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Abstract Attempts have been made to find exact solutions for the one-dimensional transient
gas flow equation in porous media. By introducing a traveling wave variable, a traveling wave
solution of the gas flow equation has been found. The traveling wave solution is presented
in an explicit form of the space and time variables, and it takes into account both gravity
and Klinkenberg effects (pressure-dependent permeability). We investigated the properties
of the traveling wave solution and the effect of some parameters such as the Klinkenberg
coefficient. A numerical study has been carried out, which confirms the stability of the
traveling wave solution. The traveling wave solution is then used to derive two benchmark
solutions defined over the semi-infinite domain. The first one assumes uniform initial gas
pressure and non-uniform boundary condition, and the second assumes uniform boundary
condition and non-uniform initial distribution of the gas pressure. The benchmark solutions
are easy to use and are useful for validating numerical solutions. Two illustrative examples
are presented in order to compare the benchmark solutions with the numerical solutions. The
results show good agreements between the solutions.

Keywords Gas flow through porous media · Klinkenberg effects · Traveling wave ·
Exact benchmark solution · Nonlinear equation · Validation

1 Introduction

Subsurface gas flow has received considerable attention in the past few decades because
of its importance in many areas of soil physics. These areas include petroleum engineering
(Al-Hussainy et al. 1966; Ikoku 1984), hydrological sciences (Scanlon et al. 2002), and
environmental and chemical engineering (Massmann 1989; Morrison 1972).
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Petroleum industry was the first sector which has been interested in investigating gas
flow in porous media (Muskat 1946). The investigation of gaseous flow through tight porous
media is of practical importance when dealing with extraction of hydrocarbon gases from
unconventional gas reservoirs, such as shale gas and coal bed methane reservoirs. Gas flow
models are systematically used to estimate the gas permeability and other reservoir parameters
in natural gas production. Therefore, a considerable amount of studies has been performed
on the theory and application of isothermal gas flow through porous media in petroleum
engineering (Dake 1978; Ikoku 1984).

Transient gas flow in porous media occurs also through the backfill following a nuclear test
after an underground nuclear explosion (Morrison 1972). The simulations of vapor carbon
dioxide (CO2) transport in CO2 sequestration projects are also performed using gas flow
models (Zhang et al. 2005). It should be noted that the growth of plants and crops is also
affected by the flow of water vapor in soil (Scanlon et al. 2002).

Vadose zone hydrology is another important sector of soil physics, where gas flow models
are frequently used. The vadose zone is always susceptible to groundwater contaminations,
which represent a serious problem in industrialized countries. These contaminations are
generally caused by spilling or leaking of some contaminants (Massmann 1989; Shan et
al. 1992; Wu et al. 1998; Massmann et al. 2000; Shan 2006). These contaminants include
volatile organic chemicals (VOCs) such as petroleum products and organic solvents, and
non-aqueous phase liquids (NAPLs). VOCs and NAPLs may act as long-term sources of
groundwater contamination, and the need to remove these contaminants becomes a neces-
sity for groundwater protection. Shan (2006) mentioned two possibilities to the removal of
contaminants from contaminated sites: soil excavation and in situ remediation. For shallow
and accessible contamination sources, the first one, i.e., excavation, is preferable since it is
faster and cheaper. However, for deep and inaccessible contamination sources, in situ reme-
diation techniques such as soil vapor extraction (SVE) and air injection have to be used (Wu
et al. 1998; Shan 2006). These techniques have proven to be very efficient methods for the
removal of VOCs and NAPLs from the vadose zone. The SVE technic can carry the conta-
minant vapors away from the vadose zone, while subsurface air injection can help evaporate
the contaminants into the soil gas flow stream.

Contrary to liquid flow where Darcy’s law is often applied, conventional Darcy’s law has
many limitations when dealing with gas flow. This is due to the nature of the porous medium
and peculiarities of the flow regimes. For a gas flow through tight gas reservoirs, the mean
free path of gas molecules may approach the pore dimension. Therefore, gas molecules may
slip along pore surfaces. This gas slippage phenomenon causes an additional flux beside
the viscous flux. This leads to an overestimation of the gas permeability being measured in
comparison with the permeability to liquid. Gas permeability is then enhanced by ‘slip flow.’
Adzumi (1937) was the first who studied the gas slippage in porous media. Later on, Klinken-
berg (1941) derived an expression of the gas permeability defined as a function of the liquid
permeability, the gas pressure and the gas slippage factor, which called also the Klinkenberg
coefficient. This phenomenon is known as the Klinkenberg effects (Wu et al. 1998; Ho and
Webb 2006). Klinkenberg effects may be neglected for pressure conditions associated with
gas reservoirs (Aronofsky 1954; Al-Hussainy et al. 1966). However, they may have significant
impact on gas flow in low permeability media (Wu et al. 1998; Ho and Webb 2006).

