-Parada et al. 2009) or in the derivation of nonequilibrium models
for mass transport and reaction in biofilm-coated porous media (Orgogozo et al. 2010).

• The closure problem and thus the upscaled model are restricted by the scaling postu-
lates imposed so far. Briefly, the closure problem is local, periodic, linear, and quasi-
steady. In future works, we will explore cases in which not all of these assumptions are
met.
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Fig. 2 Representative domains for the closure problem solution: a periodic unit cell, b Chang’s unit cell

9 Computation of the Effective Diffusion Coefficient

The solution of the closure problems can be carried out by numerical or analytical means. In
the first case, one can solve the boundary-value problems for b and bγ using the commercial
software Comsol Multiphysics® to perform the numerical solution. The strategy that we used
is the following:

1. For a given porosity value, fix the closure Thiele modulus (Φ2 = R′ (〈cAγ 〉γ /c0
)
�2/DAγ ).

2. Solve the closure problem for bγ and b in a periodic unit cell as the one sketched in
Fig. 2a.

3. Substitute the fields of the closure variables into Eq. (43) to compute the effective diffu-
sivity.

Using this approach, we obtained the results shown in Fig. 3, for 2D and 3D unit cells for
the xx-component of the effective diffusivity tensor. These results exhibit a sigmoidal-like
shape and can be reproduced, for the range of values here studied, by means of the following
expression

Dxx
diff-rx = D∞ + Deff − D∞

1 +
(
Φ2

Φ2
0

)n (49)

where Deff is the xx-component of the effective diffusivity under nonreactive conditions (i.e.,
Φ = 0), whereas D∞ is the value of Dxx

diff-rx forΦ � 1. In addition,Φ0 and n are adjustable
coefficients. In Table 1, we provide the values of all the coefficients involved in Eq. (49) for
different porosity values using 2D and 3D periodic unit cells; in all cases, the correlation
factor for the best-fit was equal to or larger than 0.999.

A Chang unit cell (Chang 1982, 1983; Ochoa-Tapia et al. 1994), denoted as Γ ⊂ R
3, is

a nonperiodic domain conformed by two homothetic concentric regions Γi ⊂ Γe, in which
Γi is associated to the κ-phase, while the γ -phase is represented by the region comprised
between the two concentric geometries, i.e., Γγ = Γe − Γi , and the γ –κ interface coincides
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Fig. 3 Effect of closure Thiele modulus, Φ, and porosity, εγ , on the effective reaction–diffusion coefficient
predicted in 2D (left panel) and 3D (right panel) unit cells of a spatially periodic array of cylinders and spheres,
and in cylindrical and spherical Chang’s unit cells. In the bottom plots, we provide the relative percent errors
of the predictions from Chang’s unit cell with respect to those resulting from the spatially periodic unit cell in
2D and 3D

with the boundary of Γi , i.e., Aγ κ = ∂Γi . Since Chang’s unit cell is not periodic, homoge-
neous Dirichlet-type boundary conditions are enforced at ∂Γe, thus abandoning the periodic
boundary conditions.
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Table 1 Values of the
coefficients involved in the
best-fit expression for Dxx