Gas slippage phenomenon makes the governing equation of gas flow to be nonlinear and
difficult to solve analytically. Therefore, numerical models have been developed and used
extensively in the study and applications of gas flow in porous media. Among the numerical
codes which are frequently used to model gas flow in porous media, we cite TOUGH2 (Pruess
1991), FEHM (Zyvoloski et al. 1996) and STOMP (White and Oostrom 1996).
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One-Dimensional Transient Gas Flow in Porous Media 405

Despite the existence of sophisticated numerical models to solve gas flow equations in
porous media, analytical solutions are still attractive because, in one side, they allow the
validation of numerical solutions, and in the other, they can be used as screening tools
for quick evaluations and for field cases where numerical simulations are not feasible. For
instance, Fekete (www.fekete.com) and KAPPA (www.kappaeng.com) software which are
commonly used in modeling shale gas are based on semi/analytical methods. A few number
of research papers has been devoted to the development of analytical solutions of gas flow
in porous media. These analytical solutions include both steady state (Morrison 1972; Shan
et al. 1992; Falta 1995; Wu et al. 1998) and transient gas flow (Kidder 1957; Katz 1959;
Morrison 1972; Massmann 1989; Johnson et al. 1990; McWhorter 1990; Baehr and Hult
1991; Baehr and Joss 1995; Falta 1995; Wu et al. 1998; DiGiulio and Varadhan 2001; Shan
2006; Beygi and Rashidi 2011). Most of the existent solutions are semi-analytical, which are
obtained by using linearization techniques. Li et al. (2011) presented a comparative study
between two linearization methods. The first one is the conventional method, which assumes
constant gas diffusivity, and the second is the original method introduced by Wu et al. (1998),
which employs spatially averaged but time-dependent gas diffusivity. They founded that the
solution proposed by Wu et al. (1998) generally provides more accurate results than the
conventional solution. This later always underestimates the pressure, while the Wu solution
generally underestimates the pressure near the higher-pressure boundary and overestimates
the pressure near the lower-pressure boundary. As a consequence, the existing analytical
solutions obtained from linearization techniques exhibit some discrepancies with respect to
numerical solutions, especially for high pressure values. Therefore, finding exact solutions
of the gas flow equation, if they exist, is an important and challenging problem. To our
knowledge, no exact solutions for gas flow in porous media exist in the literature.

The objective of this paper was to derive some exact and simple benchmark solutions for
the one-dimensional transient gas flow equation in porous media without using linearization
techniques. Such solutions are more accurate than those obtained by linearization. The exact
solutions take into account gravity and Klinkenberg effects, and there is no limitation about
the averaged value of the gas pressure. They can be used with simple and realistic initial and
boundary conditions. The proposed solutions are specially intended to be reference solutions
for validating numerical ones.

2 Mathematical Model

The governing equation describing the one-dimensional transient flow of a gas in a porous
medium can be obtained from the mass balance Eq. (1) and the ‘generalized’ Darcy law (2)

φ
∂ρ

∂t
+ ∂ (ρu)

∂x
= 0 (1)

and

u = −kg (p)

μ

(
∂p

∂x
− ρg

)
(2)

where x is the position coordinate directed downward (L) , t is time (T ) , φ is the porosity of
the porous medium (−) , ρ is the gas density

(
M L−3

)
, u is the generalized Darcy velocity

of the gas-phase
(
M L−1

)
, μ is the gas-phase viscosity

(
M L−1T −1

)
, p is the gas-phase

pressure
(
M L−1T −2

)
, kg is the effective gas-phase permeability

(
L2

)
, which may include

Klinkenberg effects, and g is the gravitational constant. Klinkenberg (1941) suggests that the

123

www.fekete.com
www.kappaeng.com


406 M. Hayek

effective gas permeability kg may be written as function of the gas pressure according to the
following relation

kg (p) = k

(
1 + b

p

)
(3)

where k is the effective permeability to liquids
(
L2

)
and b is the Klinkenberg coefficient(

M L−1T −2
)
, which is generally a function of the porous medium, the gas properties, and

the temperature.
Assuming an ideal gas, the relationship between the gas density and pressure can be

written as
ρ = βp (4)

where β is the compressibility factor defined by β = Mg
/

RT with Mg being the gas-phase
molecular weight, R is the gas constant, and T is the absolute temperature.

The combination of Eqs. (1)–(4) leads to the following equation where the gas pressure
is the sole dependent variable

μφ

k

∂p

∂t
− ∂

∂x

(
(p + b)

(
∂p

∂x
− gβp

))
= 0 (5)

We shall present an exact solution of (5) as a traveling wave.

3 Traveling Wave Solution

A traveling wave solution represents the limit profile for a continuous feed problem when
the inflow pressure stabilizes to a fixed value P1. We denote by P0 the pressure value far
away from the inflow boundary. A traveling wave solution of (5) is subject to the following
boundary conditions

lim
x→−∞ p (x, t) = P1, lim

x→+∞ p (x, t) = P0, lim
x→±∞

∂p

∂x
(x, t) = 0, t > 0 (6)

The last condition in (6) means that the gas pressure stabilizes at large distances.
Mathematically, a traveling wave solution of Eq. (5) is obtained by introducing a new

variable ξ called the traveling wave coordinate for which the gas pressure can be expressed
as

p (x, t) = P (ξ) , ξ = x − V t (7)

where V is the constant speed, called also wave velocity, at which the pressure wave is
assumed to be moving. The advantage of introducing the transformation (7) is that the partial
differential equation (5) is transformed into an ordinary differential equation, which is easier
to integrate. Substituting (7) into (5), we get after integrating once with respect to ξ

μφV

k
P + (P + b)

(
dP

dξ
− gβ P

)
= C (8)

where C is a constant of integration, which must be determined with the constant speed V
from the transformed boundary conditions (9) of (6)

lim
ξ→−∞ P (ξ) = P1, lim

ξ→+∞ P (ξ) = P0, lim
ξ→±∞

dP

dξ
(ξ) = 0 (9)
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Taking into account the boundary conditions (9) into Eq. (8), we get

V = gβk (P0 + P1 + b)

μφ
(10)

and
C = gβ P0 P1 (11)

Substituting (10) and (11) into (8), we obtain

dP

dξ
= gβ (P − P0) (P − P1)

P + b
(12)

A solution ξ = ξ (P) can be obtained from (12) as follows. Let choose an arbitrary gas
pressure P∗ between P0 and P1 and assuming that P∗ is the value of P at some ξ = ξ∗.
Therefore, after solving (12), we get

ξ (P) = ξ∗ + 1

gβ
log

((
P1 − P

P1 − P∗

)A (
P − P0

P∗ − P0

)B
)

(13)

where A = P1+b
P1−P0

and B = − P0+b
P1−P0

.

Equation (13) expresses explicitly ξ as function of the variable pressure P . This equation
represents the exact traveling wave solution. For any gas pressure value between P0 and P1,
the traveling wave variable ξ (P) is uniquely determined from (13). Note that an explicit
solution P (ξ) can be obtained from (13) for special values of P0 and P1. For example, for
the special choice P1 = 2P0 + b, we have A = 2 and B = −1. Substituting these values
into (13), this later can be solved for P , which leads to

P (ξ) = 1

2

(
2P1 + γ (ξ) −

√
(γ (ξ))2 + 4γ (ξ) (P1 − P0)

)
(14)

where

γ (ξ) = (P1 − P∗)2

(P∗ − P0)
exp

(
gβ

(
ξ − ξ∗)) . (15)

The exact solution in the original (x, t)-space can be obtained by substituting (7) into
(13). We get

x = V t + ξ∗ + 1

gβ
log

((
P1 − p

P1 − P∗

)A (
p − P0

P∗ − P0

)B
)

(16)

Similarly, the exact expression of the pressure for the special case P1 = 2P0 + b can be
obtained from (14) as

p (x, t) = 1

2

(
2P1 + γ (x − V t) −

√
(γ (x − V t))2 + 4 (P1 − P0) γ (x − V t)

)
(17)

4 Discussion on the Traveling Wave Solution

4.1 Characteristics

The exact traveling wave solution defined by (13) can be analyzed from Eq. (12). Indeed,
by definition, we have from (12) dP

dξ
≤ 0 since P lies between P0 and P1. Therefore, the
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Fig. 1 The traveling wave profiles for different values of P1. The value of P0 is fixed to 105 Pa

traveling wave solution is a decreasing function of P . This suggests that physical solutions
are only those correspond to P1 > P0. Moreover, the traveling wave solution has a unique
inflection point at ξI = ξ (PI ) where PI = −b + √

b2 + (P0 + P1) b + P0 P1. Therefore,
the traveling wave solution is a decreasing front solution connecting P1 at −∞ and P0 at
+∞. From Eq. (12), we observe that gravity effects are necessary for the existence of the
traveling wave solution. The shape of the traveling wave solution is independent from the
permeability k of the porous medium and depends only on the Klinkenberg coefficient b,
the compressibility factor β, and the boundary limits at infinity P0 and P1. However, the
permeability controls the velocity (i.e., speed) of the traveling wave in the (x, t)-space as can
be seen in Eq. (10). Clearly, the wave speed increases as k increases, which means that the
wave front propagates faster in permeable media.