diff-rx
using 2D and 3D periodic unit
cells

εγ Deff D∞ Φ2
0 n

2D periodic unit cells

0.1 0.05208 0.09917 74.02738 1.74887

0.2 0.10870 0.19803 36.91521 1.67670

0.3 0.17097 0.29739 24.28633 1.64665

0.4 0.24026 0.39686 17.95623 1.62495

0.5 0.31859 0.49655 14.20992 1.60539

0.6 0.40896 0.59647 11.81818 1.58467

0.7 0.51570 0.69667 10.30622 1.55882

0.8 0.64470 0.79726 9.57291 1.52094

0.9 0.80340 0.89836 10.16927 1.45512

3D periodic unit cells

0.1 0.06883 0.09975 102.72102 1.90242

0.2 0.14133 0.19962 52.8920 1.76405

0.3 0.21910 0.29969 34.22247 1.74390

0.4 0.30145 0.39918 25.67513 1.65795

0.5 0.39214 0.49958 19.44833 1.69525

0.6 0.48846 0.59934 16.29563 1.61897

0.7 0.59545 0.69942 13.81869 1.59337

0.8 0.71425 0.79945 12.34034 1.55023

0.9 0.84853 0.89971 12.14839 1.49153

Although there are plenty homothetic geometries that may be considered, in this work we
used cylindrical and spherical geometries as Chang’s unit cells for the sake of consistency with
previous studies (Ochoa-Tapia et al. 1994). According to Fig. 2b, the γ -phase in a cylindrical
Chang unit cell is described by Γγ = {(r, θ) : r ∈ (a, �ch/2), θ ∈ (0, 2π)}, while for a
spherical unit cell it is defined by Γγ = {(r, θ, φ) : r ∈ (a, �ch/2), θ ∈ (0, π), φ ∈ (0, 2π)}.
The characteristic length scale associated to these cells is � = �ch. Let bγ and b be the scalar
components of interest of the dimensionless closure variables bγ /� and b/�, respectively
(i.e., bγ = bγ ·ex/� and b = b ·ex/�). The closure problem in Chang’s unit cell is essentially
the same one as in a periodic unit cell; the only difference is that the periodic boundary
conditions at the entrances and exits are replaced by a homogeneous Dirichlet-type boundary
condition. A discussion about the use of this boundary condition can be found in the work by
Ochoa-Tapia et al. (1994). Due to the structure of the closure problem in Chang’s unit cell,
it is not hard to realize that the structure of the solution is of the form,

ψ(r, θ) = cos θ v(r), 2D (50a)

ψ(r, θ, φ) = sin θ cosφ v(r), 3D (50b)

with ψ representing either b or bγ . In the above expressions, v(r) solves the following
boundary-value problem

1

rn

d

dr

(
rn dv

dr

)
−Φv = 0, in Γγ (51a)

123



Upscaling Diffusion and Nonlinear Reactive Mass Transport 703

− dv

dr
= er · ex , at r = a (51b)

v = 0, at r = �ch/2 (51c)

In Eq. (51a), n = 1, 2 corresponds to cylindrical and spherical coordinates, respectively. The
closure problems for bγ and b are recovered whenΦ = 0 andΦ2 = R′ (〈cAγ 〉γ /c0

)
�2/DAγ ,

respectively. The dimensionless numberΦ can be conceived as the Thiele modulus associated
to the closure problem, in which c0 is a characteristic concentration of species A such that
cAγ and, therefore, 〈cAγ 〉γ are between 0 and 1. The resulting closure vectors derived from
this approach are respectively substituted into Eq. (43), to obtain the analytical expressions
for the effective transport coefficients (see for details, Ochoa-Tapia et al. 1991).

Cylindrical Chang’s Unit Cell

εγ
Dxx

eff

DAγ
= εγ

2 − εγ
(52a)

εγ
Dxx

diff-rx

DAγ
= εγ + Φ−2ϑ [I1 (Φ) K1 (ϑ)− I1 (ϑ) K1 (Φ)]

[I0 (ϑ)+ I2 (ϑ)] K1 (Φ)+ [K0 (ϑ)+ K2 (ϑ)] I1 (Φ)
(52b)

where ϑ = ε
1
2
κ Φ, εκ = 4a2/�2

ch, In and Kn are the modified Bessel functions of order
n = 0, 1, 2.

Spherical Chang’s Unit Cell

εγ
Dxx

eff

DAγ
= 2εγ

3 − εγ
(53a)

εγ
Dxx

diff-rx

DAγ
= εγ + (Φϑ − 1) sinh (Φ − ϑ)+ (

1 − εγ
)
(Φ − ϑ) cosh (Φ − ϑ)

εγ [ϑ (ϑ − 2Φ)+ 2] sinh (Φ − ϑ)− [
2 (Φ − ϑ)+Φϑ2

]
cosh (Φ − ϑ)

(53b)

where ϑ = ε
1
3
κ Φ, and εκ = 8a3/�3

ch. The comparison of these expressions with the numerical
solutions in periodic unit cells is available in Fig. 3. From these results, it is clear that the
analytical solutions from Chang’s unit cells qualitatively reproduce the dependence with
the closure Thiele modulus and porosity. However, from a quantitative point of view (see
Fig. 3c, d), the results from Chang’s unit cell overpredict those from the numerical solution
in as much as 20 % for 2D geometries. As expected from previous studies (e.g., Ochoa-Tapia
et al. 1991), the predictions from Chang’s unit cell are less accurate as the porosity increases
and the differences with the numerical predictions in periodic unit cells are larger in 2D than
in 3D geometries. These observations are also consistent with those found for first-order
kinetics as shown in Fig. 5 of Valdés-Parada et al. (2011b).