Figure 1 shows the typical shapes of the traveling wave profiles for various values of P1.
The value of P0 is fixed to 105 Pa. The values of parameters b and β used in this example
are b = 4.75 × 104 Pa and β = 1.18 × 10−5 kg/Pa m3. As can be seen, the front becomes
steeper as the difference |P1 − P0| between the limiting pressures increases.

From Eq. (12), we observe that, for a fixed gas pressure, the larger the value of the

Klinkenberg coefficient b, the smaller the value of
∣∣∣dP

dξ

∣∣∣ . This means that the front gets

wider as the value of b increases. Therefore, the interval where the truncated part (i.e., the
part with strong decrease of gas pressure) of the profile is defined increases as b increases.
This can be clearly seen on Fig. 2, which shows the evolution of the gas pressure profile for
different values of the Klinkenberg coefficient for P0 = 105 Pa and P1 = 5 × 105 Pa. Note
that the profile is generally not symmetrical.

4.2 Stability

In this section, we investigate the numerical stability of the traveling wave front solution
defined by Eq. (16). The idea is to solve numerically Eq. (5) subject to various initial condi-
tions and show how the pressure profile behaves when time increases. Equation (5) is solved
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Fig. 2 The traveling wave profiles for different values of the Klinkenberg coefficient

numerically in a large domain of length 2l much larger than the front width to avoid any
effect of the lateral boundaries. Constant boundary conditions at large distances of Dirichlet
types are specified, i.e., p (−l, t) = P1 and p (l, t) = P0. For the initial distribution of the
gas pressure, we used the family of functions of the form

p (x, 0) = P1 − P1 − P0

2

[
1 + tanh

(
x − x0

w0

)]
(18)

where x0 is an arbitrary constant and w0 is the front width of the initial gas pressure distri-
bution. Clearly, Eq. (18) is characterized by a front connecting the two pressure values P1

and P0. The front of the initial profile (18) becomes steeper as w0 decreases and wider as w0

increases. In particular, when w0 tends to zero, the initial condition (18) becomes a stepwise
function centered at x0 and connecting P1 at −∞ and P0 at +∞. The Matlab solver ‘pdepe’
(www.mathworks.com) is used in order to solve numerically Eq. (5) with the initial condition
defined by (18). This solver can solve a system of initial boundary value problems in one
space variable and time. In order to insure that the time and space discretizations produce a
physically correct solution, the time step size �t must at least respect the Neumann criterion
(Hindmarsh et al. 1984): Neu = 2D�t

/
(�x)2 ≤ 1, where �x is the mesh spacing and D

is the diffusion coefficient.
Figure 3 shows the evolution with time of an initial gas pressure labeled ‘Initial Profile’ and

obtained from (18) for the following set of parameter values: x0 = 0, w0 = 105 m, P0 =
105 Pa and P1 = 5 × 105 Pa, and for the successive times t0 = 0, t1 = 2 × 1013, t2 =
4 × 1013, t3 = 6 × 1013 and t4 = 8 × 1013 s. Figure 3 shows also the exact traveling wave
solutions obtained from Eq. (16) for the same times. The physical parameter values used for
this comparison are: φ = 0.3, k = 10−15 m2, b = 4.75×104 Pa, β = 1.18×10−5 kg/Pa m3

and μ = 1.84 × 10−5 Pa s. The initial condition used for the numerical solutions can be
regarded as a perturbation of the exact profile at t0 = 0 with wider front width. For the early
time t1, we observe small differences between the numerical and exact profiles. This can be
explained by the fact that at this time, the numerical solution is still affected by the initial
profile. However, for the larger times, the numerical solution is relaxed to the exact solutions

123

www.mathworks.com


410 M. Hayek

−6 −4 −2 0 2 4 6 8 10 12 14

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Distance, x (m)

G
as

 P
re

ss
ur

e,
 p

 (
P

a)

Initial Profile → t
0

t
1

t
2

t
3

t
4

Exact

Num.

Fig. 3 The exact traveling wave profiles obtained from Eq. (16) for successive times versus the numerical
profiles obtained from the initial condition defined by (18) and corresponding to x0 = 0, w0 = 105 m, P0 =
105 Pa and P1 = 5 × 105 Pa
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Fig. 4 The exact traveling wave profiles obtained from Eq. (16) for successive times versus the numerical
profiles obtained from the initial condition defined by (18) and corresponding to x0 = 0, w0 = 10−6 m, P0 =
105 Pa and P1 = 2 × 105 Pa

at each time, and thus confirming that the solution we have developed is stable. The stability
of the traveling wave front solution is confirmed for other value of P1. Figure 4 shows the
results for P1 = 2 × 105 Pa and for the same parameter values used in the previous example
except that the front width is too small (w0 = 10−6 m). This case corresponds to a stepwise
initial front. As can be seen on the figure and contrary to the previous example, the front
width of the initial profile used for the numerical solutions is steeper than that of the exact
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profile. Again, we observe that the numerical solution converges to the exact solution for
large times.

5 Benchmark Solutions in Semi-infinite Domain

In this section, we show how the traveling wave solution (16) can be used to define bench-
mark solutions defined over the semi-infinite domain [0,+∞[ with constant initial condition
or constant boundary condition. The defined benchmark solutions are useful for verifying
numerical solutions. The technique used in here is similar to that used previously in soil
science (Vanderborght et al. 2005; Zlotnik et al. 2007).

The function ξ (P) as defined in Eq. (13) characterizes the transition zone of the gas
pressure between the two stable pressure values P0 and P1. The extent of the transition zone
is theoretically infinite since the gas pressures P1 and P0 are only reached at −∞ and +∞,
respectively. However, we could define the truncated part of the gas pressure profile as the
part located between two stable regions where the pressures are almost constant. In practice,
we introduce two gas pressure values P∗

0 and P∗
1 close to P0 and P1, respectively, and defined

as follows: P∗
0 = P0 + δ0 and P∗

1 = P1 − δ1, where δ0 and δ1 are two small positive values.
Accordingly, the truncated part of the gas pressure profile is defined over the interval

[
ξ∗

1 , ξ∗
0

]
where ξ∗

1 = ξ
(
P∗

1

)
and ξ∗

0 = ξ
(
P∗

0

)
. In order to make the traveling wave front solution of

practical value, we shall approximate the exact traveling wave (13) by the following function

P (ξ) =
⎧⎨
⎩

P∗
1 , −∞ < ξ ≤ ξ∗

1
solution of (13) , ξ∗

1 < ξ < ξ∗
0

P∗
0 , ξ∗

0 ≤ ξ < +∞
(19)

In the (x, t)-space, the exact traveling wave (16) is replaced by

p (x, t) =
⎧⎨
⎩

P∗
1 , −∞ < x ≤ x1 (t) , t > 0

solution of (16) , x1 (t) < x < x0 (t) , t > 0
P∗

0 , x0 (t) ≤ x < +∞, t > 0
(20)

where x1 (t) = ξ∗
1 + V t and x0 (t) = ξ∗

0 + V t .
The parameters δ0 and δ1 can be chosen as small as desired. Clearly, decreasing the values

of these two parameters will increase the length l∗ = ∣∣ξ∗
1 − ξ∗

0

∣∣ of the interval
[
ξ∗

1 , ξ∗
0

]
and

will expand the portion of the exact profile defined by (13). In other words, the function
defined by (20) converges to the exact traveling wave solutions (16) as δ0 and δ1 tend to zero.
In practice, we choose δ0 and δ1 such that δ0 ∼ δ1 ≤ εP0 if P0 �= 0, where ε ranges from
10−4 to 10−1. If P0 = 0, we take δ0 ∼ δ1 = ε.

5.1 Solution with Uniform Initial Condition and Non-uniform Boundary Condition

The function (20) is used now to define a benchmark solution of Eq. (5) in the (x, t)-domain
with constant initial gas pressure and time-dependent boundary condition. We are interested
in the part of the solution inside the semi-infinite domain [0,+∞[, which we call the flow
domain. We assume that at t0 = 0, the gas is uniformly distributed over the semi-infinite
domain [0,+∞[ with constant pressure equal to P∗

0 . For t > t0, the semi-infinite domain is
fed by gas with larger pressure values than P∗

0 at x = 0 from the outside of the flow domain
(i.e., from the region x < 0). This means that the value of the pressure at t0 = 0 calculated
from the truncated part of Eq. (20) (i.e., the part defined by (16)) is equal to P∗

0 at x = 0,
and it increases with time. This situation corresponds to ξ∗ = 0 and P∗ = P∗

0 in Eq. (16).
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Fig. 5 Construction of the benchmark solution with uniform initial condition and non-uniform boundary
condition. The truncated part of the initial profile at t0 = 0 is completely located outside the flow domain
[0, +∞[, and the part with constant pressure P∗

0 is inside the flow domain. After this time, the gas pressure
increases with time at the inlet boundary x = 0 until reaching the constant gas pressure P∗

1 at t∗

Figure 5 shows how the benchmark solution is constructed. As can be seen, the truncated part
of the initial profile is completely located outside the semi-infinite domain [0,+∞[. As time
increases, the gas enters the inlet boundary with time-dependent pressure until reaching P∗