At this point, it is opportune to ponder about the relevance of considering the functionality
of the effective diffusion coefficient with the reaction rate. To this end, we computed the
relative percent error of Deff (i.e., the passive diffusivity) with respect to Dxx

diff-rx for the results
provided in Fig. 3. We noticed that the percent error can go as high as 50 %, depending on
the Thiele modulus value, which is quite considerable.

Finally, it is worth noting that, from the definition of the closure Thiele modulus, we can
easily derive the dependence of the effective medium coefficient with 〈cAγ 〉γ , depending
on the particular expression for the reaction rate. This fact will be further explored in the
following section where we compare the predictions from the upscaled model with those
resulting from performing PSS.
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10 Comparison with Pore-Scale Simulations

Now that we have derived the closed macroscale model, we should ponder about its predictive
capabilities. To this end, in this section we solve the upscaled and the microscale models and
compare the average concentration profiles. For the purposes of this comparison exercise,
we restrict the analysis to two dimensions and adopt a Michaelis–Menten expression for the
reaction rate, i.e.,

R(cAγ ) = k1cAγ

k0 + cAγ
(54)

The Michaelis–Menten expression is a nonlinear form of the reaction rate that is very typical
in enzymatic reactions; its order ranges between 0 and 1 depending on the values of the
coefficients k0 and k1 and it serves as a benchmark example to evaluate the model. We
explored other nonlinear kinetic expressions (e.g., second-order, fractional-order kinetics)
obtaining similar results. Thus, for the sake of brevity in presentation, we only report the
results for the Michaelis–Menten kinetics.

In terms of the dimensionless variables,

X = x

L
; Y = y

L
; u = cAγ

cin
, Φ2

M = k1L2

DAγ
; γ = k0

cin
(55)

the microscale equation to solve is

∂2u

∂X2 + ∂2u

∂Y 2 − Φ2
M u

γ + u
= 0 (56a)

This equation is subject to the following boundary conditions

−nγ κ · ∇u = 0, at Aγ κ (56b)

X = 0, 1 u = 1 (56c)

Y = 0, 1 u = 1 (56d)

In the above,ΦM can be regarded as a macroscale Thiele modulus, because it is expressed in
terms of the macroscopic length L . In addition, as shown in Eqs. (56c) and (57), we imposed
a constant concentration value at the extremes of the domain. We refer to the solution of the
microscale equations as (direct) pore-scale simulations. In Fig, 4, we provide an example of
the fields of u taking εγ = 0.8, ΦM = 10, γ = 1 and L = 50�. Due to the symmetry of the
results, and with the aim of simplifying the computations, we reduce the solution domain to
the stripe of in-line squares shown at the bottom of Fig. 4. Under these circumstances, we
may introduce the change of variables Y ∗ = Y/2 − (1 − 2�/L)/4 and replace the boundary
conditions in Eq. (56d) to

Y ∗ = 0,
�

L

∂u

∂Y ∗ = 0 (57)

In addition, the averaged model to be solved is given by the differential equation

Dxx
diff-rx

d2U

d X2 − Φ2
MU

γ + U
= 0 (58a)
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Fig. 4 Dimensionless concentration fields from pore-scale simulations using a Michaelis–Menten kinetics
taking, εγ = 0.8, L = 50�, γ = 1 and ΦM = 10. The plot provided at the bottom corresponds to a portion
of the system that is far from the upper and lower boundaries influences

which is subject to the boundary conditions,

X = 0, 1 U = 1 (58b)

In the above expressions, U = 〈cAγ 〉γ /cin. We solved both microscale and macroscale
models using Comsol Multiphysics. Standard tests of convergence and uniqueness were
performed in order to guarantee the reliability of the numerical solutions. In Fig. 5, we
provide two examples of the fields of U resulting from solving Eqs. (58) and those arising
from solving the microscale equations (Eqs. 56) and then taking the average (in an averaging
domain corresponding to a single unit cell) of u. As can be observed, both models are in
good agreement for all the conditions studied here. This is expected because the reaction
is homogeneous, and thus, the volume fraction is more determinant than geometry in the
average concentration predictions. However, for extremely large values of the macroscopic
Thiele modulus (say,ΦM � 100), the most important changes in concentration take place in
a zone that is smaller than �. Under these circumstances, it is advisable to replace the boundary
conditions given in Eq. (58b) by jump boundary conditions as suggested by Valdés-Parada
et al. (2006b).