1
at some time t∗. The time t∗ is the time required to the truncated part fully crosses the inlet
boundary. After this time, the pressure becomes constant at the inlet boundary and equal to
P∗

1 .
The benchmark solution in the semi-infinite domain [0,+∞[ is then defined by

p (x, t) =
⎧⎨
⎩

P∗
0 , x = 0, t = 0

solution of:x = V t + 1
gβ log

((
P1−p

P1−P0−δ0

)A (
p−P0

δ0

)B
)

, x > 0, t > 0

(21)
The solution (21) can be used to verify numerical solutions of Eq. (5). This solution has

uniform initial condition defined by

p (x, 0) = P∗
0 , x > 0 (22)

and time-dependent boundary condition p0 (t). The boundary condition is defined as follows

p0 (t) =

⎧⎪⎪⎨
⎪⎪⎩

P∗
0 , t = 0

solution of:V t + 1
gβ log

((
P1−p0(t)

P1−P0−δ0

)A (
p0(t)−P0

δ0

)B
)

= 0, 0 < t ≤ t∗

P∗
1 , t ≥ t∗

(23)
The time t∗ can be calculated analytically from the second row of Eq. (23) by substituting

t = t∗ and p0 (t∗) = P∗
1 . We obtain

t∗ = − 1

gβV
log

((
δ1

P1 − P0 − δ0

)A (
P1 − P0 − δ1

δ0

)B
)

(24)
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Fig. 6 Comparison between the numerical solution and the exact benchmark solution with uniform initial
condition for successive times (t1 < t2 < t∗ and t3 > t∗)

Note that in the special case P1 = 2P0 + b, Eqs. (21) and (23) can be written in explicit
forms as

p (x, t)

=
⎧⎨
⎩

P∗
0 , x = 0, t = 0

1
2

(
2P1 + γ (x − V t) −

√
(γ (x − V t))2 + 4 (P1 − P0) γ (x − V t)

)
, x > 0, t > 0

(25)

and

p0 (t) =

⎧⎪⎪⎨
⎪⎪⎩

P∗
0 , t = 0

1
2

(
2P1 + γ (−V t) −

√
(γ (−V t))2 + 4 (P1 − P0) γ (−V t)

)
, 0 < t ≤ t∗

P∗
1 , t ≥ t∗

(26)

where γ (ξ) = (P1−P0−δ0)2

δ0
egβξ . In this case, the time t∗ is simplified to t∗ =

− 1
gβV log

(
δ0δ2

1
(P1−P0−δ1)(P1−P0−δ0)

)
.

Figure 6 shows a comparison between the numerical solution and the benchmark solution
(21) for the following set of parameters: φ = 0.3, k = 10−12 m2, b = 3.95 × 103 Pa, β =
1.18 × 10−5 kg/Pa m3, μ = 1.84 × 10−5 Pa s, P0 = 105 Pa, P1 = 2P0 + b, δ0 = 10−3

and δ1 = 10−1. The numerical solutions are obtained from the same solver mentioned
in the previous section. The solutions are presented for the following successive times t1 =
2.4×1010 s, t2 = 2.9×1010 s and time t3 = 4×1010 s. As can be seen, excellent agreements
are obtained between the numerical and exact solutions for all times.
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5.2 Solution with Non-uniform Initial Condition and Uniform Boundary Condition

The solution with non-uniform initial condition and uniform boundary condition corresponds
to the case where the truncated part of the profile is initially fully in the flow domain. This
is for example the case of the profile corresponding to t = t3 > t∗ in Fig. 5. We assume
that at t = t0 = 0, the truncated part is completely present in the region x > 0. Therefore,
the pressure value at the inlet boundary would be constant and equal to P∗

1 . This situation
corresponds to ξ∗ = 0 and P∗ = P∗

1 in Eq. (16). The benchmark solution in the semi-infinite
domain [0,+∞[ is then defined by

p (x, t) =
⎧⎨
⎩

P∗
1 , x = 0, t = 0

solution of:x = V t + 1
gβ log

((
P1−p

δ1

)A (
p−P0

P1−P0−δ1

)B
)

, x > 0, t > 0

(27)

The solution (27) is the benchmark solution with uniform boundary condition and non-
uniform initial condition. This solution can be used to verify numerical solutions of Eq. (5)
with constant gas pressure at the inlet boundary defined by

p (0, t) = P∗
1 , t ≥ 0 (28)

The initial condition pi (x) is determined from the second equation of (27) by substituting
t = 0 and p = pi (x). We get

x = 1

gβ
log

((
P1 − pi (x)

δ1

)A (
pi (x) − P0

P1 − P0 − δ1

)B
)

(29)

For the special case P1 = 2P0 + b, Eqs. (27) and (29) can be written in explicit forms as
follows

p (x, t)

=
⎧⎨
⎩

P∗
1 , x = 0, t = 0

1
2

(
2P1 + γ (x − V t) −

√
(γ (x − V t))2 + 4 (P1 − P0) γ (x − V t)

)
, x > 0, t > 0

(30)

and

pi (x) = 1

2

(
2P1 + γ (x) −

√
(γ (x))2 + 4 (P1 − P0) γ (x)

)
(31)

where γ (x) = δ2
1

P1−P0−δ1
egβx .