To have a more quantitative insight about the comparison between the pore-scale simu-
lations and the volume-averaged model, we compute the effectiveness factor for the system,
η, defined as

η =
∫ X=1

X=0

∫ Y ∗=�/L
Y ∗=0 R(U )dY ∗dX

∫ X=1
X=0

∫ Y ∗=�/L
Y ∗=0 R(U )‖X=1 dY ∗dX

(59)

which is a parameter of interest in catalytic reactions. In Fig. 6, we present the predictions of
the effectiveness factor using both pore-scale simulations and the averaged model as functions
of ΦM for two porosity values. The relative percent error between both predictions is, in all
cases, below 5 %, which is considered acceptable in many applications.
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Fig. 5 Comparison of the
concentration profiles obtained
with the averaged model (black
solid line)
and using pore-scale simulations
(red dashed line) for a
Michaelis–Menten kinetics for
different values of the
macroscopic Thiele modulus
taking a εγ = 0.4 and
b εγ = 0.8; γ = 1 and L = 100�
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Fig. 6 Effectiveness factor
predictions for two porosity
values obtained with the averaged
model (black solid line) and
using pore-scale simulations (red
dashed line) for a
Michaelis–Menten kinetics for
different values of the
macroscopic Thiele modulus
taking γ = 1 and L = 100�
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Returning to the analytical and numerical predictions of the effective diffusivity, we used
Chang’s unit cell expression for the effective diffusivity to compute U and η. Interestingly,
despite the clear differences between the analytical and numerical results shown in Fig. 3,
we did not observe plausible differences between the pore-scale simulations and macroscale
predictions of the effectiveness factor when using Chang’s unit cell. This is attributed to the
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Fig. 7 Examples of the fields of the closure variables bx (a, c) and by (b, d) in periodic unit cells involving
a random distribution of solid obstacles with εγ = 0.4 (a and b) and εγ = 0.8 (c, d) for ΦM = 10

fact that a macroscopic Thiele modulus value of 100 corresponds to a closure Thiele modulus
value near 1, because L = 100�. Under these circumstances, the differences between the
analytical and numerical predictions of the effective diffusivity are not significant.

The computations performed so far have involved relatively simple geometries for both
the unit cell and the solution domain in the pore-scale simulations. To overcome this issue, we
built periodic unit cells consisting of random arrays of circles with a fixed size distribution.
In Fig. 7, we show examples of the fields of the closure variables bx and by takingΦM = 10
for unit cells having fluid volume fractions of 0.4 (Fig. 7a, b) and 0.8 (Fig. 7c, d). In the
unit cell with εγ = 0.4, there are 31 obstacles with radii ranging from 0.04� to 0.162�,
whereas in the unit cell corresponding to εγ = 0.8, there are 18 obstacles with radii ranging
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Fig. 8 Examples of the dimensionless concentration fields from pore-scale simulations in domains built from
horizontal repetitions of the unit cells in Fig. 7. In both examples, L = 100� and ΦM = 10

from 0.058� to 0.0836�. With the closure variables fields, we computed the components of
the effective diffusivity tensor and we noticed that the off-diagonal terms were negligible
in comparison with the diagonal terms, which did not differ drastically between them. This
implies that, even though the unit cell geometry is anisotropic, it can be concluded that the
effective diffusivity is practically isotropic for the geometries treated in Fig. 7.