In Fig. 7, we show a comparison between the benchmark solution (27) and the numerical
solution of Eq. (5) with uniform boundary condition (28) and non-uniform initial condition
(29) for successive times t1 = 1010, t2 = 2×1010 and t3 = 3×1010 s. The same parameters
values of the previous case are used. Since the entire truncated part of the solution is initially
inside the semi-infinite domain [0,+∞[, the solution at each time is a translation of the initial
profile traveling with constant velocity defined by (10). Figure 7 shows excellent agreement
between the benchmark solution and the numerical solution for each time.

Note that in the benchmark solutions defined by (21) and (27), there is no restriction about
the values of the pressures P0 and P1 (or P∗

0 and P∗
1 ). Contrary to the analytical solutions
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Fig. 7 Comparison between the numerical solution and the exact benchmark solution with constant boundary
condition for successive times

obtained from linearization techniques where accurate solutions are only obtained for low
gas pressure values, the above solutions can be used for any value of the gas pressures P∗

0 and
P∗

1 . For example, solution (27) is of interest in problems related to gas flow in the backfill
following an underground nuclear explosion. For such problems, the entry pressure P∗

1 is
generally much higher than P∗

0 . We would like to mention that the same technique can be
applied for a flux boundary condition at x = 0. The flux at this boundary can be derived
directly from the calculated pressure by applying the definition of the flux and the exact
solution (16).

6 Conclusion

We presented an exact traveling wave solution for the one-dimensional transient gas flow
equation in porous media. The model takes into account gravity and Klinkenberg effects. The
traveling wave solution is defined on the whole infinite domain. It is obtained by introducing
a traveling wave variable, which transforms the partial differential equation to an ordinary
differential equation admitting an exact solution. This method avoids any linearization. In a
first step, we presented the characteristics of the traveling wave solution and we investigated
numerically the stability of the front solutions. Then, two benchmark solutions defined on the
semi-infinite domain are presented. One with uniform initial gas pressure and non-uniform
boundary condition, and the other with uniform boundary condition and non-uniform initial
condition. These benchmark solutions are useful for validating numerical solutions with
uniform initial and boundary conditions. They can be used for problems where Klinkenberg
effects are important, and there is no restriction about the averaging pressure value. The
benchmark solutions are simple and easy to use. We presented some numerical experiments
to compare the benchmark solutions with numerical solutions, and the results have shown
good agreements between them.

123



416 M. Hayek

References

Adzumi, H.: Studies on the flow of gaseous mixtures through capillaries: II. The molecular flow of gaseous
mixtures. Bull. Chem. Soc. Jpn. 12, 285–291 (1937)

Al-Hussainy, R., Ramey, H.J., Crawford, P.B.: The flow of real gases through porous media. J. Petrol. Technol.
18(5), 624–636 (1966)

Aronofsky, J.S.: Effect of gas slip on unsteady flow of gas through porous media. J. Appl. Phys. 25(1), 48–53
(1954)

Baehr, A.L., Hult, M.F.: Evaluation of unsaturated zone air permeability through pneumatic tests. Water Resour.
Res. 27(10), 2605–2617 (1991)

Baehr, A.L., Joss, C.J.: An updated model of induced air-flow in the unsaturated zone. Water Resour. Res.
31(2), 417–421 (1995)

Beygi, M.E., Rashidi, F.: Analytical solutions to gas flow problems in low permeability porous media. Transp.
Porous Media 87(2), 421–436 (2011)

Dake, L.P.: Fundamentals of Reservoir Engineering, Development in Petroleum Science, 8. Elsevier, Amster-
dam (1978)

DiGiulio, D.C., Varadhan, R.: Development of Recommendations and Methods to Support Assessment of
Soil Venting Performance and Closure (EPA/600/R-01/070), p. 394. Environmental Protection Agency
(EPA), Massachusetts (2001)

Falta, R.W.: Analytical solutions for gas flow due to gas injection and extraction from horizontal wells.
Groundwater 33(2), 235–246 (1995)