The unit cells shown in Fig. 7 were horizontally repeated 100 times in order to generate
two new solution domains to carry out pore-scale simulations as shown in Fig. 8. As done
before, we solved the dimensionless pore-scale equations to later compute the values of
〈cAγ 〉γ /cin as a function of position for several values of ΦM . Furthermore, taking into
account the predictions of the effective diffusivity performed from the closure variable fields
exemplified in Fig. 7, we solved the boundary-value problem given in Eqs. (58) to compute
the predictions of the dimensionless volume-averaged concentration. This problem was also
solved but using predictions of the effective diffusivity resulting from using arrays of squares
in the unit cell for the same porosity andΦM values used in Fig. 7. The resulting concentration
profiles are shown in Fig. 9, and the maximum percent errors between the predictions from
volume averaging and the pore-scale simulations are provided in Table 2; clearly, the largest
deviations are exhibited in the system with a smaller volume fraction. As expected, the
difference in the results increase with the reaction rate. We found that the maximum relative
percent error could go as high as 400 % when using an array of squares in the unit cell, for
ΦM = 100 and εγ = 0.4, whereas if the unit cell with a random distribution of obstacles
is considered, we obtained a difference that is always less than 7 % in all our computations.
Certainly, this good agreement is also shared by the predictions obtained with the simple
unit cell, but only for values of ΦM smaller than 10. Finally, it is worth mentioning that
the averaging operator may be regarded as the response of an instrument probing intensive
field variables (Baveye and Sposito 1984). Consequently, adopting a unit cell that closely
resembles the actual geometry used in the pore-scale simulations yields better results than
those produced by considering more idealized geometries.
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Fig. 9 Comparison of the
concentration profiles obtained
from pore-scale simulations
(black solid line) with those
resulting from the average model
using arrays of squares (red
dashed lined) and random
distributions of obstacles (black
dashed line) for the closure
problem solution considering
several values of the macroscopic
Thiele modulus. a εγ = 0.4 and
b εγ = 0.8
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11 Discussion and Conclusions

In this work, we revisited the upscaling process of the diffusive transport of a single chemical
species undergoing a chemical reaction in the fluid phase that saturates a rigid and homo-
geneous porous medium. We used the method of volume averaging to derive the effective
medium model (Eq. 47), and we identified the time- and length-scale constraints that lead to
this particular structure of the model. These constraints are

�γ 	 r0 	 L (60a)

�γ

L
	 1 + φ2

c (60b)

1

1 + φ2
c

	 DAγ t∗

�2
γ

(60c)

It is important to recall that these constraints were derived from orders of magnitude
estimates and may be over-restrictive. For instance, there may be situations in which fulfill-
ment of these constraints translates in such a loss of information that hinders the predictive
capabilities of the upscaled models.
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Table 2 Maximum percent
errors in the concentration
profiles predictions shown in
Fig. 9 arising from the average
model with respect to those from
pore-scale simulations

ΦM Maximum relative % error

εγ = 0.4 εγ = 0.8

Arrays of
squares

Random
distribution

Arrays of
squares

Random
distribution

1.0 0.110 0.56 0.108 0.22

2.5 0.199 3.38 0.161 0.97

5.0 0.485 8.74 0.426 2.78

10.0 0.909 17.50 0.826 5.38

100.0 6.330 404.00 3.760 36.70

In order to treat nonlinear reaction kinetics, we used a linearization scheme, based on
Taylor series expansions, in order to derive a linear closure problem. As shown in Sect.
7, the length-scale constraint given in (60b) is essential for neglecting the nonlinear terms
in the series expansion. At first sight, the macroscale model in Eq. (47) seems to exhibit
a vis-à-vis resemblance with the governing equation at the microscale (Eq. 1a). Actually,
this resemblance is only applicable to the reaction rate term, since the effective diffusivity
turned out to be, in general, a nontrivial function of the reaction rate. This functionality
was approximated by means of a logistic-type equation (49) that satisfactorily reproduces
the numerical results. In addition, we solved the linear closure problem analytically using
Chang’s unit cell and derived the expressions given in Eqs. (52) and (53) for 2D and 3D
geometries, respectively. As shown in Fig. 3, the numerical and analytical predictions of the
effective diffusivity as a function of the reaction rate are only in qualitative agreement.

With the aim of testing the predictive capabilities of the averaged model, we compared the
concentration profiles and effectiveness factor predictions from the macroscale model with
those resulting from performing pore-scale simulations in a 2D model of a porous medium
consisting in a regular array of in-line squares and with random distributions of obstacles.
As shown in the previous section, the agreement between both modeling approaches is
quite acceptable. This is attributed to the homogeneity of the reaction rate in the system
and to the fact that we built the solution domain for the pore-scale simulations from the
same periodic unit cell used in the closure. As explained in the previous section, when
comparing the concentration profiles corresponding to the largest Thiele modulus value
for εγ = 0.4, we noticed that the predictions resulting from using a simple unit cell (an
array of squares) exhibit an error of 400 % relative to those from pore-scale simulations.
Nevertheless, for smaller values, this difference may be as small as 5 %, thus showing the
importance of the reaction rate and geometry over the predictions. Furthermore, if one would
consider a system involving specific zones where considerably large reactions are taking
place, one would require to use a hybrid modeling approach as suggested by Battiato et al.
(2011).