Hindmarsh, A.C., Gresho, P.M., Griffiths, D.F.: The stability of explicit Euler time-integration for certain
finite difference approximations of the multi-dimensional advection-diffusion equation. Int. J. Numer.
Methods Fluids 4(9), 853–897 (1984)

Ho, C.K., Webb, S.W.: Gas Transport in Porous Media, Series: Theory and Applications of Transport in porous
Media, vol. 20. Springer, New York (2006)

Ikoku, C.U.: Natural Gas Reservoir Engineering, p. 503. Wiley, New York (1984)
Johnson, P.C., Kemblowski, M.W., Colthart, D.J.: Quantitative analysis for the cleanup of hydrocarbon-

contaminated soils by in-situ soil venting. Groundwater 28(3), 413–429 (1990)
Katz, D.L., et al.: Handbook of Natural Gas Engineering. McGraw-Hill, New York (1959)
Kidder, R.F.: Unsteady flow of gas through a semi-infinite porous medium. J. Appl. Mech. 24, 329–332 (1957)
Klinkenberg, L.J.: The Permeability of Porous Media to Liquids and Gases, Drilling and Production Practice.

American Petroleum Inst., pp. 200–213 (1941)
Li, J., Zhan, H., Huang, G.: Applicability of the linearized governing equation of gas flow in porous media.

Transp. Porous Media 87(3), 815–834 (2011)
Massmann, J.W.: Applying groundwater-flow models in vapor extraction system-design. J. Environ. Eng.

ASCE 115(1), 129–149 (1989)
Massmann, J.W., Shock, S., Johannesen, L.: Uncertainties in cleanup times for soil vapor extraction. Water

Resour. Res. 36(3), 679–692 (2000)
McWhorter, D.B.: Unsteady radial flow of gas in the vadose zone. J. Contam. Hydrol. 5(3), 297–314 (1990)
Morrison, F.A.: Transient gas flow in a porous column. Ind. Eng. Chem. Fundam. 11(2), 191–197 (1972)
Muskat, M.: The Flow of Homogeneous Fluids through Porous Media. J. W. Edwards, Ann Arbor (1946)
Pruess, K.: TOUGH2—A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Report

LBL-29400. Lawrence Berkeley Laboratory, Berkeley (1991)
Scanlon, B.R., Nicot, J.P., Massmann, J.W.: Soil gas movement in unsaturated system. In: Warrick, A.W. (ed.)

Soil Physics Companion, pp. 297–341. CRC Press, Boca Raton (2002)
Shan, C., Falta, R.W., Javandel, I.: Analytical solutions for steady state gas flow to a soil vapor extraction well.

Water Resour. Res. 28(4), 1105–1120 (1992)
Shan, C.: An analytical solutions for transient gas flow in a multiwell system. Water Resour. Res. 42(10),

W10401 (2006). doi:10.1029/2005WR004737
Vanderborght, J., Kasteel, R., Herbst, M., Javaux, M., Thiéry, D., Vanclooster, M., Mouvet, C., Vereecken, H.:

A set of analytical benchmarks to test numerical models of flow and transport in soils. Vadose Zone J.
4(1), 206–221 (2005)

Wu, Y.-S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media
32(1), 117–137 (1998)

White, M.D., Oostrom, M.: STOMP Subsurface Transport Over Multiple Phases Theory Guide, Variously
Paginated. Pacific Northwest National Laboratory, Richland (1996)

Zhang, Y., Oldenburg, C.M., Benson, S.M.: Vadose zone remediation of carbon dioxide leakage from geologic
carbon dioxide sequestration sites. Vadose Zone J. 3(3), 858–866 (2005)

123

http://dx.doi.org/10.1029/2005WR004737


One-Dimensional Transient Gas Flow in Porous Media 417

Zlotnik, V.A., Wang, T., Nieber, J.L., Šimunek, J.: Verification of numerical solutions of the Richards equation
using a traveling wave solution. Adv. Water Resour. 30(9), 1973–1980 (2007)

Zyvoloski, G.A., Robinson, B.A., Dash, Z.V., Trease, L.L.: Models and Methods Summary for the FEHM
Application. Los Alamos National Lab, Los Alamos (1996)

123


	Exact Solutions for One-Dimensional Transient Gas Flow in Porous Media with Gravity and Klinkenberg Effects
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Traveling Wave Solution
	4 Discussion on the Traveling Wave Solution
	4.1 Characteristics
	4.2 Stability

	5 Benchmark Solutions in Semi-infinite Domain
	5.1 Solution with Uniform Initial Condition and Non-uniform Boundary Condition
	5.2 Solution with Non-uniform Initial Condition and Uniform Boundary Condition

	6 Conclusion
	References