Returning to the dependence of the effective diffusivity with the reaction rate, from the
comparison with pore-scale simulations, we also noticed that, for the range of macroscopic
Thiele modulus values here considered, it is acceptable to use either the logistic equation
or the expressions arising from using Chang’s unit cell to predict the values of the effective
diffusivity. This is attributed to the relatively small values of the closure Thiele modulus
(about 1) that result even when taking values of the macroscopic Thiele modulus of 100.
The cause of this disparity of values is the disparity of characteristic lengths between the
microscale and the macroscale (for the system studied in Sect. 11, we took L = 100�). The
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above suggests using the classical analytical expression for the effective diffusivity derived
by Rayleigh (1892),

εγ Dxx
eff

DAγ
= εγ

2 − εγ
(61)

to predict the effectiveness factor dependence with the Thiele modulus for the conditions
described in Fig. 6, and we found that the relative percent error with respect to pore-scale
simulations was smaller than 10 % in all cases. Nevertheless, if one compares the predictions
for the reactive diffusivity provided in Fig. 3 with those for passive diffusivity, the differences
can go as high as 50 %. This leads us to conclude that, for systems satisfying the time- and
length-scale constraints here identified, one may neglect the dependence of the diffusivity
with the reaction rate for the purposes of predicting the effectiveness factor. Under these
conditions, we may state that the averaged model has a vis-à-vis resemblance with the pore-
scale model. Certainly, there are more complicated situations in which the agreement between
the predictions from the upscaled model with pore-scale simulations are not as close as those
shown here. Wood et al. (2007) studied the case of dispersive mass transport undergoing a
heterogeneous reaction in a biofilm-coated porous medium. For a given representation of
the porous medium geometry (see Fig. 5 in Wood et al. 2007), these authors concluded that
the variance of the concentration field has a dramatic impact upon the shape of the effective
reaction rate curve as determined by DNS. They attributed this behavior to the fact that order
of operations of reaction and averaging cannot, in general, be freely interchanged.

It is worth mentioning that the vis-à-vis resemblance between the upscaled and microscale
models applies for the structure of the model and not for the physical meaning of each term.
In other words, the fact that both microscale and macroscale models include a diffusive term
does not imply that the effective diffusivity is equal to the molecular diffusivity or that a
volume-averaged concentration is equal to its microscale counterpart. Such equalities can
only hold in systems in which the porous medium offers a negligible influence for transport,
as, for instance, in systems with porosity values near the unity.

Finally, it is worth remarking that the linearization scheme used in this paper was a
convenient tool to obtain a closed model that resembles its microscale counterpart, which
appears to provide good agreement with pore-scale simulations. However, for situations in
which this is not a reasonable approach, one may require the use of iterative schemes as
explained in the appendix. In this case, the closure problem solution is implicit and the
coupling between the closure problem and the upscaled model is more complicated than the
one found for the linear problem. In addition, the computation of the related Green function
will be an essential feature of the solution procedure. This alternative approach will be further
explored in a future work.

Acknowledgments This work was benefited from Fondo Sectorial de Investigación para la educación from
CONACyT (Project Number: 12511908; Arrangement Number: 112087).

Appendix

In this section, we describe an approach for solving closure problems in cases for which the
linearization scheme described in Sect. 7 is not suitable. In this case, the closure problem is
given by the following boundary-value problem:

∇ · (DAγ∇ c̃Aγ )− R̃(c̃Aγ + 〈cAγ 〉γ ) = 0, in Ωγ (62a)
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−nγ κ · DAγ∇ c̃Aγ = nγ κ · DAγ∇〈cAγ 〉γ , at ∂Ωγ (62b)

c̃Aγ (x + li ) = c̃Aγ (x), i = 1, 2, 3 (62c)

〈c̃Aγ 〉γ = 0 (62d)

If we regard the reaction rate as a volumetric source term, the closure problem solution is
given by

c̃Aγ (x, t) = −
∫

r∈Ωγ
G (x, r)R̃

(
c̃Aγ + 〈cAγ 〉γ ) dV (r)

︸ ︷︷ ︸
influence of the volumetric reactive source

−
∫

r∈∂Ωγκ
G (x, r)nγ κDAγ dA(r) · ∇〈cAγ 〉γ

︸ ︷︷ ︸
influence of the surface diffusive source

(63)

where G (x, r) is the Green function associated to passive diffusive transport in the unit cell
and it solves the following problem

∇2G = δ(x − r), in Ωγ (64a)

−nγ κ · ∇G = 0, at ∂Ωγ (64b)

G (x + li ) = G (x), i = 1, 2, 3 (64c)

〈G 〉γ = 0 (64d)

With the aim of simplifying Eq. (63), let us define

bγ (x) = −
∫

r∈∂Ωγκ
G (x, r)nγ κDAγ dA(r) (65)

so that Eq. (63) takes the form

c̃Aγ (x, t) = −
∫

r∈Ωγ
G (x, r)R̃

(
c̃Aγ + 〈cAγ 〉γ ) dV (r)

︸ ︷︷ ︸
influence of the volumetric reactive source

+ bγ · ∇〈cAγ 〉γ
︸ ︷︷ ︸

influence of the surface diffusive source

(66)

Certainly, Eq. (66) is an implicit solution as it requires knowledge of the concentration
deviation fields in the first integral term. Under these conditions, the following iterative
solution approach is advisable:

1. Compute the Green function for the linear portion of the operator for a given unit cell
geometry. The nonlinear term is treated as a source term in this formulation. Note that
the average concentration and its gradient are also source terms that parameterize the
potential solution space. Thus, the general solution covering all possible conditions must
be sought for all combinations of 〈cAγ 〉γ and ∇〈cAγ 〉γ as parameters.

2. For a particular set of values of 〈cAγ 〉γ and ∇〈cAγ 〉γ , one must assume an initial value
for the c̃Aγ field.

3. Using the initial guess for c̃Aγ , compute R̃(c̃Aγ + 〈cAγ 〉γ ).
4. Use Eq. (66) to compute the concentration deviations.
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5. Verify whether the computed concentration deviation fields satisfy a convergence crite-
rion. If the criterion is not met, correct the assumed fields and return to step 3.

6. Once a particular convergence criterion has been met, this process must be repeated
for each combination of 〈cAγ 〉γ and ∇〈cAγ 〉γ required to adequately cover the solution
domain of interest.

This scheme has been used in the past for studying diffusive and convective mass transport
in a catalytic particle (Mandaliya et al. 2013; Valdés-Parada et al. 2008a, b) obtaining faster
convergence rates than with traditional approaches. The idea of regarding the nonlinear term
as a source in order to produce an implicit solution has been previously discussed at some
length in the literature (Flesch and Trullinger 1987; Stakgold and Holst 2011). There are two
potential disadvantages of this approach

1. The Green function for the linear component of the transport operator must be computed.
It is possible to compute Green’s functions numerically, but the number of independent
variables for these functions is essentially twice that of the underlying fields. This creates
a significant computational burden.

2. Although the fields for c̃Aγ can be, in principle, accurately computed for the nonlinear
reaction, the resulting solution is not a simple one in terms of the average concentration
and its gradients alone. However, higher-order approximation schemes can be developed
from such solutions that involve only the average concentration and its (higer-order)
gradients.

To conclude this section, it is illustrative to show that Eq. (66) leads to the same expression
for the concentration deviations as given in Eq. (24) for the case in which the reaction rate
can be linearized. In this case, Eq. (38) is applicable and Eq. (66) takes the form

c̃Aγ (x, t) = − dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

∫

r∈Ωγ
G (x, r)c̃Aγ |rdV (r)+ bγ · ∇〈cAγ 〉γ (67)

Let us now substitute Eq. (66) into the integral term in the above expression to obtain

c̃Aγ (x) = dR

dcAγ

∣∣∣∣
〈cAγ 〉γ |x

br x · ∇〈cAγ 〉γ + bγ · ∇〈cAγ 〉γ (68)

where, on the basis of Eq. (25), the closure variable, br x , is given by

br x =
∫

r∈Ωγ

∫

y0∈∂Ωγκ
G (x, r)Gr x (r, y0)nγ κDAγ dA(y0) dV (r) (69)

Equation (68) is equivalent to Eq. (24) thus concluding the demonstration. Certainly, in
the case in which the reaction rate follows the first-order expression R = kcAγ , the above

derivations are also applicable by simply replacing dR
dcAγ

∣∣∣〈cAγ 〉γ |x
= k.
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